SIST EN 1993-1-9:2005
(Main)Eurocode 3: Design of steel structures - Part 1-9: Fatigue
Eurocode 3: Design of steel structures - Part 1-9: Fatigue
This Part presents a general method for the fatigue assessment of structures and structural elements which are subjected to repeated fluctuations of stresses. The fatigue strengths specified in this Part 1-9 are applicable to structures with suitable corrosion protection and maintenance during the required life time, subjected only to mildly corrosive environments, such as normal atmospheric conditions (pit depth < or = 1 mm).
Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung
(1) EN 1993-1-9 enthält Nachweisverfahren zur Prüfung der Ermüdungsfestigkeit von Bauteilen, Verbindungen und Anschlüssen, die unter Ermüdungsbeanspruchung stehen.
(2) Die Nachweisverfahren basieren auf Ergebnissen von Ermüdungsversuchen mit bauteilähnlichen Prüfkörpern mit geometrischen und strukturellen Imperfektionen, die von der Stahlproduktion und Bauteilherstellung herrühren (z. B. Herstellungstoleranzen und Eigenspannungen infolge Schweißens).
ANMERKUNG 1 Zu Toleranzen siehe EN 1090. Solange EN 1090 noch nicht veröffentlicht ist, darf die Wahl der Ausführungsnorm im Nationalen Anhang geregelt werden.
ANMERKUNG 2 Informationen zu Anforderungen an die Herstellungsüberwachung dürfen im Nationalen Anhang gegeben werden.
(3) Die Regelungen gelten für Bauteile, die nach EN 1090 ausgeführt werden.
ANMERKUNG Gegebenenfalls sind zusätzliche Anforderungen in den Kerbschlagtabellen angegeben.
(4) Die in EN 1993-1-9 angegebenen Nachweisverfahren gelten in gleicher Weise für Baustähle, nicht-rostende Stähle und ungeschützte wetterfeste Stähle, soweit in den Kerbfalltabellen keine anderen Angaben gemacht werden. EN 1993-1-9 gilt nur für Werkstoffe, die den Zähigkeitsanforderungen nach EN 1993-1-10 genügen.
(5) EN 1993-1-9 enthält das Nachweisverfahren mit Ermüdungsfestigkeitskurven (Wöhlerlinien). Andere Verfahren oder Konzepte wie das Kerbgrundkonzept oder das bruchmechanische Konzept werden in EN 1993-1-9 nicht behandelt.
(6) Andere Nachbehandlungsmethoden als Spannungsarmglühen zur Erhöhung der Ermüdungsfestigkeit werden in EN 1993-1-9 nicht behandelt.
(7) Die in EN 1993-1-9 angegebenen Ermüdungsfestigkeiten gelten für Konstruktionen unter normalen atmosphärischen Bedingungen und ausreichendem Korrosionsschutz. Korrosionserscheinungen infolge Seewasser werden nicht behandelt; Zeitschäden aus hohen Temperaturen (>150 °C) werden ebenfalls nicht behandelt.
Eurocode 3: Calcul des structures en acier - Partie 1-9: Fatigue
Evrokod 3: Projektiranje jeklenih konstrukcij – 1-9. del: Utrujanje
Področje uporabe
(1)EN 1993-1-9 navaja metode za oceno odpornosti proti utrujanju pri elementih, spojih in vozliščih, ki so izpostavljeni obtežbi utrujanja.
(2)Te metode izhajajo iz preskusov utrujanja, izvedenih s preskušanci v naravni velikosti, pri katerih so se upoštevali vplivi geometrijskih in konstrukcijskih nepopolnosti zaradi izdelave materiala in izdelave konstrukcijskih elementov (npr. vplivi toleranc in zaostalih napetosti od varjenja).
OPOMBA 1:Za tolerance glej EN 1090. Do objave EN 1090 je lahko v nacionalnem dodatku predpisan drug standard za izvedbo jeklenih konstrukcij.
OPOMBA 2: V nacionalnem dodatku so lahko navedene dodatne informacije o zahtevah glede nadzora med izdelavo konstrukcij.
(3)Pravila veljajo za konstrukcije, katerih izvedba je v skladu z EN 1090.
OPOMBA:Kadar je primerno, se dodatne zahteve navedejo v preglednicah s kategorijami konstrukcijskih detajlov.
(4)Metode, navedene v tem delu, veljajo za vse kakovosti konstrukcijskih jekel, nerjavnih jekel, nezaščitenih vremensko odpornih jekel, razen kadar je v preglednicah kategorij konstrukcijskih detajlov navedeno drugače. Ta del velja za materiale, ki izpolnjujejo zahteve glede žilavosti, navedene v EN 1993-1-10.
(5)Druge metode za oceno odpornosti proti utrujanju, razen metode R-N, kot na primer metoda »notch strain« ali metode lomne mehanike, v tem delu niso obravnavane.
(6)Naknadni postopki za izboljšanje odpornosti proti utrujanju, razen popuščanja zaostalih napetosti, v tem delu niso obravnavani.
Trdnosti utrujanja, navedene v tem delu, veljajo za konstrukcije, ki delujejo v normalnih atmosferskih pogojih in so redno vzdrževane. Vplivi korozije zaradi morske vode niso vključeni. Mikropoškodbe zaradi visokih temperatur (>150 °C) niso vključene.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
SIST EN 1993-1-9:2005
01-oktober-2005
Evrokod 3: Projektiranje jeklenih konstrukcij – 1-9. del: Utrujanje
Eurocode 3: Design of steel structures - Part 1-9: Fatigue
Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-9: Ermüdung
Eurocode 3: Calcul des structures en acier - Partie 1-9: Fatigue
Ta slovenski standard je istoveten z: EN 1993-1-9:2005
ICS:
91.010.30 7HKQLþQLYLGLNL Technical aspects
91.080.10 Kovinske konstrukcije Metal structures
SIST EN 1993-1-9:2005 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
EUROPEAN STANDARD EN 1993-1-9
NORME EUROPÉENNE
EUROPÄISCHE NORM
May 2005
ICS 91.010.30 Supersedes ENV 1993-1-1:1992
English version
Eurocode 3: Design of steel structures - Part 1-9: Fatigue
Eurocode 3: Calcul des structures en acier - Partie 1-9: Eurocode 3: Bemessung und Konstruktion von Stahlbauten
Fatigue - Teil 1-9: Ermüdung
This European Standard was approved by CEN on 23 April 2004.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European
Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national
standards may be obtained on application to the Central Secretariat or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official
versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,
Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36 B-1050 Brussels
© 2005 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 1993-1-9:2005: E
worldwide for CEN national Members.
---------------------- Page: 2 ----------------------
EN 1993-1-9 : 2005 (E)
Contents
Page
1 General . 6
1.1 Scope . 6
1.2 Normative references. 6
1.3 Terms and definitions . 6
1.4 Symbols . 9
2 Basic requirements and methods . 9
3 Assessment methods .10
4 Stresses from fatigue actions .11
5 Calculation of stresses .12
6 Calculation of stress ranges .13
6.1 General .13
6.2 Design value of nominal stress range .13
6.3 Design value of modified nominal stress range.14
6.4 Design value of stress range for welded joints of hollow sections.14
6.5 Design value of stress range for geometrical (hot spot) stress .14
7 Fatigue strength .14
7.1 General .14
7.2 Fatigue strength modifications .17
8 Fatigue verification.18
Annex A [normative] – Determination of fatigue load parameters and verification formats .30
Annex B [normative] – Fatigue resistance using the geometric (hot spot) stress method.33
2
---------------------- Page: 3 ----------------------
EN 1993-1-9 : 2005 (E)
Foreword
This European Standard EN 1993, Eurocode 3: Design of steel structures, has been prepared by Technical
Committee CEN/TC250 « Structural Eurocodes », the Secretariat of which is held by BSI. CEN/TC250 is
responsible for all Structural Eurocodes.
This European Standard shall be given the status of a National Standard, either by publication of an identical
text or by endorsement, at the latest by November 2005, and conflicting National Standards shall be withdrawn
at latest by March 2010.
This Eurocode supersedes ENV 1993-1-1.
According to the CEN-CENELEC Internal Regulations, the National Standard Organizations of the
following countries are bound to implement these European Standard: Austria, Belgium, Cyprus, Czech
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden,
Switzerland and United Kingdom.
Background to the Eurocode programme
In 1975, the Commission of the European Community decided on an action programme in the field of
construction, based on article 95 of the Treaty. The objective of the programme was the elimination of
technical obstacles to trade and the harmonization of technical specifications.
Within this action programme, the Commission took the initiative to establish a set of harmonized technical
rules for the design of construction works which, in a first stage, would serve as an alternative to the national
rules in force in the Member States and, ultimately, would replace them.
For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member
States, conducted the development of the Eurocodes programme, which led to the first generation of
European codes in the 1980s.
1
In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement
between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN
through a series of Mandates, in order to provide them with a future status of European Standard (EN). This
links de facto the Eurocodes with the provisions of all the Council’s Directives and/or Commission’s
Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products
- CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and
equivalent EFTA Directives initiated in pursuit of setting up the internal market).
The Structural Eurocode programme comprises the following standards generally consisting of a number of
Parts:
EN 1990 Eurocode 0: Basis of Structural Design
EN 1991 Eurocode 1: Actions on structures
EN 1992 Eurocode 2: Design of concrete structures
EN 1993 Eurocode 3: Design of steel structures
EN 1994 Eurocode 4: Design of composite steel and concrete structures
EN 1995 Eurocode 5: Design of timber structures
EN 1996 Eurocode 6: Design of masonry structures
EN 1997 Eurocode 7: Geotechnical design
EN 1998 Eurocode 8: Design of structures for earthquake resistance
EN 1999 Eurocode 9: Design of aluminium structures
1
Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN)
concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).
3
---------------------- Page: 4 ----------------------
EN 1993-1-9 : 2005 (E)
Eurocode standards recognize the responsibility of regulatory authorities in each Member State and have
safeguarded their right to determine values related to regulatory safety matters at national level where these
continue to vary from State to State.
Status and field of application of Eurocodes
The Member States of the EU and EFTA recognize that Eurocodes serve as reference documents for the
following purposes :
– as a means to prove compliance of building and civil engineering works with the essential requirements
of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and
stability – and Essential Requirement N°2 – Safety in case of fire;
– as a basis for specifying contracts for construction works and related engineering services;
– as a framework for drawing up harmonized technical specifications for construction products (ENs and
ETAs)
The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the
2
Interpretative Documents referred to in Article 12 of the CPD, although they are of a different nature from
3
harmonized product standards . Therefore, technical aspects arising from the Eurocodes work need to be
adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product
standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.
The Eurocode standards provide common structural design rules for everyday use for the design of whole
structures and component products of both a traditional and an innovative nature. Unusual forms of
construction or design conditions are not specifically covered and additional expert consideration will be
required by the designer in such cases.
National Standards implementing Eurocodes
The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any
annexes), as published by CEN, which may be preceded by a National title page and National foreword, and
may be followed by a National annex.
The National annex may only contain information on those parameters which are left open in the Eurocode
for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and
civil engineering works to be constructed in the country concerned, i.e. :
– values and/or classes where alternatives are given in the Eurocode,
– values to be used where a symbol only is given in the Eurocode,
– country specific data (geographical, climatic, etc.), e.g. snow map,
– the procedure to be used where alternative procedures are given in the Eurocode.
It may contain
– decisions on the application of informative annexes,
– references to non-contradictory complementary information to assist the user to apply the Eurocode.
2
According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the
creation of the necessary links between the essential requirements and the mandates for harmonized ENs and ETAGs/ETAs.
3
According to Art. 12 of the CPD the interpretative documents shall :
a) give concrete form to the essential requirements by harmonizing the terminology and the technical bases and indicating classes or levels for each
requirement where necessary ;
b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof,
technical rules for project design, etc. ;
c) serve as a reference for the establishment of harmonized standards and guidelines for European technical approvals.
The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.
4
---------------------- Page: 5 ----------------------
EN 1993-1-9 : 2005 (E)
Links between Eurocodes and harmonized technical specifications (ENs and ETAs) for
products
There is a need for consistency between the harmonized technical specifications for construction products
4
and the technical rules for works . Furthermore, all the information accompanying the CE Marking of the
construction products which refer to Eurocodes should clearly mention which Nationally Determined
Parameters have been taken into account.
National annex for EN 1993-1-9
This standard gives alternative procedures, values and recommendations with notes indicating where national
choices may have to be made. The National Standard implementing EN 1993-1-9 should have a National
Annex containing all Nationally Determined Parameters for the design of steel structures to be constructed in
the relevant country.
National choice is allowed in EN 1993-1-9 through:
– 1.1(2)
– 2(2)
– 2(4)
– 3(2)
– 3(7)
– 5(2)
– 6.1(1)
– 6.2(2)
– 7.1(3)
– 7.1(5)
– 8(4)
4
see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.
5
---------------------- Page: 6 ----------------------
EN 1993-1-9 : 2005 (E)
1 General
1.1 Scope
(1) EN 1993-1-9 gives methods for the assessment of fatigue resistance of members, connections and
joints subjected to fatigue loading.
(2) These methods are derived from fatigue tests with large scale specimens, that include effects of
geometrical and structural imperfections from material production and execution (e.g. the effects of
tolerances and residual stresses from welding).
NOTE 1 For tolerances see EN 1090. The choice of the execution standard may be given in the
National Annex, until such time as EN 1090 is published.
NOTE 2 The National Annex may give supplementary information on inspection requirements
during fabrication.
(3) The rules are applicable to structures where execution conforms with EN 1090.
NOTE Where appropriate, supplementary requirements are indicated in the detail category tables.
(4) The assessment methods given in this part are applicable to all grades of structural steels, stainless
steels and unprotected weathering steels except where noted otherwise in the detail category tables. This part
only applies to materials which conform to the toughness requirements of EN 1993-1-10.
(5) Fatigue assessment methods other than the ∆σ -N methods as the notch strain method or fracture
R
mechanics methods are not covered by this part.
(6) Post fabrication treatments to improve the fatigue strength other than stress relief are not covered in
this part.
(7) The fatigue strengths given in this part apply to structures operating under normal atmospheric
conditions and with sufficient corrosion protection and regular maintenance. The effect of seawater corrosion
is not covered. Microstructural damage from high temperature (> 150 °C) is not covered.
1.2 Normative references
This European Standard incorporates by dated or undated reference, provisions from other publications.
These normative references are cited at the appropriate places in the text and the publications are listed
hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to
this European Standard only when incorporated in it by amendment or revision. For undated references the
latest edition of the publication referred to applies (including amendments).
The following general standards are referred to in this standard.
EN 1090 Execution of steel structures – Technical requirements
EN 1990 Basis of structural design
EN 1991 Actions on structures
EN 1993 Design of Steel Structures
EN 1994-2 Design of Composite Steel and Concrete Structures: Part 2: Bridges
1.3 Terms and definitions
(1) For the purpose of this European Standard the following terms and definitions apply.
6
---------------------- Page: 7 ----------------------
EN 1993-1-9 : 2005 (E)
1.3.1 General
1.3.1.1
fatigue
The process of initiation and propagation of cracks through a structural part due to action of fluctuating
stress.
1.3.1.2
nominal stress
A stress in the parent material or in a weld adjacent to a potential crack location calculated in accordance
with elastic theory excluding all stress concentration effects.
NOTE The nominal stress as specified in this part can be a direct stress, a shear stress, a principal
stress or an equivalent stress.
1.3.1.3
modified nominal stress
A nominal stress multiplied by an appropriate stress concentration factor k, to allow for a geometric
f
discontinuity that has not been taken into account in the classification of a particular constructional detail.
1.3.1.4
geometric stress
hot spot stress
The maximum principal stress in the parent material adjacent to the weld toe, taking into account stress
concentration effects due to the overall geometry of a particular constructional detail.
NOTE Local stress concentration effects e.g. from the weld profile shape (which is already included
in the detail categories in Annex B) need not be considered.
1.3.1.5
residual stress
Residual stress is a permanent state of stress in a structure that is in static equilibrium and is independent of
any applied action. Residual stresses can arise from rolling stresses, cutting processes, welding shrinkage or
lack of fit between members or from any loading event that causes yielding of part of the structure.
1.3.2 Fatigue loading parameters
1.3.2.1
loading event
A defined loading sequence applied to the structure and giving rise to a stress history, which is normally
repeated a defined number of times in the life of the structure.
1.3.2.2
stress history
A record or a calculation of the stress variation at a particular point in a structure during a loading event.
1.3.2.3
rainflow method
Particular cycle counting method of producing a stress-range spectrum from a given stress history.
1.3.2.4
reservoir method
Particular cycle counting method of producing a stress-range spectrum from a given stress history.
NOTE For the mathematical determination see annex A.
1.3.2.5
stress range
The algebraic difference between the two extremes of a particular stress cycle derived from a stress history.
7
---------------------- Page: 8 ----------------------
EN 1993-1-9 : 2005 (E)
1.3.2.6
stress-range spectrum
Histogram of the number of occurrences for all stress ranges of different magnitudes recorded or calculated
for a particular loading event.
1.3.2.7
design spectrum
The total of all stress-range spectra in the design life of a structure relevant to the fatigue assessment.
1.3.2.8
design life
The reference period of time for which a structure is required to perform safely with an acceptable
probability that failure by fatigue cracking will not occur.
1.3.2.9
fatigue life
The predicted period of time to cause fatigue failure under the application of the design spectrum.
1.3.2.10
Miner's summation
A linear cumulative damage calculation based on the Palmgren-Miner rule.
1.3.2.11
equivalent constant amplitude stress range
The constant-amplitude stress range that would result in the same fatigue life as for the design spectrum,
when the comparison is based on a Miner's summation.
NOTE For the mathematical determination see Annex A.
1.3.2.12
fatigue loading
A set of action parameters based on typical loading events described by the positions of loads, their
magnitudes, frequencies of occurrence, sequence and relative phasing.
NOTE 1 The fatigue actions in EN 1991 are upper bound values based on evaluations of
measurements of loading effects according to Annex A.
NOTE 2 The action parameters as given in EN 1991 are either
– Q , n , standardized spectrum or
max max
– Q related to n or
max
E,n
max
6
– Q corresponding to n = 2×10 cycles.
E,2
Dynamic effects are included in these parameters unless otherwise stated.
1.3.2.13
equivalent constant amplitude fatigue loading
Simplified constant amplitude loading causing the same fatigue damage effects as a series of actual variable
amplitude loading events
1.3.3 Fatigue strength
1.3.3.1
fatigue strength curve
The quantitative relationship between the stress range and number of stress cycles to fatigue failure, used for
the fatigue assessment of a particular category of structural detail.
NOTE The fatigue strengths given in this part are lower bound values based on the evaluation of
fatigue tests with large scale test specimens in accordance with EN 1990 – Annex D.
8
---------------------- Page: 9 ----------------------
EN 1993-1-9 : 2005 (E)
1.3.3.2
detail category
The numerical designation given to a particular detail for a given direction of stress fluctuation, in order to
indicate which fatigue strength curve is applicable for the fatigue assessment (The detail category number
indicates the reference fatigue strength ∆σ in N/mm²).
C
1.3.3.3
constant amplitude fatigue limit
The limiting direct or shear stress range value below which no fatigue damage will occur in tests under
constant amplitude stress conditions. Under variable amplitude conditions all stress ranges have to be below
this limit for no fatigue damage to occur.
1.3.3.4
cut-off limit
Limit below which stress ranges of the design spectrum do not contribute to the calculated cumulative
damage.
1.3.3.5
endurance
The life to failure expressed in cycles, under the action of a constant amplitude stress history.
1.3.3.6
reference fatigue strength
6
The constant amplitude stress range ∆σ , for a particular detail category for an endurance N = 2×10 cycles
C
1.4 Symbols
∆σ stress range (direct stress)
∆τ stress range (shear stress)
∆σ , ∆τ equivalent constant amplitude stress range related to n
E E max
∆σ , ∆τ equivalent constant amplitude stress range related to 2 million cycles
E,2 E,2
∆σ , ∆τ reference value of the fatigue strength at N = 2 million cycles
C C C
∆σ , ∆τ fatigue limit for constant amplitude stress ranges at the number of cycles N
D D D
∆σ , ∆τ cut-off limit for stress ranges at the number of cycle N
L L L
∆σ equivalent stress range for connections in webs of orthotropic decks
eq
∆σ reduced reference value of the fatigue strength
C,red
γ partial factor for equivalent constant amplitude stress ranges ∆σ , ∆τ
Ff E E
γ partial factor for fatigue strength ∆σ , ∆τ
Mf C C
m slope of fatigue strength curve
λ damage equivalent factors
i
ψ factor for frequent value of a variable action
1
Q characteristic value of a single variable action
k
k reduction factor for fatigue stress to account for size effects
s
k magnification factor for nominal stress ranges to account for secondary bending moments in
1
trusses
k stress concentration factor
f
N design life time expressed as number of cycles related to a constant stress range
R
2 Basic requirements and methods
(1) Structural members should be designed for fatigue such that there is an acceptable level of probability
that their performance will be satisfactory throughout their design life.
9
---------------------- Page: 10 ----------------------
EN 1993-1-9 : 2005 (E)
NOTE Structures designed using fatigue actions from EN 1991 and fatigue resistance according to
this part are deemed to satisfy this requirement.
(2) Annex A may be used to determine a specific loading model, if
– no fatigue load model is available in EN 1991,
– a more realistic fatigue load model is required.
NOTE Requirements for determining specific fatigue loading models may be specified in the
National Annex.
(3) Fatigue tests may be carried out
– to determine the fatigue strength for details not included in this part,
– to determine the fatigue life of prototypes, for actual or for damage equivalent fatigue loads.
(4) In performing and evaluating fatigue tests EN 1990 should be taken into account (see also 7.1).
NOTE Requirements for determining fatigue strength from tests may be specified in the National
Annex.
(5) The methods for the fatigue assessment given in this part follows the principle of design verification
by comparing action effects and fatigue strengths; such a comparison is only possible when fatigue actions
are determined with parameters of fatigue strengths contained in this standard.
(6) Fatigue actions are determined according to the requirements of the fatigue assessment. They are
different from actions for ultimate limit state and serviceability limit state verifications.
Any fatigue cracks that develop during service life do not necessarily mean the end of the
NOTE
service life. Cracks should be repaired with particular care for execution to avoid introducing more
severe notch conditions.
3 Assessment methods
(1) Fatigue assessment should be undertaken using either:
– damage tolerant method or
– safe life method.
(2) The damage tolerant method should provide an acceptable reliability that a structure will perform
satisfactorily for its design life, provided that a prescribed inspection and maintenance regime for detecting
and correcting fatigue damage is implemented throughout the design life of the structure.
NOTE 1 The damage tolerant method may be applied when in the event of fatigue damage occurring
a load redistribution between components of structural elements can occur.
NOTE 2 The National Annex may give provisions for inspection programmes.
NOTE 3 Structures that are assessed to this part, the material of which is chosen according to
EN 1993-1-10 and which are subjected to regular maintenance are deemed to be damage tolerant.
(3) The safe life method should provide an acceptable level of reliability that a structure will perform
satisfactorily for its design life without the need for regular in-service inspection for fatigue damage. The
safe life method should be applied in cases where local formation of cracks in one component could rapidly
lead to failure of the structural element or structure.
10
---------------------- Page: 11 ----------------------
EN 1993-1-9 : 2005 (E)
(4) For the purpose of fatigue assessment using this part, an acceptable reliability level may be achieved
by adjustment of the partial factor for fatigue strength γ taking into account the consequences of failure and
Mf
the design assessment used.
(5) Fatigue strengths are determined by considering the structural detail together with its metallurgical and
geometric notch effects. In the fatigue details presented in this part the probable site of crack initiation is also
indicated.
(6) The assessment methods presented in this code use fatigue resistance in terms of fatigue strength
curves for
– standard details applicable to nominal stresses
– reference weld configurations applicable to geometric stresses.
(7) The required reliability can be achieved as follows:
a) damage tolerant method
– selecting details, materials and stress levels so that in the event of the formation of cracks a low rate of
crack propagation and a long critical crack length would result,
– provision of multiple load path
– provision of crack-arresting details,
– provision of readily inspectable details during regular inspections.
b) safe-life method
– selecting details and stress levels resulting in a fatigue life sufficient to achieve the β – values equal to
those for ultimate limit state verifications at the end of the design service life.
NOTE The National Annex may give the choice of the assessment method, definitions of classes of
consequences and numerical values for γ . Recommended values for γ are given in Table 3.1.
Mf Mf
Table 3.1: Recommended values for partial factors for fatigue strength
Consequence of failure
Assessment method
Low consequence High consequence
Damage tolerant 1,00 1,15
Safe life 1,15 1,35
4 Stresses from fatigue actions
(1) Modelling for nominal stresses should take into account all action effects including distortional effects
and should be based on a linear elastic analysis for members and connections
(2) For latticed girders made of hollow sections the modelling may be based on a simplified truss model
with pinned connections. Provided that the stresses due to external loading applied to members between
joints are taken into account the effects from secondary moments due to the stiffness of the connection can
be allowed for by the use of k -factors (see Table 4.1 for circular sections, Table 4.2 for rectangular
1
sections).
Table 4.1: k -factors for circular hollow sections under in-plane loading
1
Type of joint Chords Verticals Diagonals
K type 1,5 1,0 1,3
Gap joints
N type / K
...
6/29(16., 6,67(1
67$1'$5'
RNWREHU
(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM±GHO8WUXMDQMH
(XURFRGH'HVLJQRIVWHHOVWUXFWXUHV±3DUW)DWLJXH
(XURFRGH&DOFXOGHVVWUXFWXUHVHQDFLHU±3DUWLH)DWLJXH
(XURFRGH%HPHVVXQJXQG.RQVWUXNWLRQYRQ6WDKOEDXWHQ±7HLO(UPGXQJ
5HIHUHQþQDR]QDND
,&6 6,67(1VO
1DGDOMHYDQMHQDVWUDQHK,,LQ,,,LQRGGR
! "#$%&’(#") *+, ! -) #$
---------------------- Page: 1 ----------------------
6,67(1
1$&,21$/1,892'
6WDQGDUG6,67(1VO(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM±GHO8WUXMDQMH
LPDVWDWXVVORYHQVNHJDVWDQGDUGDLQMHLVWRYHWHQHYURSVNHPXVWDQGDUGX(1HQ
(XURFRGH'HVLJQRIVWHHOVWUXFWXUHV±3DUW)DWLJXH
1$&,21$/1,35('*2925
(YURSVNL VWDQGDUG (1 MH SULSUDYLO WHKQLþQL RGERU (YURSVNHJD NRPLWHMD ]D
VWDQGDUGL]DFLMR&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDWDMQLãWYRMHYSULVWRMQRVWL%6,
6ORYHQVNLVWDQGDUG6,67(1MHSUHYRGHYURSVNHJDVWDQGDUGD(19
SULPHUXVSRUDJOHGHEHVHGLODVORYHQVNHJDSUHYRGDYWHPVWDQGDUGXMHRGORþLOHQL]YLUQLHYURSVNL
VWDQGDUGYDQJOHãNHPMH]LNX6ORYHQVNRL]GDMRVWDQGDUGDMHSULSUDYLOWHKQLþQLRGERU6,677&.21
.RQVWUXNFLMH
=9(=$=1$&,21$/1,0,67$1'$5',
9VWDQGDUGX6,67(1SRPHQLVNOLFHYDQMHQDHYURSVNHLQPHGQDURGQHVWDQGDUGHNLMH
YNOMXþHQRYWDHYURSVNLVWDQGDUGVNOLFHYDQMHQDHQDNRYUHGQHVORYHQVNHVWDQGDUGHQSU
(1SRPHQL6,67(1
1$&,21$/1,'2'$7(.
9VNODGXVVWDQGDUGRP(1ERSULSUDYOMHQQDFLRQDOQLGRGDWHNNVWDQGDUGX6,67(1
1DFLRQDOQLGRGDWHNYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH
]RSRPEDPLNLNDåHMRNMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRERQDFLRQDOQLGRGDWHN6,67(1
$YVHERYDOQDFLRQDOQRGRORþHQHSDUDPHWUHNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMX
VWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLY5HSXEOLNL6ORYHQLML
1DFLRQDOQDL]ELUDMHY(1GRYROMHQDY
±
±
±
±
±
±
±
±
±
±
±
26129$=$,='$-267$1'$5'$
± SULY]HPVWDQGDUGD(1
2320%(
3RYVRG NMHU VH Y EHVHGLOX VWDQGDUGD XSRUDEOMD L]UD] ³HYURSVNL VWDQGDUG´ Y
6,67(1WRSRPHQL³VORYHQVNLVWDQGDUG´
1DFLRQDOQLXYRGLQQDFLRQDOQLSUHGJRYRUQLVWDVHVWDYQLGHOVWDQGDUGD
,,
---------------------- Page: 2 ----------------------
6,67(1
7DQDFLRQDOQLGRNXPHQWMHLVWRYHWHQ](1LQMHREMDYOMHQ]GRYROMHQMHP
&(1
5XHGH6WDVVDUW
%UXVHOM
%HOJLMD
7KLVQDWLRQDOGRFXPHQWLVLGHQWLFDOZLWK(1DQGLVSXEOLVKHGZLWKWKHSHUPLVVLRQRI
&(1
5XHGH6WDVVDUW
%UX[HOOHV
%HOJLXP
,,,
---------------------- Page: 3 ----------------------
6,67(1
3UD]QDVWUDQ
,9
---------------------- Page: 4 ----------------------
(95236.,67$1'$5' (1
(8523($167$1'$5'
1250((8523e(11(
(8523b,6&+(1250 PDM
,&6 1DGRPHãþD(19
6ORYHQVNDL]GDMD
(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM±GHO8WUXMDQMH
(XURFRGH'HVLJQRIVWHHO (XURFRGH&DOFXOGHV (XURFRGH%HPHVVXQJXQG
VWUXFWXUHV±3DUW)DWLJXH VWUXFWXUHVHQDFLHU± .RQVWUXNWLRQYRQ6WDKOEDXWHQ
3DUWLH)DWLJXH ±7HLO(UPGXQJ
7DHYURSVNLVWDQGDUGMH&(1VSUHMHODSULOD
ýODQL&(1PRUDMRL]SROQMHYDWLQRWUDQMHSUHGSLVH&(1&(1(/(&VNDWHULPLMHSUHGSLVDQRGDPRUD
ELWLWDVWDQGDUGEUH]NDNUãQLKNROLVSUHPHPEVSUHMHWNRWQDFLRQDOQLVWDQGDUG1DMQRYHMãLVH]QDPLWHK
QDFLRQDOQLKVWDQGDUGRY]QMLKRYLPLELEOLRJUDIVNLPLSRGDWNLVHQD]DKWHYRODKNRGRELMRSUL&HQWUDOQHP
VHNUHWDULDWXDOLNDWHULNROLþODQLFL&(1
7DHYURSVNLVWDQGDUGREVWDMDYWUHKL]YLUQLKL]GDMDKDQJOHãNLIUDQFRVNLLQQHPãNL,]GDMHYGUXJLK
MH]LNLKNLMLKþODQLFH&(1QDODVWQRRGJRYRUQRVWSUHYHGHMRLQL]GDMRWHUSULMDYLMRSUL&HQWUDOQHP
VHNUHWDULDWX&(1YHOMDMRNRWXUDGQHL]GDMH
ýODQL&(1VRQDFLRQDOQL RUJDQL ]DVWDQGDUGH$YVWULMH%HOJLMH&LSUD ýHãNHUHSXEOLNH'DQVNH
(VWRQLMH)LQVNH)UDQFLMH*UþLMH,UVNH,VODQGLMH,WDOLMH/DWYLMH/LWYH/XNVHPEXUJD0DGåDUVNH
0DOWH1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNH
âYLFHLQ=GUXåHQHJDNUDOMHVWYD
&(1
(YURSVNLNRPLWH]DVWDQGDUGL]DFLMR
(XURSHDQ&RPPLWWHHIRU6WDQGDUGLVDWLRQ
&RPLWp(XURSpHQGH1RUPDOLVDWLRQ
(XURSlLVFKHV.RPLWHHIU1RUPXQJ
&HQWUDOQLVHNUHWDULDW5XHGH6WDVVDUW%%UXVHOM
.0/2131346587:9;<:=>?@78A;BC98D8=EGF2C78A3=>H9BIA9?@JKCL878A?NM:O7<3=>?NP-QSR-TUS?:VWTX;T:QSR0YZ3Z3[:\Y\ZK]/2131346Q
---------------------- Page: 5 ----------------------
6,67(1
9VHELQD 6WUDQ
6SORãQR
3RGURþMHXSRUDEH
=YH]D]GUXJLPLVWDQGDUGL
,]UD]LLQGHILQLFLMH
6LPEROL
2VQRYQH]DKWHYHLQPHWRGH
0HWRGH]DRFHQRRGSRUQRVWL
1DSHWRVWL]DUDGLREWHåESULXWUXMDQMX
,]UDþXQQDSHWRVWL
,]UDþXQUD]OLNQDSHWRVWL
6SORãQR
3URMHNWQDYUHGQRVWQD]LYQHUD]OLNHQDSHWRVWL
3URMHNWQDYUHGQRVWPRGLILFLUDQHQD]LYQHUD]OLNHQDSHWRVWL
3URMHNWQDYUHGQRVWUD]OLNHQDSHWRVWLSULYDUMHQLKYR]OLãþLKYNDWHULKVHVWLNDMRYRWOLSURILOL
3URMHNWQDYUHGQRVWJHRPHWULMVNHUD]OLNHQDSHWRVWL
7UGQRVWXWUXMDQMD
6SORãQR
0RGLILNDFLMHWUGQRVWLXWUXMDQMD
3UHYHUMDQMHXWUXMDQMD
'RGDWHN$>QRUPDWLYQL@'RORþDQMHSDUDPHWURYREWHåEHXWUXMDQMDLQQDþLQLSUHYHUMDQMD
'RGDWHN%>QRUPDWLYQL@2GSRUQRVWSURWLXWUXMDQMX]XSRUDERPHWRGHJHRPHWULMVNLKQDSHWRVWL
NRQLFHQDSHWRVWL
---------------------- Page: 6 ----------------------
6,67(1
3UHGJRYRU
7DHYURSVNLVWDQGDUG(1(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLMMHSULSUDYLOWHKQLþQLRGERU
&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDVHNUHWDULDWMHQD%6,&(17&MHRGJRYRUHQ]DYVH
NRQVWUXNFLMVNHHYURNRGH
7DHYURSVNLVWDQGDUGPRUDSRVWDWLQDFLRQDOQLVWDQGDUG]REMDYRLVWRYHWQHJDEHVHGLODDOL]XUDGQR
UD]JODVLWYLMRQDMSR]QHMHGRQRYHPEUDQDFLRQDOQLVWDQGDUGLNLVR]QMLPYQDVSURWMXSDPRUDMR
ELWLXPDNQMHQLQDMSR]QHMHPDUFD
7DGRNXPHQWQDGRPHãþD(19
&(17&MHRGJRYRUHQ]DYVHNRQVWUXNFLMVNHHYURNRGH
3RGRORþLOLKQRWUDQMLKSUHGSLVRY&(1&(1(/(&VRWDHYURSVNLVWDQGDUGGROåQLVSUHMHWLQDFLRQDOQL
RUJDQL]DVWDQGDUGHQDVOHGQMLKGUåDY$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH(VWRQLMH
)LQVNH )UDQFLMH *UþLMH ,VODQGLMH ,UVNH ,WDOLMH /DWYLMH /LWYH /XNVHPEXUJD 0DGåDUVNH 0DOWH
1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNHâYLFH
LQ=GUXåHQHJDNUDOMHVWYD
2]DGMHSURJUDPDHYURNRGRY
.RPLVLMD(YURSVNLKVNXSQRVWLVHMHYOHWXQDSRGODJLþOHQD5LPVNHSRJRGEHRGORþLODGD
VSUHMPHDNFLMVNLSURJUDPQDSRGURþMXJUDGEHQLãWYD&LOMSURJUDPDMHELORGVWUDQLWLWHKQLþQHRYLUHSUL
WUJRYDQMXLQXVNODGLWLWHKQLþQHVSHFLILNDFLMH
=QRWUDMWHJDSURJUDPDMH.RPLVLMDVSRGEXGLODSULSUDYRQL]DXVNODMHQLKWHKQLþQLKSUDYLO]DSURMHNWLUDQMH
JUDGEHQLK REMHNWRY NL EL VH VSUYD XSRUDEOMDOD NRW DOWHUQDWLYD UD]OLþQLP SUDYLORP YHOMDYQLP Y
SRVDPH]QLKGUåDYDKþODQLFDKNRQþQRSDELMLKQDGRPHVWLODYFHORWL
.RPLVLMDMHVSRPRþMRXSUDYQHJDRGERUDYNDWHUHPVRELOLSUHGVWDYQLNLGUåDYþODQLFSHWQDMVWOHWYRGLOD
UD]YRMSURJUDPDHYURNRGRYNDWHUHJDUH]XOWDWMHELODSUYDJHQHUDFLMDHYURNRGRYYRVHPGHVHWLKOHWLK
VWROHWMD
^
/HWDVRVH.RPLVLMDLQGUåDYHþODQLFH(8LQ()7$RGORþLOHGDQDSRGODJLGRJRYRUD PHG
.RPLVLMRLQ&(1]YHþSRREODVWLOLSUHQHVHMRSULSUDYRLQREMDYOMDQMHHYURNRGRYQD&(1GDELHYURNRGL
YSULKRGQMHLPHOLVWDWXVHYURSVNLKVWDQGDUGRY(17RMHHYURNRGHGHMDQVNRSRYH]DOR]GRORþEDPL
YVHKGLUHNWLY6YHWDLQDOLRGORþEDPL.RPLVLMHNLVHQDQDãDMRQDHYURSVNHVWDQGDUGHQSU'LUHNWLYD
6YHWD (*6 R JUDGEHQLK SURL]YRGLK &3' LQ 'LUHNWLYH 6YHWD (*6 (*6 WHU
(*6RMDYQLKGHOLKLQVWRULWYDKWHUXVWUH]QHGLUHNWLYH()7$NLVRELOHVSUHMHWH]DXYHOMDYLWHY
QRWUDQMHJDWUJD
3URJUDPNRQVWUXNFLMVNLKHYURNRGRYREVHJDQDVOHGQMHVWDQGDUGHNLLPDMRQDVSORãQRYHþGHORY
(1 (YURNRG 2VQRYHSURMHNWLUDQMDNRQVWUXNFLM
(1 (YURNRG 9SOLYLQDNRQVWUXNFLMH
(1 (YURNRG 3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHVRYSUHåQLKMHNOHQLKLQEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMH]LGDQLKNRQVWUXNFLM
(1 (YURNRG *HRWHKQLþQRSURMHNWLUDQMH
_a‘
B:b2B8A8BC6cG?3JedfB3c6=93=gBhQiA3CB2F898D=Ej9:D8k:F2<8B89;=H=:=gBrqPsQSRStuBrF2C=F2C78A3=-?:A3CB2DB:J2B8Avn:7
F2CBg?D;=C7
---------------------- Page: 7 ----------------------
6,67(1
(1 (YURNRG 3URMHNWLUDQMHSRWUHVQRRGSRUQLKNRQVWUXNFLM
3URMHNWLUDQMHDOXPLQLMVNLKNRQVWUXNFLM
(1 (YURNRG
(YURNRGLSUL]QDYDMRRGJRYRUQRVWSULVWRMQLKREODVWLYYVDNLGUåDYLþODQLFLLQMLPGRSXãþDMRSUDYLFRGD
YUHGQRVWLSRYH]DQH]YDUQRVWMRGRORþDMRQDQDFLRQDOQLUDYQLRGGUåDYHGRGUåDYHUD]OLþQR
6WDWXVLQSRGURþMHYHOMDYQRVWLHYURNRGRY
ýODQLFH(8LQ()7$SUL]QDYDMRHYURNRGHNRWUHIHUHQþQHGRNXPHQWH]DQDVOHGQMHQDPHQH
± NRWQDþLQ]DGRND]RYDQMHXVWUH]QRVWLVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYELVWYHQLP]DKWHYDP
'LUHNWLYH6YHWD(*6]ODVWLELVWYHQL]DKWHYLãWª0HKDQVNDRGSRUQRVWLQVWDELOQRVW©LQ
ELVWYHQL]DKWHYLãWª9DUQRVWSULSRåDUX©
± NRWSRGODJR]DVSHFLILNDFLMRSRJRGE]DJUDGQMRJUDGEHQLKREMHNWRYLQVSUHPOMDMRþHLQåHQLUVNH
VWRULWYH
± NRWRNYLU]DSULSUDYRKDUPRQL]LUDQLKWHKQLþQLKVSHFLILNDFLM]DJUDGEHQHSURL]YRGH(1LQ(7$
{
.MHUVHHYURNRGLQDQDãDMRQDJUDGEHQHREMHNWHVRQHSRVUHGQRSRYH]DQL]UD]ODJDOQLPLGRNXPHQWL
QDYHGHQLPLYþOHQX'LUHNWLYHRJUDGEHQLKSURL]|YRGLK&3'þHSUDYMHQMLKRYDQDUDYDGUXJDþQDRG
QDUDYHKDUPRQL]LUDQLKVWDQGDUGRY]DSURL]YRGH =DWRPRUDMRWHKQLþQLRGERUL&(1LQDOLGHORYQH
VNXSLQH (27$ NL SULSUDYOMDMR WHKQLþQH VSHFLILNDFLMH ]D SURL]YRGH XSRãWHYDWL WHKQLþQH YLGLNH
HYURNRGRYGDELVWHPGRVHJOLSRSROQRXVNODMHQRVWWHKWHKQLþQLKVSHFLILNDFLM]HYURNRGL
(YURNRGL YVHEXMHMR VNXSQD SUDYLOD ]D YVDNGDQMR UDER SUL SURMHNWLUDQMX RELþDMQLK LQ LQRYDWLYQLK
NRQVWUXNFLMNRWFHORWHDOLSRVDPH]QLKNRQVWUXNFLMVNLKGHORY(YURNRGLQHYVHEXMHMRSRVHEQLKGRORþLO]D
QHQDYDGQHREOLNHNRQVWUXNFLMDOLQHQDYDGQHSURMHNWQHSRJRMH9WHKSULPHULKMHSRWUHEQRVRGHORYDQMH
]L]YHGHQFL
1DFLRQDOQHL]GDMHHYURNRGRY
1DFLRQDOQDL]GDMDHYURNRGDYVHEXMHSROHJFHORWQHJDEHVHGLODHYURNRGD]YVHPLGRGDWNLNRWJDMH
REMDYLO&(1WXGLPRUHELWQRQDFLRQDOQRQDVORYQLFRQDFLRQDOQLSUHGJRYRULQQDFLRQDOQLGRGDWHN
1DFLRQDOQLGRGDWHNODKNRYVHEXMHOHSRGDWNHRSDUDPHWULKNLVRYHYURNRGXQDYHGHQLNRWQDFLRQDOQR
GRORþHQL SDUDPHWUL 1'3 7L SDUDPHWUL YHOMDMR ]D SURMHNWLUDQMH NRQVWUXNFLM VWDYE LQ JUDGEHQLK
LQåHQLUVNLKREMHNWRYYGUåDYLYNDWHULERGR]JUDMHQL7RVR
± YUHGQRVWLLQDOLUD]UHGLNMHUHYURNRGLGRSXãþDMRDOWHUQDWLYH
± YUHGQRVWLNMHUHYURNRGLQDYDMDMROHVLPEROH
± SRGDWNLVSHFLILþQL]DGUåDYRJHRJUDIVNLSRGQHEQLLWQNRWMHQSUNDUWDVQHJD
± SRVWRSHNþHMLKHYURNRGGRSXãþDYHþ
1DFLRQDOQLGRGDWHNODKNRYVHEXMHWXGL
± RGORþLWHYRXSRUDELLQIRUPDWLYQLKGRGDWNRY
± QDSRWNHRGRGDWQLKLQIRUPDFLMDKNLQLVRYQDVSURWMX]HYURNRGL]DSRPRþXSRUDEQLNX
}‘
9:D8O7:JKk9[KT[M:O?K<8B3cP-g?;C?w:7w2=9;A?K
~
nA?:n87NcG?3J6w2=9;A?K<3=cN=n87E;?:A873c6==IQKK’-yQKKsT
‘9:DO7:JKkn6Y/iTM:O?K<8B3cP-c@BC7gB6C78n3O7:b27O<3=J2B2D8k8cG?K<;=]
~
7:tDB<:D8C?:;=n3=C78;=8w2=9;A?K
n87IA9872DBIn87E;?:A8BK8D7:J27Cg?I;BNF:B8;C?w2<8BK
w8t<872D78n878;=scG?:;B:J3?pn87rF:B8A?:n878A8BeC78n3C?3J2B8Ap7O=-9;B2F8?K:=V=D73>:=g73c6=G<:F2CTIcG?8;B:J3?eC73M:k3<87h=<
J2B2D78n8B8A2;?KE3<3=M:<87NF2C78A3=O7In87NF2CBg?2D;=C7
>tw2=;=,k:F:BC72w2<3=SDB8;aF:B:JKO7:b27n870F2C=FC78A8BvE87Cc@B<3=n3=C7<3=E9;7n87?:A3CB2F89:D7;?KE3<3=M:<8798B:bKO7:9g7T-QiA3CB2DB:JK=
=c@7gBGJ3?g7<9:DB@F:B:J2B2w2<8BIA3OB:b2BNF2C=w2=9;A?K<3=n87E;?:A3=X;WT2YI=
---------------------- Page: 8 ----------------------
6,67(1
=YH]HPHGHYURNRGLLQKDUPRQL]LUDQLPLWHKQLþQLPLVSHFLILNDFLMDPL(1LQ(7$]DSURL]YRGH
+DUPRQL]LUDQHWHKQLþQHVSHFLILNDFLMH]DJUDGEHQHSURL]YRGHPRUDMRELWLXVNODMHQHVWHKQLþQLPLSUDYLOL
]DREMHNWH 1DGDOMHPRUDMRQDYRGLODSRYH]DQD]R]QDþHYDQMHP&(JUDGEHQLKSURL]YRGRYNLVH
VNOLFXMHMRQDHYURNRGHQDWDQþQRGRORþLWLNDWHUHQDFLRQDOQRSUHGSLVDQHSDUDPHWUHXSRãWHYDMR
1DFLRQDOQLGRGDWHNN(1
7DVWDQGDUGYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH]RSRPEDPLNLNDåHMR
NMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRQDMELQDFLRQDOQHL]GDMH(1LPHOHQDFLRQDOQL
GRGDWHN]YVHPLQDFLRQDOQRGRORþHQLPLSDUDPHWULNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMXMHNOHQLK
NRQVWUXNFLM]DJUDGLWHYYWHMGUåDYL
1DFLRQDOQDL]ELUDMHY(1GRYROMHQDY
± ± ±
± ± ±
± ± ±
± ±
‘
IO?g[T[6=
---------------------- Page: 9 ----------------------
6,67(1
6SORãQR
3RGURþMHXSRUDEH
(1 QDYDMD PHWRGH ]D RFHQR RGSRUQRVWL SURWL XWUXMDQMX SUL HOHPHQWLK VSRMLK LQ
YR]OLãþLKNLVRL]SRVWDYOMHQLREWHåELXWUXMDQMD
7HPHWRGHL]KDMDMRL]SUHVNXVRYXWUXMDQMDL]YHGHQLKVSUHVNXãDQFLYQDUDYQLYHOLNRVWLSUL
NDWHULKVRVHXSRãWHYDOLYSOLYLJHRPHWULMVNLKLQNRQVWUXNFLMVNLKQHSRSROQRVWL]DUDGLL]GHODYH
PDWHULDODLQL]GHODYHNRQVWUXNFLMVNLKHOHPHQWRYQSUYSOLYLWROHUDQFLQ]DRVWDOLKQDSHWRVWLRG
YDUMHQMD
a‘xKvY:]f7j;BO?KC7<8>?pbKO?g6QSRY13Z31KTBlB2wg78A?hQSRY13Z310g?hO7E:DBjAl<873>:=B<87O
9;7:=gT
a
xK/i]<873>:=B<87O:=g?eBrn87E;?:A87ErbKO?3J3?<87:J3n8BC7cG?3J
~
=nJ3?KO78A8BNDB<9;Ck:D>:=gT
3UDYLODYHOMDMR]DNRQVWUXNFLMHNDWHULKL]YHGEDMHYVNODGX](1
a
xKs]df7:J27Cg?6F2C=cG?KC<8B9?@J2B:J278;7E9ID7;?3b2BC=g73c6=DB<9;Ck:D>:=g98D8=EaJ3?8;7gOB8A2T
0HWRGHQDYHGHQHYWHPGHOXYHOMDMR]DYVHNDNRYRVWLNRQVWUXNFLMVNLKMHNHOQHUMDYQLKMHNHO
QH]DãþLWHQLKYUHPHQVNRRGSRUQLKMHNHOUD]HQNDGDUMHYSUHJOHGQLFDKNDWHJRULMNRQVWUXNFLMVNLK
GHWDMORYQDYHGHQRGUXJDþH7DGHOYHOMD]DPDWHULDOHNLL]SROQMXMHMR]DKWHYHJOHGHåLODYRVWL
QDYHGHQHY(1
'UXJHPHWRGH]DRFHQRRGSRUQRVWLSURWLXWUXMDQMXUD]HQPHWRGH'V1NRWQDSULPHUPHWRGD
ªQRWFKVWUDLQ©DOLPHWRGHORPQHPHKDQLNHYWHPGHOXQLVRREUDYQDYDQH
1DNQDGQL SRVWRSNL ]D L]EROMãDQMH RGSRUQRVWL SURWL XWUXMDQMX UD]HQ SRSXãþDQMD ]DRVWDOLK
QDSHWRVWLYWHPGHOXQLVRREUDYQDYDQL
7UGQRVWL XWUXMDQMD QDYHGHQH Y WHP GHOX YHOMDMR ]D NRQVWUXNFLMH NL GHOXMHMR Y QRUPDOQLK
DWPRVIHUVNLKSRJRMLKLQVRUHGQRY]GUåHYDQH9SOLYLNRUR]LMH]DUDGLPRUVNHYRGHQLVRYNOMXþHQL
0LNURSRãNRGEH]DUDGLYLVRNLKWHPSHUDWXU!ƒ&QLVRYNOMXþHQH
=YH]H]GUXJLPLVWDQGDUGL
7DHYURSVNLVWDQGDUGYNOMXþXMH]GDWLUDQLPDOLQHGDWLUDQLPVNOLFHYDQMHPGRORþLODL]GUXJLKSXEOLNDFLM7D
VNOLFHYDQMDQDVWDQGDUGHVRQDYHGHQDQDXVWUH]QLKPHVWLKYEHVHGLOXSXEOLNDFLMHSDVRQDãWHWH
VSRGDM3ULGDWLUDQHPVNOLFHYDQMXVHSULXSRUDELWHJDHYURSVNHJDVWDQGDUGDSR]QHMãDGRSROQLODDOL
VSUHPHPEHNDWHUHNROLRGWHKSXEOLNDFLMXSRãWHYDMROHþHVR]GRSROQLORPDOLVSUHPHPERYNOMXþHQH
YDQM3ULQHGDWLUDQHPVNOLFHYDQMXSDVHXSRUDEOMD]DGQMDL]GDMDSXEOLNDFLMHQDNDWHURVHVNOLFXMH
YNOMXþQR]GRSROQLOL
7DVWDQGDUGVHVNOLFXMHQDQDVOHGQMHVWDQGDUGH
(1 ,]YHGEDMHNOHQLKNRQVWUXNFLM±7HKQLþQH]DKWHYH
(1 2VQRYHSURMHNWLUDQMDNRQVWUXNFLM
(1 9SOLYLQDNRQVWUXNFLMH
(1 3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
(1 3URMHNWLUDQMHVRYSUHåQLKMHNOHQLKLQEHWRQVNLKNRQVWUXNFLM±GHO0RVWRYL
---------------------- Page: 10 ----------------------
6,67(1
,]UD]LLQGHILQLFLMH
6SRGDMQDYHGHQLL]UD]LLQGHILQLFLMHVH]DSRWUHEHWHJDHYURSVNHJDVWDQGDUGDXSRUDEOMDMR]
QDVOHGQMLPLSRPHQL
6SORãQR
8WUXMDQMH 3URFHV QDVWDQND LQ UDVWL UD]SRNH Y NRQVWUXNFLMVNHP HOHPHQWX ]DUDGL YSOLYRY
VSUHPLQMDMRþHVHQDSHWRVWL
1D]LYQDQDSHWRVW1DSHWRVWYRVQRYQHPPDWHULDOXDOLY]YDUXYEOLåLQLOHJHSRWHQFLDOQH
UD]SRNHL]UDþXQDQDSRHODVWLþQLWHRULMLEUH]XSRãWHYDQMDYSOLYDNRQFHQWUDFLMQDSHWRVWL
a
xKs]R,78n3=A3<87<872F8?:;B:9;W2DB8;3g?uB2F2C?3J3?KOg?K<87NAG;?2ceJ3?KOk2g?O7E8DB<8BCc@7O<87u<872F8?:;B:9;:9;C=L3<87<872F8?:;B:9;W:bKO78A3<87<872F8?:;B:9;
7O=?DA3=A87O?K<;<87N<872F8?:;B:9;WT
0RGLILFLUDQD QD]LYQD QDSHWRVW 1D]LYQD QDSHWRVW SRPQRåHQD V SULPHUQLP IDNWRUMHP
NRQFHQWUDFLMHQDSHWRVWLN¡VNDWHULPVHXSRãWHYDQH]YH]QRVWYJHRPHWULMLNLQLELODXSRãWHYDQDSUL
NODVLILNDFLMLSRVDPH]QHJDNRQVWUXNFLMVNHJDGHWDMOD
*HRPHWULMVNDQDSHWRVWNRQLFDQDSHWRVWL1DMYHþMDJODYQDQDSHWRVWYRVQRYQHPPDWHULDOX
RE ]DNOMXþNX ]YDUD L]UDþXQDQD RE XSRãWHYDQMX YSOLYD NRQFHQWUDFLM QDSHWRVWL ]DUDGL JOREDOQH
JHRPHWULMHSRVDPH]QHJDNRQVWUXNFLMVNHJDGHWDMOD
a
xKs]F2O=A8B8A@OB2D7O?K<;C73>:=g?<872F?:;B:9;=3<:F2CT8B2w3O=D?GnA87C7NqD8=g?GL?GA8DOgk8M?K<87IAGD7;?3b2BC=gBNDB<9;Ck8D>8=g98D?:b27GJ3?:;7gO7
~
AaJ2B:J278;D8kGxt):<3=;C?w:76k:F:B:X;?:A878;=T
=DRVWDODQDSHWRVW=DRVWDOHQDSHWRVWLSUHGVWDYOMDMRVWDOQRVWDQMHQDSHWRVWLYNRQVWUXNFLML]D
NDWHUHJDYHOMDVWDWLþQRUDYQRWHåMH LQMHQHRGYLVQR RG ]XQDQMHREWHåEH=DRVWDOHQDSHWRVWLVH Y
NRQVWUXNFLMLSRMDYLMR]DUDGLSURFHVRYL]GHODYHYDOMDQMDUH]DQMDLQYDUMHQMDDOL]DUDGLVODEHJDQDOHJDQMD
PHGHOHPHQWLDOLGHOQHSODVWLILNDFLMHNRQVWUXNFLMH
3DUDPHWULREWHåEHSULXWUXMDQMX
2EWHåQLGRJRGHN'RORþHQR]DSRUHGMHREWHåENLGHOXMHMRQDNRQVWUXNFLMRLQSRY]URþDMR
]JRGRYLQRQDSHWRVWLSRQDYDGL]]QDQLPãWHYLORPSRQRYLWHYYåLYOMHQMVNLGRELNRQVWUXNFLMH
=JRGRYLQD QDSHWRVWL ,]PHUMHQR DOL L]UDþXQDQR VSUHPLQMDQMH QDSHWRVWL Y GRORþHQL WRþNL
NRQVWUXNFLMHYþDVXREWHåQHJDGRJRGND
0HWRGD YRGQHJD WRND3RVHEQDPHWRGD ]DãWHWMHFLNORYNLQDRVQRYLGDQH ]JRGRYLQH
REUHPHQMHYDQMDRPRJRþLL]GHODYRVSHNWUDUD]OLNQDSHWRVWL
0HWRGD UH]HUYRDUMD 3RVHEQD PHWRGD ]D ãWHWMH FLNORY NL QD RVQRYL GDQH ]JRGRYLQH
REUHPHQMHYDQMDRPRJRþDL]GHODYRVSHNWUDUD]OLNQDSHWRVWL
a
xKs]f7@c@7;?2c@78;=M:
5D]OLND QDSHWRVWL 5D]OLND PHG GYHPD HNVWUHPQLPD QDSHWRVWPD Y REUDYQDYDQHP
QDSHWRVWQHPFLNOXNLMHUH]XOWDW]JRGRYLQHREUHPHQMHYDQMD
6SHNWHUUD]OLNQDSHWRVWL+LVWRJUDPSRJRVWRVWLSRMDYOMDQMDYVHKUD]OLNQDSHWRVWLUD]OLþQLK
YHOLNRVWLL]PHUMHQDOLL]UDþXQDQ]DSRVDPH]QLREWHåQLGRJRGHN
3URMHNWQLVSHNWHU9VRWDYVHKVSHNWURYUD]OLNQDSHWRVWL]DFHORWQRSURMHNWQRåLYOMHQMVNRGRER
SRPHPEQD]DRFHQRRGSRUQRVWLSURWLXWUXMDQMX
---------------------- Page: 11 ----------------------
6,67(1
3URMHNWQDåLYOMHQMVNDGRED5HIHUHQþQRREGREMHYNDWHUHPPRUDNRQVWUXNFLMDREUDWRYDWL
YDUQRREVSUHMHPOMLYLYHUMHWQRVWLGDQHERSULãORGRSRUXãLWYH]DUDGLQDVWDQNDXWUXMHQRVWQHUD]SRNH
äLYOMHQMVNDGREDSULXWUXMDQMX1DSRYHGDQRþDVRYQRREGREMHNLER]DUDGLXWUXMDQMDSUL
GHORYDQMXSURMHNWQHJDVSHNWUDSRY]URþLORSRUXãLWHY
0LQHUMHYR VHãWHYDQMH ,]UDþXQ OLQHDUQH DNXPXODFLMH SRãNRGE QD RVQRYL 3DOPJUHQ
0LQHUMHYHJDSUDYLOD
(NYLYDOHQWQDNRQVWDQWQDUD]OLNDQDSHWRVWL.RQVWDQWQDUD]OLNDQDSHWRVWLNLELSRY]URþLOD
HQDNRåLYOMHQMVNRGRERXWUXMDQMDNRWSURMHNWQLVSHNWHUþHSULPHUMDYDWHPHOMLQD0LQHUMHYHPVHãWHYDQMX
a
xKs]f7@c@7;?2c@78;=M:
2EWHåEDSULXWUXMDQMX6NXSLQDREWHåQLKSDUDPHWURYNLWHPHOMLMRQD]QDþLOQHPREWHåQHP
GRJRGNX RSLVDQHP ] OHJR LQ YHOLNRVWMR REWHåE SRJRVWQRVWMR SRMDYOMDQMD YUVWQLP UHGRP LQ
PHGVHERMQLP]DPLNRP
a
xKvY:]F2O=A3=,F2C=k;Ckg7
~
<8B8;C7
a
xK/i]w;?:L3<3=F:7C73cG?:;C=3<878A?3J3?K<3=AGQSR¢YZ3ZiY:98B]
'9;7
£¥⁄sƒ8§¤ƒ8§¤
:D8=9?6<87<87:X876<87I'7O=
£¥⁄s“«‹›fiflƒ8§¤
8D8=9?<87<87:X87N<87G'N@/–KY1:†>:=DOB8A2T
£¥⁄s“«}
‘=<872cN=M:<3=A:F2O=A3=98BIAH;?KEGF:7C73cG?:;C=EL?k:F:B:X;?:A87<3=:C78n?K
(NYLYDOHQWQD NRQVWDQWQDDPSOLWXGDREWHåEHSULXWUXMDQMX3RHQRVWDYOMHQDREWHåEDV
NRQVWDQWQRDPSOLWXGRNLSRY]URþDHQDNHXWUXMHQRVWQHSRãNRGEHNRWQL]GHMDQVNLKREWHåQLKGRJRGNRY
VVSUHPHQOMLYRDPSOLWXGR
7UGQRVWXWUXMDQMD
.ULYXOMDWUGQRVWLXWUXMDQMD.YDQWLWDWLYQD]YH]DPHGUD]OLNRQDSHWRVWLLQãWHYLORPFLNORY
SRWUHEQLK]DSRUXãLWHY]DUDGLXWUXMDQMDNLVHXSRUDEOMD]DRFHQRRGSRUQRVWLSRVDPH]QHNDWHJRULMH
NRQVWUXNFLMVNHJDGHWDMODSURWLXWUXMDQMX
a
xKs]*CJ?
‘k;Ckg728=<72C7A3
~
.DWHJRULMD NRQVWUXNFLMVNHJD GHWDMOD âWHYLOþQD R]QDND SRVDPH]QHJD NRQVWUXNFLMVNHJD
GHWDMOD]DQDYHGHQRVPHUGHORYDQMDVSUHPHQOMLYLKQDSHWRVWL]QDPHQRPGDVHUD]ORþLNDWHUDNULYXOMD
WUGQRVWLXWUXMDQMDVHXSRUDEL]DRFHQRRGSRUQRVWLSURWLXWUXMDQMXãWHYLONDNDWHJRULMHNRQVWUXNFLMVNHJD
GHWDMODR]QDþXMHUHIHUHQþQRWUGQRVWXWUXMDQMD'V·LQ1PPð
7UDMQDWUGQRVWXWUXMDQMDSULNRQVWDQWQLDPSOLWXGL0HMQDYUHGQRVWQRUPDOQHDOLVWULåQH
UD]OLNHQDSHWRVWLSRGNDWHURSUHVNXVLSULNRQVWDQWQLDPSOLWXGLQDSHWRVWLQHSRNDåHMRUD]YRMDSRãNRGE
]DUDGLXWUXMDQMD3ULVSUHPHQOMLYLDPSOLWXGLQDSHWRVWLPRUDMRELWLYVHUD]OLNHQDSHWRVWLSRGWRPHMQR
YUHGQRVWMRGDQHERSULãORGRUD]YRMDSRãNRGE]DUDGLXWUXMDQMD
6SRGQMDPHMDXWUXMDQMD0HMQDYUHGQRVWSRGNDWHURUD]OLNHQDSHWRVWLSURMHNWQHJDVSHNWUDQH
SULVSHYDMRNL]UDþXQDQLDNXPXODFLMLSRãNRGE
9]GUåOMLYRVW NRQVWUXNFLMVNHJD GHWDMOD 'RED GR SRUXãLWYH L]UDåHQD V ãWHYLORP FLNORY
SRWUHEQLK ]D SRUXãLWHY Y SRJRMLK GHORYDQMD ]JRGRYLQH REUHPHQMHYDQMD V NRQVWDQWQR DPSOLWXGR
QDSHWRVWL
---------------------- Page: 12 ----------------------
6,67(1
5HIHUHQþQD WUGQRVW XWUXMDQMD .RQVWDQWQD UD]OLND QDSHWRVWL 'V· SRVDPH]QHJD
NRQVWUXNFLMVNHJDGHWDMODNLXVWUH]DY]GUåOMLYRVWL1 uFLNORY
6LPEROL
UD]OLNDQDSHWRVWLQRUPDOQHQDSHWRVWL
UD]OLNDQDSHWRVWLVWULåQHQDSHWRVWL
HNYLYDOHQWQDNRQVWDQWQDUD]OLNDQDSHWRVWLYH]DQDQDQ¶*•‚
„”„” HNYLYDOHQWQDNRQVWDQWQDUD]OLNDQDSHWRVWLYH]DQDQDPLOLMRQDFLNORY
»» UHIHUHQþQDWUGQRVWXWUXMDQMDSUL1· PLOLMRQDFLNORY
…K„… WUDMQDWUGQRVWXWUXMDQMDREXSRãWHYDQMXUD]OLNHQDSHWRVWLYSRJRMLKNRQVWDQWQHDPSOLWXGH
SULãWHYLOXFLNORY1‰
„ VSRGQMDPHMDUD]OLNHQDSHWRVWLSULãWHYLOXFLNORY1¿
W`
HNYLYDOHQWQDUD]OLNDQDSHWRVWL]DVSRMHLQYVWRMLQDKRUWRWURSQLKSORãþ
»:„´Wˆ UHGXFLUDQDUHIHUHQþQDYUHGQRVWWUGQRVWLXWUXMDQMD
˜¯
GHOQLIDNWRU]DHNYLYDOHQWQRNRQVWDQWQRUD]OLNRQDSHWRVWL'V˘'W˘
˙’¯
GHOQLIDNWRU]DWUGQRVWXWUXMDQMD'V·'W·
P QDNORQNULYXOMHWUGQRVWLXWUXMDQMD
¨
IDNWRUHNYLYDOHQWQLKSRãNRGE
IDNWRU]DGRORþLWHYSRJRVWHYUHGQRVWLVSUHPHQOMLYHJDYSOLYD
\
4˚ NDUDNWHULVWLþQDYUHGQRVWSRVDPH]QHJDVSUHPHQOMLYHJDYSOLYD
N¸ UHGXNFLMVNLIDNWRU]DXSRãWHYDQMHYSOLYDYHOLNRVWLQDWUGQRVWXWUXMDQMD
. IDNWRUSRYHþDQMDQD]LYQHUD]OLNHQDSHWRVWL]DUDGLXSRãWHYDQMDVHNXQGDUQLKXSRJLEQLK
PRPHQWRYYSDOLþQLKNRQVWUXNFLMDK
N¯ IDNWRUNRQFHQWUDFLMHQDSHWRVWL
1 SURMHNWQDåLYOMHQMVNDGREDL]UDåHQDVãWHYLORPFLNORYYSRJRMLKNRQVWDQWQHUD]OLNHQDSHWRVWL
2VQRYQH]DKWHYHLQPHWRGH
3 .RQVWUXNFLMVNLHOHPHQWLPRUDMRELWLSURMHNWLUDQLWDNRGDMHUDYHQYHUMHWQRVWLGDERQMLKRYR
REQDãDQMHPHGSURMHNWQRåLYOMHQMVNRGRER]DGRYROMLYRVSUHMHPOMLYD
a
xKs]f7pDB<9;Ck:D>:=g?iHD8=,98Bl<87lk;Ckg7
k;Ckg7
'RGDWHN$VHODKNRXSRUDEL]DGRORþDQMHSRVHEQLKREWHåQLKPRGHORYþH
± Y(1QLQDYROMRXVWUH]QHJDREWHåQHJDPRGHOD]DXWUXMDQMH
± VH]DKWHYDEROMUHDOLVWLþHQREWHåQLPRGHO]DXWUXMDQMH
a
xKs]f7E;?:A?Gn87GJ2BOB3M7:=B<87O
3UHVNXVL]DGRORþDQMHWUGQRVWLXWUXMDQMDVHODKNRL]YHGHMR]D
± GRORþDQMHWUGQRVWLXWUXMDQMD]DNRQVWUXNFLMVNHGHWDMOHNLQLVRREUDYQDYDQLYWHPGHOX
± GRORþDQMHåLYOMHQMVNHGREHSULXWUXMDQMXSURWRWLSRY]DGHMDQVNHDOLHNYLYDOHQWQHREWHåEH
XWUXMDQMD
---------------------- Page: 13 ----------------------
6,67(1
3ULL]YHGELLQYUHGQRWHQMXSUHVNXVRYXWUXMDQMDMHWUHEDXSRãWHYDWL(1JOHMWXGL
a
xKs]f7E;?:A?rn87rJ2BOB3M7:=B<87O
J2B:J278;D8k2T
0HWRGH]DRFHQRRGSRUQRVWLSURWLXWUXMDQMXQDYHGHQHYWHPGHOXVOHGLMRQDþHOXSULPHUMDQMD
SURMHNWQLKYUHGQRVWLQRWUDQMLKVLOLQWUGQRVWLXWUXMDQMD7DNãHQSULVWRSMHPRJRþOHþHVRYSOLYL
XWUXMDQMDGRORþHQLVSDUDPHWULWUGQRVWLXWUXMDQMDL]WHJDVWDQGDUGD
2EWHåEHXWUXMDQMDVRGRORþHQHYVNODGX]]DKWHYDPL]DRFHQRRGSRUQRVWLSURWLXWUXMDQMXLQVR
UD]OLþQHRGREWHåENLVHXSRUDEOMDMRSULSUHYHUMDQMXPHMQLKVWDQMQRVLOQRVWLLQXSRUDEQRVWL
a
xKs]SC=k;Ckg?K<8B:9;<3=E0C78n:F:B2D7E2-D=*9?jC78nA3=g?gBvcG?3J¢L3=A3Og?K:=g?Ks<3=<3kg<8BKJ27vF:B2cG?K<3=gB
DBsL3=A3Og?K?KOBIA?2Mg=n87C?:n3<3=k8M8=<:D8=T
0HWRGH]DRFHQRRGSRUQRVWL
2FHQRRGSRUQRVWLSURWLXWUXMDQMXMHWUHEDQDUHGLWL]HQRRGQDVOHGQMLKPHWRG
± PHW
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.