Hydraulic machines - Acceptance tests of small hydroelectric installations (IEC 62006:2010)

This International Standard defines the test, the measuring methods and the contractual guarantee conditions for field acceptance tests of the generating machinery in small hydroelectric power installations. It applies to installations containing impulse or reaction turbines with unit power up to about 15 MW and reference diameter of about 3 m. The driven generator can be of synchronous or asynchronous type. This International Standard contains information about most of the tests required for acceptance of the hydraulic turbine such as safety approval tests, trial operating and reliability tests, as well for verification of cavitation, noise and vibration conditions, if required. This standard represents the typical methods used on smaller hydroelectric installations, and is divided into three classes as follows (see Table 1 for more detail):
NOTE All classes contain safety tests, trial operating tests, and reliability tests. This standard gives all necessary references for the contract in order to execute the test, evaluate, calculate and compare the result to the guarantee for all the classes A, B and C. The manufacturer or consulting engineer is responsible for ensuring that standardized connections are installed for performing these tests. This standard does not cover the structural details of a hydroelectric installation or its component parts.

Hydraulische Maschinen - Abnahmemessungen an Kleinwasserkraft-Anlagen (IEC 62006:2010)

Machines hydrauliques - Essais de réception des petits aménagements hydroélectriques (CEI 62006:2010)

La CEI 62006:2010 définit les essais, les méthodes de mesure et les conditions de garantie contractuelles relatifs aux essais de réception sur site des machines générant l'énergie dans les petits aménagements hydroélectriques. Elle s'applique aux installations comportant des turbines à impulsion ou à réaction d'une puissance allant jusqu'à 15 MW environ et d'un diamètre de référence de 3 m environ. Le générateur peut être de type synchrone ou asynchrone. La présente Norme internationale contient des informations relatives à la plupart des essais requis pour la réception des turbines hydrauliques tels que les essais pour approuver la sécurité, les essais de fonctionnement et de fiabilité, ainsi que les essais de vérification des conditions de cavitation, de bruit et de vibration, s'ils sont exigés. La présente norme présente les méthodes types utilisées pour les petits aménagements hydroélectriques, et se divise en trois classes, comme suit:   Classe A: Par défaut, programme d'essai normal (relevés sur le panneau de contrôle), pour déterminer la puissance maximale fournie par l'installation.  Classe B: Recommandé, programme d'essai étendu, pour déterminer les caractéristiques de l'aménagement en matière de performances.  Classe C: Optionnel, programme d'essai complet. Pour déterminer le rendement absolu de l'aménagement.  Toutes les classes comportent des essais de sécurité, des essais de fonctionnement et des essais de fiabilité. La présente norme fournit toutes les références nécessaires au contrat afin de réaliser l'essai, d'évaluer, de calculer et de comparer le résultat par rapport à la garantie pour toutes les classes: A, B et C.

Vodni stroji - Prevzemni preskusi majhnih hidroelektrarn (IEC 62006:2010)

Ta mednarodni standard določa preskus, metode merjenja in pogoje pogodbene garancije za terenske prevzemne preskuse generatorskih strojev v majhnih hidroelektrarnah. Velja za inštalacije, ki vsebujejo impulzne ali reakcijske turbine z močjo enote do približno 15 MW in referenčnim premerom približno 3 m. Gnani generator je lahko sinhronega ali asinhronega tipa. Ta mednarodni standard vsebuje informacije o večini preskusov, zahtevanih za odobritev vodne turbine, kot so odobritveni preskusi varnosti, preskusi za preskusno delovanje in zanesljivost, ter za potrditev kavitacije ter pogojev hrupa in vibracij, če je potrebno. Ta standard predstavlja običajne metode, uporabljene pri manjših hidroelektričnih inštalacijah, in je razdeljen v naslednje tri razrede (glej preglednico 1 za podrobnejši opis):
OPOMBA: Vsi razredi vsebujejo preskuse varnosti, preskuse poskusnega delovanja in preskuse zanesljivosti. Ta standard podaja vsa potrebna sklicevanja za pogodbo, da se izvedejo preskusi, da se ocenijo, izračunajo in primerjajo rezultati pri garanciji za vse razrede A, B in C. Proizvajalec ali svetovalni inženir je odgovoren za zagotavljanja, da so vgrajene standardizirane povezave za izvedbo teh preskusov. Ta standard ne zajema podrobnosti o strukturi hidroelektričnih inštalacij ali njihovih sestavnih delov.

General Information

Status
Published
Publication Date
06-Mar-2011
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
02-Mar-2011
Due Date
07-May-2011
Completion Date
07-Mar-2011

Buy Standard

Standard
EN 62006:2011 - BARVE
English language
113 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
SIST EN 62006:2011
01-april-2011
Vodni stroji - Prevzemni preskusi majhnih hidroelektrarn (IEC 62006:2010)
Hydraulic machines - Acceptance tests of small hydroelectric installations (IEC
62006:2010)
Hydraulische Maschinen - Abnahmemessungen an Kleinwasserkraft-Anlagen (IEC
62006:2010)
Machines hydrauliques - Essais de réception des petits aménagements hydroélectriques
(CEI 62006:2010)
Ta slovenski standard je istoveten z: EN 62006:2011
ICS:
27.140 Vodna energija Hydraulic energy engineering
SIST EN 62006:2011 en
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------

SIST EN 62006:2011

---------------------- Page: 2 ----------------------

SIST EN 62006:2011

EUROPEAN STANDARD
EN 62006

NORME EUROPÉENNE
February 2011
EUROPÄISCHE NORM

ICS 27.140


English version


Hydraulic machines -
Acceptance tests of small hydroelectric installations
(IEC 62006:2010)


Machines hydrauliques -  Hydraulische Maschinen -
Essais de réception des petits Abnahmemessungen an Kleinwasserkraft-
aménagements hydroélectriques Anlagen
(CEI 62006:2010) (IEC 62006:2010)




This European Standard was approved by CENELEC on 2011-01-02. CENELEC members are bound to comply
with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard
the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on
application to the Central Secretariat or to any CENELEC member.

This European Standard exists in three official versions (English, French, German). A version in any other
language made by translation under the responsibility of a CENELEC member into its own language and notified
to the Central Secretariat has the same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus,
the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia,
Spain, Sweden, Switzerland and the United Kingdom.

CENELEC
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

Management Centre: Avenue Marnix 17, B - 1000 Brussels


© 2011 CENELEC - All rights of exploitation in any form and by any means reserved worldwide for CENELEC members.
Ref. No. EN 62006:2011 E

---------------------- Page: 3 ----------------------

SIST EN 62006:2011
EN 62006:2011 - 2 -
Foreword
The text of document 4/254/FDIS, future edition 1 of IEC 62006, prepared by IEC TC 4, Hydraulic
turbines, was submitted to the IEC-CENELEC parallel vote and was approved by CENELEC as
EN 62006 on 2011-01-02.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN and CENELEC shall not be held responsible for identifying any or all such patent
rights.
The following dates were fixed:
– latest date by which the EN has to be implemented
at national level by publication of an identical
(dop) 2011-10-02
national standard or by endorsement
– latest date by which the national standards conflicting
(dow) 2014-01-02
with the EN have to be withdrawn
Annex ZA has been added by CENELEC.
__________
Endorsement notice
The text of the International Standard IEC 62006:2010 was approved by CENELEC as a European
Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards indicated:
IEC 60994 NOTE  Harmonized as EN 60994.
IEC 61116 NOTE  Harmonized as EN 61116.
IEC 61260 NOTE  Harmonized as EN 61260.
ISO 4373 NOTE  Harmonized as EN ISO 4373.
ISO 5167 series NOTE  Harmonized in EN ISO 5167 series (not modified)
__________

---------------------- Page: 4 ----------------------

SIST EN 62006:2011
- 3 - EN 62006:2011
Annex ZA
(normative)

Normative references to international publications
with their corresponding European publications

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

NOTE  When an international publication has been modified by common modifications, indicated by (mod), the relevant EN/HD
applies.

Publication Year Title EN/HD Year

IEC 60041 1991 Field acceptance tests to determine the EN 60041 1994
hydraulic performance of hydraulic turbines,
storage pumps and pump-turbines


IEC 60193 - Hydraulic turbines, storage pumps and EN 60193 -
pump-turbines - Model acceptance tests


IEC 60308 - Hydraulic turbines - Testing of control EN 60308 -
systems


IEC 60609 Series Hydraulic turbines, storage pumps and EN 60609 Series
pump-turbines - Cavitation pitting evaluation


IEC 60651 - Sound level meters EN 60651 -


IEC 61362 - Guide to specification of hydraulic turbine EN 61362 -
control systems


ISO 1680 - Acoustics - Test code for the measurement EN ISO 1680 -
of airborne noise emitted by rotating electrical
machines


ISO 1940-1 2003 Mechanical vibration - Balance quality - -
requirements for rotors in a constant (rigid)
state -
Part 1: Specification and verification of
balance tolerances


ISO 3746 - Acoustics - Determination of sound power EN ISO 3746 -
levels of noise sources using sound pressure -
Survey method using an enveloping
measurement surface over a reflecting plane


ISO 4412 Series Hydraulic fluid power - Test code for - -
determination of airborne noise levels


ISO 5168 - Measurement of fluid flow - Estimation of - -
uncertainly of a flow-rate measurement


ISO 7919-5 - Mechanical vibration - Evaluation of machine - -
vibration by measurements on rotating shafts -
Part 5: Machine sets in hydraulic power
generating and pumping plants


ISO 10816-3 - Mechanical vibration - Evaluation of machine - -
vibration by measurements on non-rotating
parts -
Part 3: Industrial machines with nominal
power above 15 kW and nominal speeds
between 120 r/min and 15 000 r/min when
measured in situ

---------------------- Page: 5 ----------------------

SIST EN 62006:2011
EN 62006:2011 - 4 -

Publication Year Title EN/HD Year

ANSI/IEEE 810 - Hydraulic Turbine and Generator Integrally - -
Forged Shaft Couplings and Shaft Runout
Tolerances

---------------------- Page: 6 ----------------------

SIST EN 62006:2011

IEC 62006
®
Edition 1.0 2010-10
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
colour
inside


Hydraulic machines – Acceptance tests of small hydroelectric installations

Machines hydrauliques – Essais de réception des petits aménagements
hydroélectriques

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
XE
CODE PRIX
ICS 27.140 ISBN 978-2-88912-228-8
® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale

---------------------- Page: 7 ----------------------

SIST EN 62006:2011
– 2 – 62006 © IEC:2010
CONTENTS
FOREWORD.7
1 Scope.9
2 Normative references .9
3 Terms, definitions and schematic layout .10
3.1 Terms and definitions .10
3.2 Schematic layout of a hydroelectric installation .10
4 Nature and extent of guarantees.11
4.1 Grouping of classes A, B, C.11
4.1.1 General .11
4.1.2 Contract conditions.13
4.2 Scope of performance guarantee.13
4.2.1 General .13
4.2.2 Class A: Maximum power output.13
4.2.3 Class B: Index test .13
4.2.4 Class C: Turbine efficiency .13
4.2.5 Interpretation of losses .13
4.3 Scope of tests .14
4.3.1 Safety tests .14
4.3.2 Trial run and reliability tests.14
4.3.3 Performance test .14
4.4 Aptitude.15
4.5 Warranty .15
5 Safety tests (commissioning) .16
5.1 Pre-start tests .16
5.2 Closing devices .16
5.2.1 General .16
5.2.2 Intake gate or valve .17
5.2.3 Turbine inlet valve .17
5.2.4 Guide vanes (Francis and Kaplan turbines) .17
5.2.5 Needle valve and deflector (Pelton and Turgo turbines).18
5.3 First run operation and control.19
5.4 Bearing run at rated speed .19
5.5 Emergency shutdown (no load) .20
5.6 Electrical protection.20
5.7 Overspeed test.21
5.8 Runaway test .21
5.9 Overpressure, emergency trip and load rejection tests .22
5.9.1 General conditions .22
5.9.2 Testing the guide vanes or needle valves .23
5.9.3 Testing the turbine inlet valve.23
5.9.4 Testing the pressure relief valve.23
5.9.5 Pressure rise .23
5.10 Measured quantities .25
5.10.1 Pressure.25
5.10.2 Speed.25
5.10.3 Control components.25

---------------------- Page: 8 ----------------------

SIST EN 62006:2011
62006 © IEC:2010 – 3 –
6 Trial operating and reliability tests (commissioning).25
6.1 General .25
6.2 Temperature stability of rotating parts .25
6.2.1 General .25
6.2.2 Temperature guarantees .26
6.3 Speed controller system .26
6.3.1 General .26
6.3.2 Unit operating without regulation .26
6.3.3 Unit operating with a speed governor.27
6.3.4 Unit operating with a voltage governor.28
6.3.5 Unit operating with a controller .28
6.3.6 Measurements when testing the control system .28
6.4 Control of cam correlation .29
7 Performance guarantees and tests .29
7.1 General .29
7.2 Maximum generator (transformer) power output as a function of net head .30
7.2.1 Guarantee .30
7.2.2 Instrumentation.30
7.3 Index test .30
7.3.1 General .30
7.3.2 Index discharge measurement .31
7.3.3 Shape control .31
7.3.4 Index plant efficiency.32
7.3.5 Optimizing cam correlation .33
7.4 Turbine efficiency.33
7.4.1 Efficiency test by absolute discharge measurement.33
7.4.2 Efficiency test by thermodynamic method .34
7.5 Correcting the efficiency using the model curve.34
8 Computation of results and comparison to the guarantee.36
8.1 General .36
8.1.1 Site data.36
8.1.2 Measured values (readings) .36
8.1.3 Scale effect due to water temperature .37
8.1.4 Shifting of the plant characteristic.37
8.2 Power output .37
8.2.1 Plant power output measurement .37
8.2.2 Generator power output measurement.38
8.2.3 Turbine power output measurement.38
8.3 Relative turbine efficiency (index test) .38
8.3.1 General .38
8.3.2 Relative discharge.38
8.3.3 Guarantee of the shape of the plant characteristics .39
8.3.4 Relative index plant efficiency .40
8.4 Absolute turbine efficiency .40
8.4.1 General .40
8.4.2 Absolute discharge .40
8.4.3 Guarantee of the plant efficiency and comparison to the results .40
9 Error analysis .40

---------------------- Page: 9 ----------------------

SIST EN 62006:2011
– 4 – 62006 © IEC:2010
9.1 General .40
9.2 Estimation of systematic (bias) uncertainties .41
9.2.1 General .41
9.2.2 Typical systematic uncertainties .41
9.2.3 Systematic uncertainty for turbines used to indicate discharge .42
9.3 Estimation of random (precision) uncertainties .42
9.3.1 Measurement at a single operation point .42
9.3.2 Measurement over a range of operating condition .44
9.4 Evaluation of the uncertainties .45
9.4.1 General .45
9.4.2 Head .45
9.4.3 Power output .47
9.4.4 Index test measurement .49
9.4.5 Efficiency test by absolute discharge measurement.51
9.4.6 Efficiency test by the thermodynamic method .51
10 Other guarantees .51
10.1 Cavitation.51
10.1.1 General .51
10.1.2 Measurement methods .52
10.1.3 Comparison with specified guarantees.52
10.2 Noise .53
10.2.1 General .53
10.2.2 Measurement methods .53
10.2.3 Comparison with specified guarantees.54
10.3 Vibration.54
10.3.1 General .54
10.3.2 Measurements and measurement methods.54
10.3.3 Comparison with specified guarantees.55
Annex A (normative) Terms, definitions, symbols and units.56
Annex B (normative) Head definition.64
Annex C (normative) Method of speed measurements .77
Annex D (normative) Power output measurement .78
Annex E (normative) Methods of discharge measurement.82
Annex F (informative) Plant condition .95
Annex G (informative) Commissioning .97
Annex H (informative) Performance test efficiency calculation .99
Annex I (informative) Cam correlation test . 106
Bibliography.109

Figure 1 – Schematic layout of a hydroelectric installation (water to wire system) .11
Figure 2 – Warranty period .16
Figure 3 – Vanes and blades servomotors force measurements (Kaplan on line) .17
Figure 4 – Evaluation of the guide vane (GV) closing characteristic .18
Figure 5 – Needle servomotor force .18
Figure 6 – Automatic start – Synchronization – No load test (Kaplan turbine).19
Figure 7 – Emergency shutdown from no load test (Kaplan turbine) .20

---------------------- Page: 10 ----------------------

SIST EN 62006:2011
62006 © IEC:2010 – 5 –
Figure 8 – Runaway test (Kaplan turbine) .21
Figure 9 – Emergency shutdown due to an electrical fault.22
Figure 10 – Emergency shutdown due to a mechanical fault .23
Figure 11 – Emergency shutdown due to the governor failure .24
Figure 12 – Evaluation of the maximum overpressure .24
Figure 13 – Temperature stability, recording at no load up to stable conditions.26
Figure 14 – Speed governor check at no load .27
Figure 15 – Maximum power output: procedure to compare measured power output at
actual net head to the guarantee.30
Figure 16 – Comparison of the shape of the turbine characteristic to the guarantee.32
Figure 17 – Example of an optimized switch band for 1 and 2 turbine operation.33
Figure 18 – Efficiency test: procedure to compare guaranteed turbine efficiency to the
prototype measurement results, including the overall uncertainties .34
Figure 19 – Hill chart – Showing head loss examples with one and two units in
operation using the same penstock.35
Figure 20 – Shifting of the performance curves .37
Figure 21 – Variation of factor k and exponent x on turbine index efficiency.39
Figure 22 – Random uncertainties of a single operation point, example for penstock
pressure variation and fluctuation .43
Figure 23 – Detection of outlier errors: example to find out offset and reading errors
by plotting in linear and logarithmic form with the same data.44
Figure 24 – Example of scattered points with function of second order .44
Figure 25 – Scattered points smoothed by individual fitting on adjacent sections .45
Figure 26 – Overall uncertainty of head for free water level for low head turbines .46
Figure 27 – Overall uncertainty of head in a closed conduit .47
Figure 28 – Estimated overall uncertainties of the discharge by index measurement
versus full scale differential pressure .50
Figure 29 – Operation range and cavitation limits .52
Figure A.1 – Transient pressure fluctuation at the turbine high pressure reference
section, when a specified load is suddenly rejected .61
Figure A.2 – Transient pressure fluctuation at the turbine high pressure reference
section, when a specified load is suddenly accepted.62
Figure B.1 – High pressure reference and measuring sections.65
Figure B.2 – Measuring section at tail water.66
Figure B.3 – Measuring section at draft tube.66
Figure B.4 – Definition of measuring sections .67
Figure B.5 – Kaplan turbine with horizontal shaft .68
Figure B.6 – Kaplan turbine with vertical shaft .68
Figure B.7 – Francis open flume turbine with vertical shaft .69
Figure B.8 – Francis turbine with horizontal shaft.69
Figure B.9 – Francis turbine with vertical shaft, with stagnation probe .70
Figure B.10 – Francis turbine with horizontal shaft with pressure on suction side.70
Figure B.11 – Pelton turbine with horizontal shaft .71
Figure B.12 – Pelton turbine with vertical shaft .71
Figure B.13 – Turgo turbine with horizontal shaft .72
Figure B.14 – Turgo turbine with vertical shaft .72

---------------------- Page: 11 ----------------------

SIST EN 62006:2011
– 6 – 62006 © IEC:2010
Figure B.15 – Crossflow turbine with horizontal shaft, with draft tube.73
Figure B.16 – Crossflow turbine with horizontal shaft, without draft tube .73
Figure B.17 – Specifications for static pressure taps.74
Figure B.18 – Example: discharge versus guide vane opening.76
Figure C.1 – Overspeed and runaway .77
Figure D.1 – Typical losses of a synchronous generator .79
Figure D.2 – Asynchronous generator: typical power factor and slip factor.80
Figure D.3 – Power measurement using the two wattmeter method.80
Figure D.4 – Power measurement using the three wattmeter method .81
Figure E.1 – Typical arrangements of acoustic transducers .
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.