Rotating electrical machines - Part 25: AC electrical machines used in power drive systems - Application guide (IEC/TS 60034-25:2022)

IEC TS 60034-25:2022 CMV contains both the official standard and its commented version. The commented version provides you with a quick and easy way to compare all the changes between IEC TS 60034-25:2022 edition 4.0 and the previous IEC TS 60034-25:2014 edition 3.0. Furthermore, comments from IEC TC 2 experts are provided to explain the reasons of the most relevant changes, or to clarify any part of the content.

Drehende elektrische Maschinen - Teil 25: Wechselstrommaschinen zur Verwendung in Antriebssystemen - Anwendungsleitfaden (IEC/TS 60034-25:2022)

Machines électriques tournantes - Partie 25: Machines électriques à courant alternatif utilisées dans les systèmes d'entraînement de puissance - Guide d'application(IEC/TS 60034-25:2022)

Električni rotacijski stroji - 25. del: Smernice za konstrukcijo in karakteristike asinhronskih motorjev s kratkostično kletko, posebej narejenih za napajanje s pretvornikom (IEC/TS 60034-25:2022)

Dokument IEC TS 60034-25:2022 CMV vsebuje tako uradni standard kot njegovo različico s pripombami. Različica s pripombami omogoča hitro in enostavno primerjavo vseh sprememb med izdajo 4.0 standarda IEC TS 60034-25:2022 in prejšnjo izdajo 3.0 standarda IEC TS 60034-25:2014. Na voljo so tudi pripombe strokovnjakov tehničnega odbora IEC TC 2, v katerih pojasnjujejo razloge za najpomembnejše spremembe oziroma posamezne dele vsebine.

General Information

Status
Published
Publication Date
08-Sep-2024
Technical Committee
ERS - Rotating machinery
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
06-Feb-2024
Due Date
12-Apr-2024
Completion Date
09-Sep-2024

Relations

Effective Date
08-Aug-2023
Effective Date
18-Apr-2023

Overview

CLC IEC/TS 60034-25:2024 (identical to IEC/TS 60034-25:2022) is an application guide for rotating electrical machines used in power drive systems. It provides practical guidance on the design, installation and operation of AC machines - with special attention to converter-fed machines such as squirrel‑cage induction motors and permanent‑magnet (PM) synchronous machines. The CLC publication includes the official technical specification and a commented version that highlights changes since IEC TS 60034-25:2014 and explains key updates with expert commentary from IEC TC 2.

Key topics and technical requirements

The standard addresses technical and application topics that are critical when machines are driven by frequency converters or other power electronics:

  • System characteristics: required system data, torque/speed capability, ratings, cooling and duty cycles.
  • Losses and efficiency: additional losses introduced by converter supply, methods to reduce converter-related losses and guidance on efficiency determination for converter-fed motors.
  • Acoustic noise & vibration: speed-dependent noise changes, magnetically-excited noise, vibration limits and torsional oscillation issues.
  • Insulation electrical stresses: causes of increased voltage stress from converters, limits, and methods to reduce winding stress (relevant for low- and medium/high-voltage machines).
  • Bearing currents: sources (common‑mode voltage, HF effects, electrostatic buildup), types of bearing currents including EDM, consequences, and mitigation/protection techniques.
  • Installation practices: earthing, bonding, cabling for high switching frequency drives, use of reactors, du/dt and sinusoidal filters, and power factor correction.
  • Special guidance for PM machines: converter-related considerations specific to permanent-magnet synchronous machines.
  • Reference integration: normative links to IEC 60034 series, IEC 61800 series and related EMC and insulation documents.

Practical applications and users

This technical specification is intended for professionals who design, specify, install, test and maintain drive systems:

  • Motor and drive designers selecting machine topology, insulation and bearing protection
  • OEMs and system integrators specifying motors for converter-fed applications
  • Electrical engineers and installation contractors implementing earthing, cabling and filters
  • Maintenance teams diagnosing bearing current damage, overheating or noise/vibration issues
  • Test laboratories and certification bodies applying relevant IEC test methods

Related standards

Relevant companion standards include IEC 60034-1, IEC 60034-2-3 (converter-fed test methods), IEC 60034-18-41/18-42 (insulation systems), and the IEC 61800 series (power drive system requirements and EMC). These references support interoperability and conformity when applying CLC IEC/TS 60034-25:2024.

Keywords: rotating electrical machines, AC electrical machines, power drive systems, IEC TS 60034-25, converter‑fed motors, bearing currents, insulation stress, du/dt filter, acoustic noise, vibration.

Technical specification

SIST-TS CLC IEC/TS 60034-25:2024 - BARVE

English language
111 pages
Preview
Preview
e-Library read for
1 day

Frequently Asked Questions

SIST-TS CLC IEC/TS 60034-25:2024 is a technical specification published by the Slovenian Institute for Standardization (SIST). Its full title is "Rotating electrical machines - Part 25: AC electrical machines used in power drive systems - Application guide (IEC/TS 60034-25:2022)". This standard covers: IEC TS 60034-25:2022 CMV contains both the official standard and its commented version. The commented version provides you with a quick and easy way to compare all the changes between IEC TS 60034-25:2022 edition 4.0 and the previous IEC TS 60034-25:2014 edition 3.0. Furthermore, comments from IEC TC 2 experts are provided to explain the reasons of the most relevant changes, or to clarify any part of the content.

IEC TS 60034-25:2022 CMV contains both the official standard and its commented version. The commented version provides you with a quick and easy way to compare all the changes between IEC TS 60034-25:2022 edition 4.0 and the previous IEC TS 60034-25:2014 edition 3.0. Furthermore, comments from IEC TC 2 experts are provided to explain the reasons of the most relevant changes, or to clarify any part of the content.

SIST-TS CLC IEC/TS 60034-25:2024 is classified under the following ICS (International Classification for Standards) categories: 29.160.01 - Rotating machinery in general. The ICS classification helps identify the subject area and facilitates finding related standards.

SIST-TS CLC IEC/TS 60034-25:2024 has the following relationships with other standards: It is inter standard links to SIST-TS CLC/TS 60034-17:2006, SIST-TS CLC/TS 60034-25:2009. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase SIST-TS CLC IEC/TS 60034-25:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of SIST standards.

Standards Content (Sample)


SLOVENSKI STANDARD
01-oktober-2024
Električni rotacijski stroji - 25. del: Smernice za konstrukcijo in karakteristike
asinhronskih motorjev s kratkostično kletko, posebej narejenih za napajanje s
pretvornikom (IEC/TS 60034-25:2022)
Rotating electrical machines - Part 25: AC electrical machines used in power drive
systems - Application guide (IEC/TS 60034-25:2022)
Drehende elektrische Maschinen - Teil 25: Wechselstrommaschinen zur Verwendung in
Antriebssystemen - Anwendungsleitfaden (IEC/TS 60034-25:2022)
Machines électriques tournantes - Partie 25: Machines électriques à courant alternatif
utilisées dans les systèmes d'entraînement de puissance - Guide d'application(IEC/TS
60034-25:2022)
Ta slovenski standard je istoveten z: CLC IEC/TS 60034-25:2024
ICS:
29.160.01 Rotacijski stroji na splošno Rotating machinery in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

TECHNICAL SPECIFICATION CLC IEC/TS 60034-25

SPÉCIFICATION TECHNIQUE
TECHNISCHE SPEZIFIKATION February 2024
ICS 29.160.01 Supersedes CLC/TS 60034-17:2004; CLC/TS 60034-
25:2008
English Version
Rotating electrical machines - Part 25: AC electrical machines
used in power drive systems - Application guide
(IEC/TS 60034-25:2022)
Machines électriques tournantes - Partie 25: Machines Drehende elektrische Maschinen - Teil 25:
électriques à courant alternatif utilisées dans les systèmes Wechselstrommaschinen zur Verwendung in
d'entraînement de puissance - Guide d'application Antriebssystemen - Anwendungsleitfaden
(IEC/TS 60034-25:2022) (IEC/TS 60034-25:2022)
This Technical Specification was approved by CENELEC on 2024-01-22.

CENELEC members are required to announce the existence of this TS in the same way as for an EN and to make the TS available promptly
at national level in an appropriate form. It is permissible to keep conflicting national standards in force.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Türkiye and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. CLC IEC/TS 60034-25:2024 E

European foreword
This document (CLC IEC/TS 60034-25:2024) consists of the text of IEC/TS 60034-25:2022 prepared by
IEC/TC 2 "Rotating machinery".
This document supersedes CLC/TS 60034-17:2004 and CLC/TS 60034-25:2008 and all of their
amendments and corrigenda (if any).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Any feedback and questions on this document should be directed to the users’ national committee. A
complete listing of these bodies can be found on the CENELEC website.
Endorsement notice
The text of the International Technical Specification IEC/TS 60034-25:2022 was approved by CENELEC
as a European Technical Specification without any modification.
In the official version, for Bibliography, the following notes have to be added for the standard indicated:
IEC 61800-2:2021 NOTE Approved as EN IEC 61800-2:2021 (not modified)
IEC/TR 61800-6 NOTE Approved as CLC/TR 61800-6
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
NOTE 1  Where an International Publication has been modified by common modifications, indicated by (mod), the
relevant EN/HD applies.
NOTE 2  Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cencenelec.eu.
Publication Year Title EN/HD Year
IEC 60034-1 2022 Rotating electrical machines - Part 1: Rating EN IEC 60034-1 —
and performance
IEC 60034-2-1 - Rotating electrical machines - Part 2-1: EN 60034-2-1 -
Standard methods for determining losses
and efficiency from tests (excluding
machines for traction vehicles)
IEC 60034-2-2 - Rotating electrical machines - Part 2-2: EN 60034-2-2 -
Specific methods for determining separate
losses of large machines from tests -
Supplement to IEC 60034-2-1
IEC 60034-2-3 - Rotating electrical machines - Part 2-3: EN IEC 60034-2-3 -
Specific test methods for determining
losses and efficiency of converter-fed AC
motors
IEC 60034-6 - Rotating electrical machines - Part 6: EN 60034-6 -
Methods of cooling (IC Code)
IEC 60034-9 2021 Rotating electrical machines - Part 9: Noise EN IEC 60034-9 —
limits
IEC 60034-12 - Rotating electrical machines - Part 12: EN 60034-12 -
Starting performance of single-speed three-
phase cage induction motors
IEC 60034-14 2018 Rotating electrical machines - Part 14:
EN IEC 60034-14 2018
Mechanical vibration of certain machines
with shaft heights 56 mm and higher -
Measurement, evaluation and limits of
vibration severity
To be published. Stage at the time of publication: FprEN IEC 60034-1:2021.
To be published. Stage at the time of publication: FprEN IEC 60034-9:2021.
Publication Year Title EN/HD Year
Rotating electrical machines - Part 18-41:
IEC 60034-18-41 2014 EN 60034-18-41 2014
Partial discharge free electrical insulation
systems (Type I) used in rotating electrical
machines fed from voltage converters -
Qualification and quality control tests
+ A1 2019 + A1 2019
Rotating electrical machines - Part 18-42:
IEC 60034-18-42 2017 EN 60034-18-42 2017
Partial discharge resistant electrical
insulation systems (Type II) used in rotating
electrical machines fed from voltage
converters - Qualification tests
+ A1 2020 + A1 2020
IEC 60079 series Explosive atmospheres EN IEC 60079 series
IEC 60079-7 - Explosive atmospheres - Part 7: Equipment EN 60079-7 -
protection by increased safety "e"
IEC/TR 61000-5-1 - Electromagnetic compatibility (EMC) - Part - -
5: Installation and mitigation guidelines -
Section 1: General considerations - Basic
EMC publication
IEC/TR 61000-5-2 - Electromagnetic compatibility (EMC) - Part - -
5: Installation and mitigation guidelines -
Section 2: Earthing and cabling
IEC 61800-3 - Adjustable speed electrical power drive EN IEC 61800-3 -
systems - Part 3: EMC requirements and
specific test methods for PDS and machine
tools
IEC 61800-5-1 - Adjustable speed electrical power drive
EN IEC 61800-5-1 -
systems - Part 5-1: Safety requirements -
Electrical, thermal and energy
IEC/TS 61800-8 2010 Adjustable speed electrical power drive - -
systems - Part 8: Specification of voltage on
the power interface
IEC/TS 62578 2015 Power electronics systems and equipment -
- -
Operation conditions and characteristics of
active infeed converter (AIC) applications
including design recommendations for their
emission values below 150 kHz
IEC TS 60034-25 ®
Edition 4.0 2022-06
TECHNICAL
SPECIFICATION
colour
inside
Rotating electrical machines –

Part 25: AC electrical machines used in power drive systems – Application guide

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 29.160.01 ISBN 978-2-8322-2003-0

– 2 – IEC TS 60034-25:2022 © IEC 2022
CONTENTS
FOREWORD . 9
INTRODUCTION . 11
1 Scope . 12
2 Normative references . 12
3 Terms and definitions . 13
4 System characteristics . 16
4.1 General . 16
4.2 System information . 16
4.3 Torque/speed considerations . 16
4.3.1 General . 16
4.3.2 Torque/speed capability . 17
4.3.3 Electrical machine rating. 18
4.3.4 Limiting factors on torque/speed capability . 18
4.3.5 Safe operating speed, over-speed capability and over-speed test . 19
4.3.6 Cooling arrangement . 19
4.3.7 Voltage/frequency characteristics . 20
4.3.8 Resonant speed bands . 20
4.3.9 Duty cycles . 21
4.4 Electrical machine requirements . 21
5 Losses and their effects (for induction electrical machines fed from voltage source
converters) . 24
5.1 General . 24
5.2 Location of the additional losses due to converter supply and ways to reduce
them . 25
5.3 Converter features to reduce the electrical machine losses . 26
5.3.1 Reduction of fundamental losses . 26
5.3.2 Reduction of additional losses due to converter supply . 26
5.4 Use of filters to reduce additional electrical machine losses due to converter
supply . 27
5.5 Temperature influence on life expectancy . 27
5.6 Determination of electrical machine efficiency . 28
6 Acoustic noise, vibration and torsional oscillation . 28
6.1 Acoustic noise . 28
6.1.1 General . 28
6.1.2 Changes in noise emission due to changes in speed . 28
6.1.3 Magnetically excited noise . 29
6.1.4 Sound power level determination and limits . 31
6.2 Vibration (excluding torsional oscillation) . 31
6.2.1 General . 31
6.2.2 Vibration level determination and limits . 32
6.3 Torsional oscillation . 32
7 Electrical machine insulation electrical stresses . 33
7.1 General . 33
7.2 Causes . 33
7.3 Winding electrical stress . 35
7.4 Limits and responsibility . 36

IEC TS 60034-25:2022 © IEC 2022 – 3 –
7.4.1 Electrical machines design for low voltage (≤ 1 000 V) . 36
7.4.2 Electrical machines designed for medium and high voltage (> 1 000 V) . 37
7.5 Methods of reduction of voltage stress . 37
7.6 Insulation stress limitation . 38
8 Bearing currents . 39
8.1 Sources of bearing currents in converter-fed electrical motors . 39
8.1.1 General . 39
8.1.2 Circulating currents due to magnetic asymmetry . 39
8.1.3 Electrostatic build-up . 39
8.1.4 High-frequency effects in converter operation . 39
8.2 Generation of high-frequency bearing currents . 41
8.2.1 Common mode voltage . 41
8.2.2 Motor HF equivalent circuit and the resulting bearing current types . 42
8.2.3 Circulating current . 44
8.2.4 Rotor ground current . 44
8.2.5 Electrostatic Discharge Machining (EDM) currents . 45
8.3 Consequences of excessive bearing currents. 46
8.4 Preventing high-frequency bearing current damage . 50
8.4.1 Basic approaches . 50
8.4.2 Other preventive measures . 51
8.4.3 Other factors and features influencing the bearing currents . 54
8.5 Additional considerations for electrical motors fed by high voltage source
converters . 54
8.5.1 General . 54
8.5.2 Bearing protection of cage induction, brushless synchronous and
permanent magnet electrical motors . 54
8.5.3 Bearing protection for slip-ring electrical motors and for synchronous

electrical motors with brush excitation . 54
8.6 Bearing current protection for electrical motors fed by high-voltage current
source converters . 55
9 Installation . 55
9.1 Earthing, bonding and cabling . 55
9.1.1 General . 55
9.1.2 Earthing . 55
9.1.3 Bonding of electrical machines . 55
9.1.4 Electrical machine power cables for high switching frequency
converters . 56
9.2 Reactors and filters . 61
9.2.1 General . 61
9.2.2 Output reactors . 61
9.2.3 Voltage limiting filter (du/dt filter) . 61
9.2.4 Sinusoidal filter . 61
9.2.5 Electrical machine termination unit . 61
9.3 Power factor correction . 62
9.4 Integral electrical machines (integrated electrical machine and drive
modules) . 63
10 Additional considerations for permanent magnet (PM) synchronous electrical
machines fed by voltage source converters . 63
10.1 System characteristics . 63
10.2 Losses and their effects . 63

– 4 – IEC TS 60034-25:2022 © IEC 2022
10.3 Noise, vibration and torsional oscillation . 64
10.4 Electrical machine insulation electrical stresses . 64
10.5 Bearing currents . 64
10.6 Particular aspects of permanent magnets . 64
11 Additional considerations for cage induction electrical machines fed by high

voltage source converters . 64
11.1 General . 64
11.2 System characteristics . 65
11.3 Losses and their effects . 66
11.3.1 Additional losses in the stator and rotor winding . 66
11.3.2 Measurement of additional losses . 66
11.4 Noise, vibration and torsional oscillation . 66
11.5 Electrical machine insulation electrical stresses . 67
11.5.1 General . 67
11.5.2 Electrical machine terminal overvoltage . 67
11.5.3 Stator winding voltage stresses in converter applications. 67
11.6 Bearing currents . 69
12 Additional considerations for synchronous electrical machines fed by voltage
source converters . 69
12.1 System characteristics . 69
12.2 Losses and their effects . 69
12.3 Noise, vibration and torsional oscillation . 69
12.4 Electrical machine insulation electrical stresses . 69
12.5 Bearing currents . 70
13 Additional considerations for cage induction electrical machines fed by block-type

current source converters . 70
13.1 System characteristics (see Figure 35 and Figure 36) . 70
13.2 Losses and their effects . 71
13.3 Noise, vibration and torsional oscillation . 73
13.4 Electrical machine insulation electrical stresses . 73
13.5 Bearing currents . 73
13.6 Additional considerations for six-phase cage induction electrical machines . 74
14 Additional considerations for synchronous electrical machines fed by LCI . 74
14.1 System characteristics . 74
14.2 Losses and their effects . 75
14.3 Noise, vibration and torsional oscillation . 75
14.4 Electrical machine insulation electrical stresses . 75
14.5 Bearing currents . 75
15 Additional considerations for cage induction electrical machines fed by pulsed

current source converters (PWM CSI) . 76
15.1 System characteristics (see Figure 39) . 76
15.2 Losses and their effects . 77
15.3 Noise, vibration and torsional oscillation . 77
15.4 Electrical machine insulation electrical stresses . 77
15.5 Bearing currents . 77
16 Wound rotor induction (asynchronous) electrical machines supplied by voltage
source converters in the rotor circuit . 77
16.1 System characteristics . 77
16.2 Losses and their effects . 77

IEC TS 60034-25:2022 © IEC 2022 – 5 –
16.3 Noise, vibration and torsional oscillation . 78
16.4 Electrical machine insulation electrical stresses . 78
16.5 Bearing currents . 78
17 Other electrical machine/converter systems . 78
17.1 Drives supplied by cyclo-converters . 78
17.2 Wound rotor induction (asynchronous) electrical machines supplied by
current source converters in the rotor circuit . 80
18 Special consideration for standard fixed-speed induction electrical machines in the
scope of IEC 60034-12 when fed from voltage source converter and motor

requirements to be considered a converter capable motor . 80
18.1 General . 80
18.2 Torque derating during converter operation . 82
18.2.1 General . 82
18.2.2 Self-cooled motors . 83
18.2.3 Non self-cooled motors . 84
18.3 Losses and their effects . 84
18.4 Noise, vibrations and torsional oscillation . 84
18.5 Electrical machine insulation electrical stresses . 84
18.5.1 General . 84
18.5.2 Converter capable motor . 85
18.6 Bearing currents in converter capable motors . 85
18.7 Speed range mechanical limits. 86
18.7.1 General . 86
18.7.2 Maximum speed . 86
18.7.3 Minimum speed . 86
18.8 Overload torque capability . 87
18.9 Excess overload current limits . 87
18.9.1 General . 87
18.9.2 Converter capable motor . 87
18.10 Volts/Hz ratio and voltage boost. 87
18.11 Resonance. 87
18.12 Hazardous area operation . 87
18.12.1 General . 87
18.12.2 Converter capable motor . 88
18.13 Unusual service conditions . 89
18.13.1 Converter capable motors . 89
18.13.2 Unusual converter-fed applications . 89
19 Additional considerations for synchronous reluctance electrical machine fed by
voltage source converters . 89
19.1 System characteristics . 89
19.2 Losses and their effects . 89
19.3 Noise, vibration and torsional oscillation . 89
19.4 Electrical machine insulation electrical stresses . 89
19.5 Bearing currents . 89
19.6 Particular aspects of synchronous reluctance electrical machines . 90
Annex A (informative) Converter characteristics . 91
A.1 Converter control types . 91
A.1.1 General . 91
A.1.2 Converter type considerations . 92

– 6 – IEC TS 60034-25:2022 © IEC 2022
A.2 Converter output voltage generation (for voltage source converters) . 92
A.2.1 Pulse width modulation (PWM) . 92
A.2.2 Hysteresis (sliding mode) . 93
A.2.3 Influence of switching frequency . 93
A.2.4 Multi-level converters. 94
A.2.5 Parallel converter operation . 95
Annex B (informative) Output characteristics of 2 level voltage source converter
spectra . 96
Annex C (informative) Voltages to be expected at the power interface between

converter and electrical machine . 100
Annex D (informative) Speed and harmonic capability of converter capable induction
motor . 104
D.1 General . 104
D.2 Harmonic capability of converter capable motors . 104
D.3 Speed capability and derating in variable torque application . 105
D.4 Speed capability and derating in a constant torque application . 105
Bibliography . 107

Figure 1 – Torque/speed capability . 17
Figure 2 – Current required by motor . 18
Figure 3 – Examples of possible converter output voltage/frequency characteristics . 20
Figure 4 – Example for the dependence of the electrical machine losses caused by
harmonics P related to the losses P at operating frequency f , on the switching
h, f1 1
frequency f in case of 2 level voltage source converter supply . 25
s
Figure 5 – Example of measured losses P as a function of frequency f and supply type . 26
L
Figure 6 – Additional losses ∆P of an electrical machine (same electrical machine as
L
Figure 5) due to converter supply, as a function of pulse frequency f , at 50 Hz
p
rotational frequency . 27
Figure 7 – Relative fan noise as a function of fan speed . 29
Figure 8 – Vibration modes of the stator core . 30
Figure 9 – Typical surges at the terminals of an electrical machine fed from a PWM
converter . 33
Figure 10 – Typical voltage surges on one phase at the converter and at the electrical
machine terminals (2 ms/division) . 34
Figure 11 – Individual short rise-time surge from Figure 10 (1 μs/division) . 34
Figure 12 – Definition of the rise-time t of the voltage pulse at the electrical machine
r
terminals . 35
Figure 13 – First turn voltage as a function of the rise-time . 36
Figure 14 – Discharge pulse occurring as a result of converter generated voltage surge
at electrical machine terminals (100 ns/division) . 38
Figure 15 – Classification of bearing currents . 39
Figure 16 – Parasitic impedances to earth of drive system components . 40
Figure 17 – Common mode voltage a) determination b) waveform example . 41
Figure 18 – HF equivalent circuit diagram (a) of a motor (b) geometrical representation
of capacitances . 42
Figure 19 – Graphical representation of the different high frequency bearing current
types in the drive unit highlighting the involved physical components . 43

IEC TS 60034-25:2022 © IEC 2022 – 7 –
Figure 20 – Principle of circulating currents formation . 44
Figure 21 – Rotor ground current principle . 45
Figure 22 – Example of measured EDM-current pulses for a 400 V and 500 kW
induction motor in converter operation . 46
Figure 23 – Photographs of damaged motor bearings . 47
Figure 24 – Bonding strap from electrical machine terminal box to electrical machine
frame . 56
Figure 25 – Examples of shielded electrical machine cables and connections . 57
Figure 26 – Parallel symmetrical cabling of high-power converter and electrical
machine . 58
Figure 27 – Converter connections with 360º HF cable glands showing the Faraday
cage . 59
Figure 28 – Electrical machine end termination with 360º connection . 59
Figure 29 – Cable shield connection . 60
Figure 30 – Characteristics of preventative measures . 62
Figure 31 – Schematic of typical three-level converter . 65
Figure 32 – Output voltage and current from typical three-level converter . 65
Figure 33 – Typical first turn voltage ∆U (as a percentage of the line-to-ground voltage)
as a function of du/dt . 67
Figure 34 – Medium-voltage and high-voltage form-wound coil insulating and voltage
stress control materials . 68
Figure 35 – Schematic of block-type current source converter . 70
Figure 36 – Current and voltage waveforms of block-type current source converter . 70
Figure 37 – Influence of converter supply on the losses of a cage induction electrical
machine (frame size 315 M, design N) with rated values of torque and speed . 72
Figure 38 – Schematic and voltage and current waveforms for a synchronous electrical
machine supplied from a current source converter . 74
Figure 39 – Schematic of pulsed current source converter . 76
Figure 40 – Voltages and currents of pulsed current source converter . 76
Figure 41 – Schematic of cyclo-converter . 78
Figure 42 – Voltage and current waveforms of a cyclo-converter . 79
Figure 43 – Diagram comparing converter capable motor to converter duty motor . 81
Figure 44 – Fundamental voltage U as a function of operating frequency f . 82
1 1
Figure 45 – Torque derating factor for cage induction electrical machines of design N,
IC 411 (self-circulating cooling) as a function of operating frequency f (example) . 83
Figure A.1 – Effects of switching frequency on electrical machine and converter losses. 93
Figure A.2 – Effects of switching frequency on acoustic noise . 94
Figure A.3 – Effects of switching frequency on torque ripple . 94
Figure B.1 – Waveform of line-to-line voltage U for voltage source converter supply
LL
with switching frequency f = 30 × f (example) . 96
s 1
Figure B.2 – Typical output voltage frequency spectra for a constant frequency PWM
control versus hysteresis control . 97
Figure B.3 – Typical output voltage frequency spectra for random frequency PWM
versus hysteresis control . 97
Figure B.4 – Typical output voltage frequency spectra for a two-phase modulated
control versus hysteresis modulation . 98

– 8 – IEC TS 60034-25:2022 © IEC 2022
Figure B.5 – Typical time characteristics of electrical machine current for a Constant
frequency PWM control versus hysteresis control . 98
Figure B.6 – Typical time characteristics of electrical machine current for a two-phase

modulated control versus hysteresis modulation . 99
Figure C.1 – Example of typical voltage curves and parameters of a two level inverter
versus time at the electrical machine terminals (phase to phase voltage; taken from
IEC TS 61800-8) . 100
Figure D.1 – Derating curve for harmonic voltages . 105
Figure D.2 – Torque capability at reduced speeds due to the effects of reduced cooling

(applyies to 50 Hz or 60 Hz design N) . 106

Table 1 – Significant factors affecting torque/speed capability . 19
Table 2 – Electrical machine design considerations . 22
Table 3 – Electrical machine parameters for the tuning of the converter . 23
Table 4 – Operating voltage at the terminals in units of U where the electrical
N
machines may operate reliably without special agreements between manufacturers and
system integrators . 37
Table 5 – Different grades of roller bearing damages . 48
Table 6 – Effectiveness of bearing current counter measures . 52

IEC TS 60034-25:2022 © IEC 2022 – 9 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
ROTATING ELECTRICAL MACHINES –

Part 25: AC electrical machines used in power drive systems –
Application guide
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; a
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

SIST-TS CLC IEC/TS 60034-25:2024は、電気機械の回転に関する重要な標準であり、特に電力伝動システムに使用される交流電気機械に焦点を当てています。この標準の主な範囲は、適用ガイドを提供し、IEC TS 60034-25:2022の公式標準とそのコメント版を含むことです。これにより、ユーザーは新旧標準間の全ての変更点を迅速かつ容易に比較することができます。 この標準の強みは、IEC TC 2の専門家によるコメントが含まれており、主要な変更の理由や内容の理解を助ける点です。具体的には、標準の改訂に伴う技術的な進歩や市場のニーズに対する応答が反映されており、ユーザーにとって非常に便利なリソースとなっています。これにより、業界関係者は最新の技術情報をもとにより良い意思決定を行うことが可能になります。 SIST-TS CLC IEC/TS 60034-25:2024は、電力伝動システムでの交流電気機械の使用に関して、適切な指導を提供する非常に重要な文書です。この標準の relevance は、電力業界の技術的要件を満たすだけでなく、より効率的かつ安全な運用を実現するために欠かせません。

La norme SIST-TS CLC IEC/TS 60034-25:2024, intitulée « Machines électriques rotatives - Partie 25 : Machines électriques alternatives utilisées dans les systèmes de commande de puissance - Guide d'application », présente une portée essentielle pour les professionnels du secteur des machines électriques. Cette norme vise à fournir des directives claires concernant l'application des machines électriques alternatives dans les systèmes de conduite de puissance, un domaine d'importance croissante dans l'industrie actuelle. Un des principaux atouts de cette norme est l'inclusion d'une version commentée, qui permet de visualiser facilement et rapidement les changements intervenus entre l'édition 4.0 (IEC TS 60034-25:2022) et l'édition précédente 3.0 (IEC TS 60034-25:2014). Cette comparaison des documents facilite une compréhension approfondie des évolutions apportées et des raisons justifiant ces modifications, un atout essentiel pour les ingénieurs et les techniciens qui souhaitent rester à jour sur les meilleures pratiques et les évolutions technologiques dans le domaine. Les commentaires émis par les experts de l'IEC TC 2 enrichissent également le contenu de la norme, en éclairant les points les plus pertinents et en apportant des précisions qui assurent une meilleure compréhension. Cela renforce la pertinence de la norme dans le cadre de la mise en œuvre des systèmes de machines électriques, en permettant de saisir non seulement les exigences techniques, mais aussi les contextes d'application. En résumé, la norme SIST-TS CLC IEC/TS 60034-25:2024 s'avère être un document essentiel pour les utilisateurs de machines électriques alternatives, offrant un guide d'application structuré et accessible, tout en s'assurant que l'évolution de la technologie soit intégrée de manière cohérente et compréhensible. Son rôle dans la standardisation des systèmes de conduite de puissance est indéniable, garantissant que les professionnels soient bien équipés pour naviguer dans le paysage technique en constante évolution.

Die Norm SIST-TS CLC IEC/TS 60034-25:2024 bietet einen umfassenden Leitfaden für den Einsatz von Wechselstrommotoren in Antriebssystemen. Sie richtet sich an Fachleute, die mit rotierenden elektrischen Maschinen arbeiten, und bietet sowohl die offizielle Norm als auch eine kommentierte Version, die einen schnellen Zugriff auf alle Änderungen zwischen der Version 4.0 der IEC TS 60034-25:2022 und der vorherigen Version 3.0 von 2014 ermöglicht. Ein herausragendes Merkmal dieser Norm ist die eingehende Kommentierung durch Experten des IEC TC 2, die dazu dient, die Gründe für die wesentlichen Änderungen zu erläutern und unklare Inhalte zu klären. Dies fördert das Verständnis und die Anwendung der Norm in der Praxis, was für Ingenieure und Techniker in der Branche von großem Wert ist. Die Relevanz dieser Norm erstreckt sich über verschiedene Bereiche der Antriebstechnik. Insbesondere verbessert sie die Effizienz und Zuverlässigkeit von Wechselstrommaschinen, was zu einer höheren Leistungsfähigkeit in energieintensiven Anwendungen führt. Durch die standardisierte Herangehensweise wird die Möglichkeit zur kosteneffizienten Entwicklung und Implementierung von Antriebssystemen erhöht. Zusammenfassend lässt sich sagen, dass die SIST-TS CLC IEC/TS 60034-25:2024 eine essentielle Ressource für die Anwendung von Wechselstrommaschinen in Antriebssystemen ist, die sowohl durch ihre umfassende Kommentierung als auch durch ihre Relevanz für die Industrie besticht.

SIST-TS CLC IEC/TS 60034-25:2024 표준은 전력 드라이브 시스템에서 사용되는 AC 전기 기계에 대한 포괄적인 응용 가이드를 제공합니다. 이 표준의 범위는 IEC TS 60034-25:2022 개정판을 포함하며, 기계의 설계와 운전 효과성을 높이기 위한 최신 기술적 지침을 제시합니다. 주요 강점 중 하나는 공식 표준과 함께 제공되는 주석 버전입니다. 이를 통해 사용자들은 IEC TS 60034-25:2022 4.0판과 이전 IEC TS 60034-25:2014 3.0판 간의 모든 변경 사항을 빠르고 쉽게 비교할 수 있습니다. 특히, IEC TC 2의 전문가들이 제공하는 주석은 주요 변경의 이유를 설명하며, 표준의 특정 내용에 대한 명확한 이해를 돕습니다. 이러한 설명은 사용자들이 표준을 더 잘 이해하고 적용할 수 있도록 지원합니다. 또한, 이 표준은 전력 드라이브 시스템에서의 AC 전기 기계 운영 관행을 현대화하여, 에너지 효율성과 기술적 성능을 높이는 데 기여합니다. 정밀한 설계 기준과 안전 지침을 통해, 실무자들이보다 안정적이고 효율적인 기계 운전을 할 수 있도록 돕습니다. 결론적으로, SIST-TS CLC IEC/TS 60034-25:2024 표준은 전력 드라이브 시스템에 필수적이며, 현재와 미래의 기술적 요구 사항을 충족할 수 있는 중요한 지침을 제공합니다. 전기 기계 분야 전문가와 엔지니어들에게 유용한 자료로 자리 잡을 것입니다.

The SIST-TS CLC IEC/TS 60034-25:2024 standard presents a detailed application guide for AC electrical machines utilized in power drive systems, aligning with the broader IEC TS 60034-25:2022. This standard is notable for its scope, as it not only encompasses the definitive guidelines concerning rotating electrical machines but also includes a commented version, making it immensely useful for practitioners in the field. One of the key strengths of the SIST-TS CLC IEC/TS 60034-25:2024 is its comprehensive approach to change management. The document allows users to compare the latest fourth edition (IEC TS 60034-25:2022) with the prior third edition (IEC TS 60034-25:2014) effortlessly. This feature is particularly beneficial for industry professionals who rely on the standard for compliance and implementation, as it facilitates a clearer understanding of modifications and improvements made over the years. Moreover, the inclusion of comments from IEC TC 2 experts enhances the relevance of the standard by providing context and rationale behind crucial changes. This educational aspect not only aids in comprehension but also empowers users to implement the guidelines more effectively in their operations. Such insights are vital for fostering adherence to best practices in the design and application of AC electrical machines within power drive systems. In summary, the SIST-TS CLC IEC/TS 60034-25:2024 standard stands out for its structured approach to presenting essential information, facilitating a clearer understanding of revisions, and offering expert commentary to elucidate key updates. As such, it represents a critical resource for engineers and technologists working with rotating electrical machines in power applications, reflecting its high relevance in the industry today.