SIST EN 1993-1-8:2005
(Main)Eurocode 3: Design of steel structures - Part 1-8: Design of joints
Eurocode 3: Design of steel structures - Part 1-8: Design of joints
This prEN contains design methods for joints subject to predominantly static loading. NOTE: Part 1-8 of prEN 1993 is also applicable to dynamic loads, particularly wind action, if not otherwise mentioned. Fatigue design of joints, see Part 1-9 of prEN 1993. This prEN applies to steel grades S 235, S 275, S 355, S 420 and S 460.
Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-8: Bemessung von Anschlüssen
(1) EN 1993-1-8 enthält Regeln für den Entwurf, die Berechnung und die Bemessung von Anschlüssen aus Stahl mit Stahlsorten S235, S275, S355 und S460 unter vorwiegend ruhender Belastung.
Eurocode 3: Calcul des structures en acier - Partie 1-8: Calcul des assemblages
Evrokod 3: Projektiranje jeklenih konstrukcij – 1-8. del: Projektiranje spojev
Področje uporabe
Ta del evropskega standarda EN 1993 navaja metode projektiranja spojev, izpostavljenih pretežno statični obremenitvi in izdelanih iz jekel naslednjih kakovostnih razredov: S235, S275, S355 in S460.
General Information
Relations
Standards Content (Sample)
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Eurocode 3: Design of steel structures - Part 1-8: Design of jointsEvrokod 3: Projektiranje jeklenih konstrukcij – 1-8. del: Projektiranje spojevEurocode 3: Calcul des structures en acier - Partie 1-8: Calcul des assemblagesEurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-8: Bemessung von AnschlüssenTa slovenski standard je istoveten z:EN 1993-1-8:2005SIST EN 1993-1-8:2005en91.080.10Kovinske konstrukcijeMetal structures91.010.30Technical aspectsICS:SLOVENSKI
STANDARDSIST EN 1993-1-8:200501-oktober-2005
EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM
EN 1993-1-8
May 2005 ICS 91.010.30 Supersedes ENV 1993-1-1:1992 English version
Eurocode 3: Design of steel structures - Part 1-8: Design of joints
Eurocode 3: Calcul des structures en acier - Partie 1-8: Calcul des assemblages
Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-8: Bemessung von Anschlüssen This European Standard was approved by CEN on 16 April 2004.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG
Management Centre: rue de Stassart, 36
B-1050 Brussels © 2005 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. EN 1993-1-8:2005: E
EN 1993-1-8 : 2005 (E)
2 Contents Page
1 Introduction.8 1.1 Scope.8 1.2 Normative references.8 1.3 Distinction between Principles and Application Rules.10 1.4 Terms and definitions.10 1.5 Symbols.13 2 Basis of design.18 2.1 Assumptions.18 2.2 General requirements.18 2.3 Applied forces and moments.18 2.4 Resistance of joints.18 2.5 Design assumptions.19 2.6 Joints loaded in shear subject to impact, vibration and/or load reversal.19 2.7 Eccentricity at intersections.19 3 Connections made with bolts, rivets or pins.20 3.1 Bolts, nuts and washers.20 3.1.1 General.20 3.1.2 Preloaded bolts.20 3.2 Rivets.20 3.3 Anchor bolts.21 3.4 Categories of bolted connections.21 3.4.1 Shear connections.21 3.4.2 Tension connections.21 3.5 Positioning of holes for bolts and rivets.23 3.6 Design resistance of individual fasteners.24 3.6.1 Bolts and rivets.24 3.6.2 Injection bolts.28 3.7 Group of fasteners.29 3.8 Long joints.29 3.9 Slip-resistant connections using 8.8 or 10.9 bolts.30 3.9.1 Design Slip resistance.30 3.9.2 Combined tension and shear.31 3.9.3 Hybrid connections.31 3.10 Deductions for fastener holes.31 3.10.1 General.31 3.10.2 Design for block tearing.32 3.10.3 Angles connected by one leg and other unsymmetrically connected members in tension.33 3.10.4 Lug angles.34 3.11 Prying forces.34 3.12 Distribution of forces between fasteners at the ultimate limit state.34 3.13 Connections made with pins.35 3.13.1 General.35 3.13.2 Design of pins.35 4 Welded connections.38 4.1 General.38 4.2 Welding consumables.38 4.3 Geometry and dimensions.38 4.3.1 Type of weld.38 4.3.2 Fillet welds.38 4.3.3 Fillet welds all round.40 4.3.4 Butt welds.40 4.3.5 Plug welds.41
EN 1993-1-8 : 2005 (E)
3 4.3.6 Flare groove welds.41 4.4 Welds with packings.41 4.5 Design resistance of a fillet weld.42 4.5.1 Length of welds.42 4.5.2 Effective throat thickness.42 4.5.3 Design Resistance of fillet welds.42 4.6 Design resistance of fillet welds all round.44 4.7 Design resistance of butt welds.45 4.7.1 Full penetration butt welds.45 4.7.2 Partial penetration butt welds.45 4.7.3 T-butt joints.45 4.8 Design resistance of plug welds.45 4.9 Distribution of forces.46 4.10 Connections to unstiffened flanges.46 4.11 Long joints.48 4.12 Eccentrically loaded single fillet or single-sided partial penetration butt welds.48 4.13 Angles connected by one leg.48 4.14 Welding in cold-formed zones.49 5 Analysis, classification and modelling.50 5.1 Global analysis.50 5.1.1 General.50 5.1.2 Elastic global analysis.50 5.1.3 Rigid-plastic global analysis.51 5.1.4 Elastic- plastic global analysis.51 5.1.5 Global analysis of lattice girders.52 5.2 Classification of joints.54 5.2.1 General.54 5.2.2 Classification by stiffness.54 5.2.3 Classification by strength.55 5.3 Modelling of beam-to-column joints.56 6 Structural joints connecting H or I sections.60 6.1 General.60 6.1.1 Basis.60 6.1.2 Structural properties.60 6.1.3 Basic components of a joint.61 6.2 Design Resistance.65 6.2.1 Internal forces.65 6.2.2 Shear forces.65 6.2.3 Bending moments.66 6.2.4 Equivalent T-stub in tension.67 6.2.5 Equivalent T-stub in compression.70 6.2.6 Design Resistance of basic components.71 6.2.7 Design moment resistance of beam-to-column joints and splices.84 6.2.8 Design resistance of column bases with base plates.89 6.3 Rotational stiffness.92 6.3.1 Basic model.92 6.3.2 Stiffness coefficients for basic joint components.94 6.3.3 End-plate joints with two or more bolt-rows in tension.97 6.3.4 Column bases.98 6.4 Rotation capacity.99 6.4.1 General.99 6.4.2 Bolted joints.100 6.4.3 Welded Joints.100 7 Hollow section joints.101 7.1 General.101
EN 1993-1-8 : 2005 (E)
4 7.1.1 Scope.101 7.1.2 Field of application.101 7.2 Design.103 7.2.1 General.103 7.2.2 Failure modes for hollow section joints.103 7.3 Welds.107 7.3.1 Design resistance.107 7.4 Welded joints between CHS members.108 7.4.1 General.108 7.4.2 Uniplanar joints.108 7.4.3 Multiplanar joints.115 7.5 Welded joints between CHS or RHS brace members and RHS chord members.116 7.5.1 General.116 7.5.2 Uniplanar joints.117 7.5.3 Multiplanar joints.128 7.6 Welded joints between CHS or RHS brace members and I or H section chords.129 7.7 Welded joints between CHS or RHS brace members and channel section chord members.132
EN 1993-1-8 : 2005 (E)
5 Foreword
This European Standard EN 1993, Eurocode 3: Design of steel structures, has been prepared by Technical Committee CEN/TC250 « Structural Eurocodes », the Secretariat of which is held by BSI. CEN/TC250 is responsible for all Structural Eurocodes.
This European Standard shall be given the status of a National Standard, either by publication of an identical text or by endorsement, at the latest by November 2005, and conflicting National Standards shall be withdrawn at latest by March 2010.
This Eurocode supersedes ENV 1993-1-1.
According to the CEN-CENELEC Internal Regulations, the National Standard Organizations of the following countries are bound to implement these European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Background to the Eurocode programme
In 1975, the Commission of the European Community decided on an action programme in the field of construction, based on article 95 of the Treaty. The objective of the programme was the elimination of technical obstacles to trade and the harmonization of technical specifications.
Within this action programme, the Commission took the initiative to establish a set of harmonized technical rules for the design of construction works which, in a first stage, would serve as an alternative to the national rules in force in the Member States and, ultimately, would replace them.
For fifteen years, the Commission, with the help of a Steering Committee with Representatives of Member States, conducted the development of the Eurocodes programme, which led to the first generation of European codes in the 1980s.
In 1989, the Commission and the Member States of the EU and EFTA decided, on the basis of an agreement1 between the Commission and CEN, to transfer the preparation and the publication of the Eurocodes to CEN through a series of Mandates, in order to provide them with a future status of European Standard (EN). This links de facto the Eurocodes with the provisions of all the Council’s Directives and/or Commission’s Decisions dealing with European standards (e.g. the Council Directive 89/106/EEC on construction products - CPD - and Council Directives 93/37/EEC, 92/50/EEC and 89/440/EEC on public works and services and equivalent EFTA Directives initiated in pursuit of setting up the internal market).
The Structural Eurocode programme comprises the following standards generally consisting of a number of Parts:
EN 1990 Eurocode 0: Basis of Structural Design
EN 1991 Eurocode 1: Actions on structures EN 1992 Eurocode 2: Design of concrete structures EN 1993 Eurocode 3: Design of steel structures EN 1994 Eurocode 4: Design of composite steel and concrete structures EN 1995 Eurocode 5: Design of timber structures EN 1996 Eurocode 6: Design of masonry structures EN 1997 Eurocode 7: Geotechnical design EN 1998 Eurocode 8: Design of structures for earthquake resistance EN 1999 Eurocode 9: Design of aluminium structures
1 Agreement between the Commission of the European Communities and the European Committee for Standardisation (CEN) concerning the work on EUROCODES for the design of building and civil engineering works (BC/CEN/03/89).
EN 1993-1-8 : 2005 (E)
6 Eurocode standards recognize the responsibility of regulatory authorities in each Member State and have safeguarded their right to determine values related to regulatory safety matters at national level where these continue to vary from State to State.
Status and field of application of eurocodes
The Member States of the EU and EFTA recognize that Eurocodes serve as reference documents for the following purposes :
– as a means to prove compliance of building and civil engineering works with the essential requirements of Council Directive 89/106/EEC, particularly Essential Requirement N°1 – Mechanical resistance and stability – and Essential Requirement N°2 – Safety in case of fire;
– as a basis for specifying contracts for construction works and related engineering services;
– as a framework for drawing up harmonized technical specifications for construction products (ENs and ETAs)
The Eurocodes, as far as they concern the construction works themselves, have a direct relationship with the Interpretative Documents2 referred to in Article 12 of the CPD, although they are of a different nature from harmonized product standards3. Therefore, technical aspects arising from the Eurocodes work need to be adequately considered by CEN Technical Committees and/or EOTA Working Groups working on product standards with a view to achieving full compatibility of these technical specifications with the Eurocodes.
The Eurocode standards provide common structural design rules for everyday use for the design of whole structures and component products of both a traditional and an innovative nature. Unusual forms of construction or design conditions are not specifically covered and additional expert consideration will be required by the designer in such cases.
National Standards implementing Eurocodes
The National Standards implementing Eurocodes will comprise the full text of the Eurocode (including any annexes), as published by CEN, which may be preceded by a National title page and National foreword, and may be followed by a National annex.
The National annex may only contain information on those parameters which are left open in the Eurocode for national choice, known as Nationally Determined Parameters, to be used for the design of buildings and civil engineering works to be constructed in the country concerned, i.e. : – values and/or classes where alternatives are given in the Eurocode, – values to be used where a symbol only is given in the Eurocode, –
country specific data (geographical, climatic, etc.), e.g. snow map, – the procedure to be used where alternative procedures are given in the Eurocode. It may contain – decisions on the application of informative annexes, – references to non-contradictory complementary information to assist the user to apply the Eurocode.
Links between Eurocodes and harmonized technical specifications (ENs and ETAs) for products
2 According to Art. 3.3 of the CPD, the essential requirements (ERs) shall be given concrete form in interpretative documents for the creation of the necessary links between the essential requirements and the mandates for harmonized ENs and ETAGs/ETAs. 3
According to Art. 12 of the CPD the interpretative documents shall : a) give concrete form to the essential requirements by harmonizing the terminology and the technical bases and indicating classes or levels for each requirement where necessary ; b) indicate methods of correlating these classes or levels of requirement with the technical specifications, e.g. methods of calculation and of proof, technical rules for project design, etc. ; c)
serve as a reference for the establishment of harmonized standards and guidelines for European technical approvals.
The Eurocodes, de facto, play a similar role in the field of the ER 1 and a part of ER 2.
EN 1993-1-8 : 2005 (E)
7 There is a need for consistency between the harmonized technical specifications for construction products and the technical rules for works4.
Furthermore, all the information accompanying the CE Marking of the construction products which refer to Eurocodes should clearly mention which Nationally Determined Parameters have been taken into account.
National annex for EN 1993-1-8
This standard gives alternative procedures, values and recommendations with notes indicating where national choices may have to be made. The National Standard implementing EN 1993-1-8 should have a National Annex containing all Nationally Determined Parameters for the design of steel structures to be constructed in the relevant country.
National choice is allowed in EN 1993-1-8 through: – 2.2(2) – 1.2.6 (Group 6: Rivets) – 3.1.1(3) – 3.4.2(1) – 5.2.1(2) – 6.2.7.2(9)
4 see Art.3.3 and Art.12 of the CPD, as well as clauses 4.2, 4.3.1, 4.3.2 and 5.2 of ID 1.
EN 1993-1-8 : 2005 (E)
8 1 Introduction 1.1 Scope
(1) This part of EN 1993 gives design methods for the design of joints subject to predominantly static loading using steel grades S235, S275, S355 and S460.
1.2 Normative references
This European Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this European Standard, only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).
1.2.1 Reference Standards, Group 1: Weldable structural steels EN 10025-1:2004 Hot rolled products of structural steels. General technical delivery conditions EN 10025-2:2004 Hot rolled products of structural steels. Technical delivery conditions for non-alloy structural steels EN 10025-3:2004 Hot rolled products of structural steels. Technical delivery conditions for normalized/normalized rolled weldable fine grain structural steels EN 10025-4:2004 Hot rolled products of structural steels. Technical delivery conditions for thermomechanical rolled weldable fine grain structural steels EN 10025-5:2004 Hot rolled products of structural steels. Technical delivery conditions for structural steels with improved atmospheric corrosion resistance EN 10025-6:2004 Hot rolled products of structural steels. Technical delivery conditions for flat products of high yield strength structural steels in quenched and tempered condition
1.2.2 Reference Standards, Group 2: Tolerances, dimensions and technical delivery conditions EN 10029:1991 Hot rolled steel plates 3 mm thick or above - Tolerances on dimensions, shape and mass
EN 10034:1993 Structural steel I- and H-sections - Tolerances on shape and dimensions
EN 10051:1991 Continuously hot-rolled uncoated plate, sheet and strip of non-alloy and alloy steels - Tolerances on dimensions and shape EN 10055:1995 Hot rolled steel equal flange tees with radiused root and toes - Dimensions and tolerances on shape and dimensions EN 10056-1:1995 Structural steel equal and unequal leg angles - Part 1: Dimensions EN 10056-2:1993 Structural steel equal and unequal leg angles - Part 2: Tolerances on shape and dimensions
EN 10164:1993 Steel products with improved deformation properties perpendicular to the surface of the product - Technical delivery conditions
1.2.3 Reference Standards, Group 3: Structural hollow sections EN 10219-1:1997 Cold formed welded structural hollow sections of non-alloy and fine grain steels - Part 1: Technical delivery requirements
EN 1993-1-8 : 2005 (E)
9 EN 10219-2:1997 Cold formed welded structural hollow sections of non-alloy and fine grain steels - Part 2: Tolerances, dimensions and sectional properties EN 10210-1:1994 Hot finished structural hollow sections of non-alloy and fine grain structural steels - Part 1: Technical delivery requirements
EN 10210-2:1997 Hot finished structural hollow sections of non-alloy and fine grain structural steels - Part 2: Tolerances, dimensions and sectional properties
1.2.4 Reference Standards, Group 4: Bolts, nuts and washers EN 14399-1:2002 High strength structural bolting for preloading - Part 1 : General Requirements EN 14399-2:2002 High strength structural bolting for preloading - Part 2 : Suitability Test for preloading EN 14399-3:2002 High strength structural bolting for preloading - Part 3 : System HR -Hexagon bolt and nut assemblies EN 14399-4:2002 High strength structural bolting for preloading - Part 4 : System HV -Hexagon bolt and nut assemblies EN 14399-5:2002 High strength structural bolting for preloading - Part 5 : Plain washers for system HR EN 14399-6:2002 High strength structural bolting for preloading - Part 6 : Plain chamfered washers for systems HR and HV EN ISO 898-1:1999 Mechanical properties of fasteners made of carbon steel and alloy steel - Part 1: Bolts, screws and studs (ISO 898-1:1999) EN 20898-2:1993 Mechanical properties of fasteners - Part 2: Nuts with special proof load
values - Coarse thread (ISO 898-2:1992)
EN ISO 2320:1997 Prevailing torque type steel hexagon nuts - Mechanical and performance requirements (ISO 2320:1997)
EN ISO 4014:2000 Hexagon head bolts - Product grades A and B (ISO 4014:1999) EN ISO 4016:2000 Hexagon head bolts - Product grade C (ISO 4016:1999) EN ISO 4017:2000 Hexagon head screws - Product grades A and B (ISO 4017:1999) EN ISO 4018:2000 Hexagon head screws - Product grade C (ISO 4018:1999) EN ISO 4032:2000 Hexagon nuts, style 1 - Product grades A and B (ISO 4032:1999) EN ISO 4033:2000 Hexagon nuts, style 2 - Product grades A and B (ISO 4033:1999) EN ISO 4034:2000 Hexagon nuts - Product grade C (ISO 4034:1999) EN ISO 7040:1997 Prevailing torque hexagon nuts (with non-metallic insert), style 1 - Property classes 5, 8 and 10 EN ISO 7042:1997 Prevailing torque all-metal hexagon nuts, style 2 - Property classes 5, 8, 10 and 12 EN ISO 7719:1997 Prevailing torque type all-metal hexagon nuts, style 1 - Property classes 5, 8 and 10 ISO 286- 2:1988 ISO system of limits and fits - Part 2: Tables of standard tolerance grades and limit deviations for hole and shafts ISO 1891:1979 Bolts, screws, nuts and accessories - Terminology and nomenclature - Trilingual edition EN ISO 7089:2000 Plain washers- Nominal series- Product grade A EN ISO 7090:2000 Plain washers, chamfered - Normal series - Product grade A EN ISO 7091:2000 Plain washers - Normal series - Product grade C EN ISO 10511:1997 Prevailing torque type hexagon thin nuts (with non-metallic insert) EN ISO 10512:1997 Prevailing torque type hexagon nuts thin nuts, style 1, with metric fine pitch thread - Property classes 6, 8 and 10 EN ISO 10513:1997 Prevailing torque type all-metal hexagon nuts, style 2, with metric fine pitch thread - Property classes 8, 10 and 12
EN 1993-1-8 : 2005 (E)
1.2.5 Reference Standards, Group 5: Welding consumable and welding EN 12345:1998 Welding-Multilingual terms for welded joints with illustrations. September 1998. EN ISO 14555:1998 Welding-Arc stud welding of metallic materials. May 1995 EN ISO 13918:1998 Welding-Studs for arc stud welding-January 1997 EN 288-3:1992 Specification and approval of welding procedures for metallic materials. Part 3: Welding procedure tests for arc welding of steels. 1992 EN ISO 5817:2003 Arc-welded joints in steel - Guidance for quality levels for imperfections
1.2.6 Reference Standards, Group 6: Rivets
NOTE:
Information may be given in the National Annex.
1.2.7 Reference Standard, Group 7: Execution of steel structures EN 1090-2 Requirements for the execution of steel structures
1.3 Distinction between Principles and Application Rules
(1) The rules in EN 1990 clause 1.4 apply. 1.4 Terms and definitions
(1) The following terms and definitions apply: 1.4.1
basic component (of a joint) Part of a joint that makes a contribution to one or more of its structural properties.
1.4.2
connection Location at which two or more elements meet. For design purposes it is the assembly of the basic components required to represent the behaviour during the transfer of the relevant internal forces and moments at the connection. 1.4.3
connected member Any member that is joined to a supporting member or element. 1.4.4
joint Zone where two or more members are interconnected. For design purposes it is the assembly of all the basic components required to represent the behaviour during the transfer of the relevant internal forces and moments between the connected members. A beam-to-column joint consists of a web panel and either one connection (single sided joint configuration) or two connections (double sided joint configuration), see Figure 1.1.
1.4.5
joint configuration Type or layout of the joint or joints in a zone within which the axes of two or more inter-connected members intersect, see Figure 1.2. 1.4.6
rotational capacity
EN 1993-1-8 : 2005 (E)
11 The angle through which the joint can rotate for a given resistance level without failing. 1.4.7
rotational stiffness The moment required to produce unit rotation in a joint. 1.4.8
structural properties (of a joint) Resistance to internal forces and moments in the connected members,
rotational stiffness and
rotation capacity. 1.4.9
uniplanar joint In a lattice structure a uniplanar joint connects members that are situated in a single plane.
Joint = web panel in shear + connection Left joint = web panel in shear + left connection Right joint = web panel in shear + right connection a)
Single-sided joint configuration
b)
Double-sided joint configuration
1 web panel in shear 2 connection 3 components (e.g. bolts, endplate)
Figure 1.1: Parts of a beam-to-column joint configuration
EN 1993-1-8 : 2005 (E)
12 112545233 1 Single-sided beam-to-column joint configuration;
2 Double-sided beam-to-column joint configuration;
3 Beam splice;
4 Column splice;
5 Column base.
a)
Major-axis joint configurations
Double-sided beam-to-column
joint configuration
Double-sided beam-to-beam
joint configuration
b)
Minor-axis joint configurations
(to be used only for balanced moments
Mb1,Ed = Mb2,Ed )
Figure 1.2: Joint configurations
EN 1993-1-8 : 2005 (E)
13 1.5 Symbols
(1) The following symbols are used in this Standard: d is the nominal bolt diameter, the diameter of the pin or the diameter of the fastener;
d0 is the hole diameter for a bolt, a rivet or a pin ; do,t is the hole size for the tension face, generally the hole diameter, but for a slotted holes perpendicular to the tension face the slot length should be used; do,v is the hole size for the shear face, generally the hole diameter, but for slotted holes parallel to the shear face the slot length should be used; dc is the clear depth of the column web; dm
is the mean of the across points and across flats dimensions of the bolt head or the nut, whichever is smaller; fH,Rd is the design value of the Hertz pressure; fur is the specified ultimate tensile strength of the rivet; e1 is the end distance from the centre of a fastener hole to the adjacent end of any part, measured in the direction of load transfer, see Figure 3.1; e2 is the edge distance from the centre of a fastener hole to the adjacent edge of any part, measured at right angles to the direction of load transfer, see Figure 3.1; e3 is the distance from the axis of a slotted hole to the adjacent end or edge of any part, see Figure 3.1; e4 is the distance from the centre of the end radius of a slotted hole to the adjacent end or edge of any part, see Figure 3.1; eff is the effective length of fillet weld; n is the number of the friction surfaces or the number of fastener holes on the shear face; p1 is the spacing between centres of fasteners in a line in the direction of load transfer, see Figure 3.1; p1,0 is the spacing between centres of fasteners in an outer line in the direction of load transfer, see Figure 3.1; p1,i is the spacing between centres of fasteners in an inner line in the direction of load transfer, see Figure 3.1; p2 is the spacing measured perpendicular to the load transfer direction between adjacent lines of fasteners, see Figure 3.1; r is the bolt row number;
NOTE:
In a bolted connection with more than one bolt-row in tension, the bolt-rows are numbered starting from the bolt-row furthest from the centre of compression.
ss is the length of stiff bearing; ta is the thickness of the angle cleat; tfc is the thickness of the column flange; tp
is the thickness of the plate under the bolt or the nut; tw is the thickness of the web or bracket; twc is the thickness of the column web; A is the gross cross-section area of bolt; A0 is the area of the rivet hole; Avc is the shear area of the column, see EN 1993-1-1; As is the tensile stress area of the bolt or of the anchor bolt;
EN 1993-1-8 : 2005 (E)
14 Av,eff is the effective shear area; Bp,Rd is the design punching shear resistance of the bolt head and the nut E is the elastic modulus; Fp,Cd is the design preload force; Ft,Ed is the design tensile force per bolt for the ultimate limit state; Ft,Rd is the design tension resistance per bolt; FT,Rd is the tension resistance of an equivalent T-stub flange; Fv,Rd is
the design shear resistance per bolt; Fb,Rd is the design bearing resistance per bolt; Fs,Rd,ser is the design slip resistance per bolt at the serviceability limit state; Fs,Rd is the design slip resistance per bolt at the ultimate limit state; Fv,Ed,ser is the design shear force per bolt for the serviceability limit state; Fv,Ed is the design shear force per bolt for the ultimate limit state; Mj,Rd is the design moment resistance of a joint; Sj is the rotational stiffness of a joint; Sj,ini is the initial rotational stiffness of a joint; Vwp,Rd is the plastic shear resistance of a column web panel; z is the lever arm; µ is the slip factor; φ is the rotation of a joint.
(2) The following standard abbreviations for hollow sections are used in section 7: CHS for “circular hollow section”; RHS for “rectangular hollow section”, which in this context includes square hollow sections.
gap g overlap ratio λov = (q/p) x 100 %
gqpg (a) Definition of gap (b) Definition of overlap
Figure 1.3: Gap and overlap joints
(3) The following symbols are used in section 7: Ai is the cross-sectional area of member
i
(i = 0, 1, 2 or 3); Av is the shear area of the chord; Av,eff is the effective shear area of the chord;
EN 1993-1-8 : 2005 (E)
15 L is the system length of a member; Mip,i,Rd is the design value of the resistance of the joint, expressed in terms of the in-plane internal moment in member
i
(i = 0, 1, 2 or 3); Mip,i,Ed is the design value of the in-plane internal moment in member
i
(i = 0, 1, 2 or 3); Mop,i,Rd is the design value of the resistance of the joint, expressed in terms of the out-of-plane internal moment in member
i
(i = 0, 1, 2 or 3); Mop,i,Ed is the design value of the out-of-plane internal moment in member
i
(i = 0, 1, 2 or 3); Ni,Rd is the design value of the resistance of the joint, expressed in terms of the internal axial force in member
i
(i = 0, 1, 2 or 3); Ni,Ed is the design value of the internal axial force in member
i
(i = 0, 1, 2 or 3); We,i is the elastic section modulus of member
i
(i = 0, 1, 2 or 3); Wp,i is the plastic section modulus of member
i
(i = 0, 1, 2 or 3); bi is the overall out-of-plane width of RHS member
i (i = 0, 1, 2 or 3); beff is the effective width for a brace member to chord connection; be,ov is the effective width for an overlapping brace to overlapped brace connection; be,p is the effective width for punching shear; bp is the width of a plate; bw is the effective width for the web of the chord; di is the overall diameter of CHS member i
(i = 0, 1, 2 or 3); dw is the depth of the web of an I or H section chord member; e is the eccentricity of a joint; fb is the buckling strength of the chord side wall; fyi is the yield strength of member i
(i = 0, 1, 2 or 3); fy0 is the yield strength of a chord member; g is the gap between the brace members in a K or N joint
(negative values of
g
represent an overlap
q ); the gap
g
is measured along the length of the connecting face of the chord, between the toes of the adjacent brace members, see Figure 1.3(a); hi is the overall in-plane depth of the cross-section of member i
(i = 0, 1, 2 or 3); k is a factor defined in the relevant table, with subscript
g, m, n
or
p ; is the buckling length of a member; p is the length of the projected contact area of the overlapping brace member onto the face of the chord, in the absence of the overlapped brace member, see Figure 1.3(b); q is the length of overlap, measured at the face of the chord, between the brace members in a K or N joint, see Figure 1.3(b); r is the root radius of an I or H section or the corner radius of a rectangular hollow section; tf is the flange thickness of an I or H section; ti is the wall thickness of member
i
(i = 0, 1, 2 or 3); tp is the thickness of a plate; tw is the web thickness of an I or H section; . is a factor defined in the relevant table; i is the included angle between brace member
i
and the chord
(i = 1, 2 or 3);
is a factor defined where it occurs; µ is
a factor defined in the relevant table; 3 is the angle between the planes in a multiplanar joint.
EN 1993-1-8 : 2005 (E)
(4) The integer subscripts used in section 7 are defined as follows: i is an integer subscript used to designate a member of a joint,
i = 0
denoting a chord and i = 1, 2 or 3
the brace members.
In joints with two brace members,
i = 1
normally denotes the compression brace and
i = 2
the tension bra
...
6/29(16., 6,67(1
67$1'$5'
RNWREHU
(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM±GHO3URMHNWLUDQMHVSRMHY
(XURFRGH'HVLJQRIVWHHOVWUXFWXUHV±3DUW'HVLJQRIMRLQWV
(XURFRG&DOFXOGHVVWUXFWXUHVHQDFLHU±3DUWLH&DOFXOGHVDVVHPEODJHV
(XURFRGH%HPHVVXQJXQG.RQVWUXNWLRQYRQ6WDKOEDXWHQ±
7HLO%HPHVVXQJYRQ$QVFKOVVHQ
5HIHUHQþQDR]QDND
,&6 6,67(1VO
1DGDOMHYDQMHQDVWUDQHK,,LQ,,,LQRGGR
! "#$%&’#"( )*+ ! ,( #
6,67(1
1$&,21$/1,892'
6WDQGDUG6,67(1VO(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM±GHO3URMHNWLUDQMH
VSRMHYLPDVWDWXVVORYHQVNHJDVWDQGDUGDLQMHLVWRYHWHQHYURSVNHPXVWDQGDUGX(1
HQ(XURFRGH'HVLJQRIVWHHOVWUXFWXUHV±3DUW'HVLJQRIMRLQWV
1$&,21$/1,35('*2925
(YURSVNL VWDQGDUG (1 MH SULSUDYLO WHKQLþQL RGERU (YURSVNHJD NRPLWHMD ]D
VWDQGDUGL]DFLMR&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDWDMQLãWYRMHYSULVWRMQRVWL%6,
6ORYHQVNLVWDQGDUG6,67(1MHSUHYRGHYURSVNHJDVWDQGDUGD(19
SULPHUXVSRUDJOHGHEHVHGLODVORYHQVNHJDSUHYRGDYWHPVWDQGDUGXMHRGORþLOHQL]YLUQLHYURSVNL
VWDQGDUGYDQJOHãNHPMH]LNX6ORYHQVNRL]GDMRVWDQGDUGDMHSULSUDYLOWHKQLþQLRGERU6,677&.21
.RQVWUXNFLMH
=9(=$=1$&,21$/1,0,67$1'$5',
9VWDQGDUGX6,67(1SRPHQLVNOLFHYDQMHQDHYURSVNHLQPHGQDURGQHVWDQGDUGHNLMH
YNOMXþHQRYWDHYURSVNLVWDQGDUGVNOLFHYDQMHQDHQDNRYUHGQHVORYHQVNHVWDQGDUGHQSU
(1SRPHQL6,67(1
1$&,21$/1,'2'$7(.
9VNODGXVVWDQGDUGRP(1ERSULSUDYOMHQQDFLRQDOQLGRGDWHNNVWDQGDUGX6,67(1
1DFLRQDOQLGRGDWHNYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH
]RSRPEDPLNLNDåHMRNMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRERQDFLRQDOQLGRGDWHN6,67(1
$YVHERYDOQDFLRQDOQRGRORþHQHSDUDPHWUHNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMX
VWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYNLERGR]JUDMHQLY5HSXEOLNL6ORYHQLML
1DFLRQDOQDL]ELUDMHY6,67(1GRYROMHQDY
-VNXSLQD=DNRYLFH
-
-
-
-
-
26129$=$,='$-267$1'$5'$
± SULY]HPVWDQGDUGD(1
2320%(
3RYVRG NMHU VH Y EHVHGLOX VWDQGDUGD XSRUDEOMD L]UD] ³HYURSVNL VWDQGDUG´ Y
6,67(1WRSRPHQL³VORYHQVNLVWDQGDUG´
1DFLRQDOQLXYRGLQQDFLRQDOQLSUHGJRYRUQLVWDVHVWDYQLGHOVWDQGDUGD
7DQDFLRQDOQLGRNXPHQWMHLVWRYHWHQ](1LQMHREMDYOMHQ]GRYROMHQMHP
&(1
5XHGH6WDVVDUW
%UXVHOM
%HOJLMD
,,
6,67(1
7KLVQDWLRQDOGRFXPHQWLVLGHQWLFDOZLWK(1DQGLVSXEOLVKHGZLWKWKHSHUPLVVLRQRI
&(1
5XHGH6WDVVDUW
%UX[HOOHV
%HOJLXP
,,,
6,67(1
3UD]QDVWUDQ
,9
(95236.,67$1'$5' (1
(8523($167$1'$5'
1250((8523e(11(
(8523b,6&+(1250 PDM
,&6 1DGRPHãþD(19
6ORYHQVNDL]GDMD
(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
GHO3URMHNWLUDQMHVSRMHY
(XURFRGH'HVLJQRIVWHHO &DOFXOGHVVWUXFWXUHVHQDFLHU± %HPHVVXQJXQG.RQVWUXNWLRQ
VWUXFWXUHV±3DUW'HVLJQRI 3DUWLH&DOFXOGHV YRQ6WDKOEDXWHQ±
MRLQWV DVVHPEODJHV 7HLO%HPHVVXQJYRQ
$QVFKOVVHQ
7DHYURSVNLVWDQGDUGMH&(1VSUHMHODSULOD
ýODQLFH&(1PRUDMRL]SROQMHYDWLQRWUDQMHSUHGSLVH&(1&(1(/(&VNDWHULPLMHSUHGSLVDQRGDPRUD
ELWLWDVWDQGDUGEUH]NDNUãQLKNROLVSUHPHPEVSUHMHWNRWQDFLRQDOQLVWDQGDUG1DMQRYHMãLVH]QDPLWHK
QDFLRQDOQLKVWDQGDUGRY]QMLKRYLPLELEOLRJUDIVNLPLSRGDWNLVHQD]DKWHYRODKNRGRELMRSUL&HQWUDOQHP
VHNUHWDULDWXDOLNDWHULNROLþODQLFL&(1
7DHYURSVNLVWDQGDUGREVWDMDYWUHKL]YLUQLKL]GDMDKDQJOHãNLIUDQFRVNLLQQHPãNL,]GDMHYGUXJLK
MH]LNLKNLMLKþODQLFH&(1QDODVWQRRGJRYRUQRVWSUHYHGHMRLQL]GDMRWHUSULMDYLMRSUL&HQWUDOQHP
VHNUHWDULDWX&(1YHOMDMRNRWXUDGQHL]GDMH
ýODQLFH&(1VRQDFLRQDOQLRUJDQL]DVWDQGDUGH$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH
(VWRQLMH)LQVNH)UDQFLMH*UþLMH,UVNH,VODQGLMH,WDOLMH/DWYLMH/LWYH/XNVHPEXUJD0DGåDUVNH
0DOWH1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNH
âYLFHLQ=GUXåHQHJDNUDOMHVWYD
&(1
(YURSVNLNRPLWH]DVWDQGDUGL]DFLMR
(XURSHDQ&RPPLWWHHIRU6WDQGDUGL]DWLRQ
&RPLWp(XURSpHQGH1RUPDOLVDWLRQ
(XURSlLVFKHV.RPLWHHIU1RUPXQJ
&HQWUDOQLVHNUHWDULDWUXHGH6WDVVDUW%%UXVHOM
.0/2131346587:9;<3=>?@78A;BC9:D8=EGF2C78A3=>H98BGA9?JIKCL878A?@M:N7<3=>?@OQPSR&TUS?:VWTX;T:PSRZY[3[3\:]Y]^K_/2131346P
6,67(1
96(%,1$ 3DJH
8YRG
3RGURþMHXSRUDEH
=YH]D]GUXJLPLVWDQGDUGL
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
,]UD]LLQGHILQLFLMH
6LPEROL
2VQRYHSURMHNWLUDQMD
3UHGSRVWDYNH
6SORãQH]DKWHYH
'HOXMRþHQRWUDQMHVLOHLQPRPHQWL
1RVLOQRVWYR]OLãþ
3UHGSRVWDYNHSULSURMHNWLUDQMX
6WULåQRREUHPHQMHQDYR]OLãþDSRGYSOLYRPXGDUFHYYLEUDFLMLQDOLREWHåEH
VVSUHPHQOMLYRVPHUMR
(NVFHQWULþQRVWYVHþLãþXRVL
6SRML]YLMDNL]DNRYLFDPLDOLþHSL
9LMDNLPDWLFHLQSRGORåNH
6SORãQR
3UHGQDSHWLYLMDNL
=DNRYLFH
6LGUQLYLMDNL
.DWHJRULMHYLMDþHQLKVSRMHY
6WULåQLVSRML
1DWH]QLVSRML
5D]SRUHGOXNHQM]DYLMDNHLQ]DNRYLFH
3URMHNWQDQRVLOQRVWSRVDPH]QLKYH]QLKVUHGVWHY
9LMDNLLQ]DNRYLFH
,QMHFLUDQLYLMDNL
6NXSLQDYH]QLKVUHGVWHY
'ROJLVSRML
7RUQLVSRML]YLMDNLDOL
3URMHNWQDWRUQDQRVLOQRVW
6RþDVQRGHORYDQMHQDWHJDLQVWULJD
+LEULGQLVSRML
2GELWNL]DOXNQMHYH]QLKVUHGVWHY
6SORãQR
6WULåQLL]WUJ
.RWQLNLSULNOMXþHQLSUHNRHQHJDNUDNDLQGUXJLQHVLPHWULþQRSULNOMXþHQLQDWH]QLHOHPHQWL
9H]QLNRWQLNL
(NVFHQWULþQHNRQWDNWQHVLOH
6,67(1
5D]SRUHGVLOPHGYH]QLPLVUHGVWYLYPHMQHPVWDQMXQRVLOQRVWL
6SRMLVþHSL
6SORãQR
3URMHNWLUDQMHþHSRY
9DUMHQLVSRML
6SORãQR
'RGDMQLPDWHULDO
*HRPHWULMDLQGLPHQ]LMH
9UVWH]YDURY
.RWQL]YDUL
6NOHQMHQLNRWQL]YDULRþHVQL]YDUL
ýHOQL]YDUL
ýHSDVWL]YDUL
=YDULRE]DREOMHQLKURERYLK
9DUMHQLVSRML]GLVWDQþQLPLSORþHYLQDPL
3URMHNWQDQRVLOQRVWNRWQLK]YDURY
'ROåLQD]YDURY
(IHNWLYQDGHEHOLQD]YDURY
3URMHNWQDQRVLOQRVWNRWQLK]YDURY
3URMHNWQDQRVLOQRVWVNOHQMHQLKNRWQLK]YDURY
3URMHNWQDQRVLOQRVWþHOQLK]YDURY
ýHOQL]YDULVSROQRSHQHWUDFLMR
ýHOQL]YDUL]GHOQRSHQHWUDFLMR
7þHOQLVSRML
3URMHNWQDQRVLOQRVWþHSDVWLK]YDURY
5D]SRUHGLWHYVLO
3ULNOMXþNLQDQHRMDþHQHSDVQLFH
'ROJLVSRML
(NVFHQWULþQRREUHPHQMHQLHQRMQLNRWQL]YDULDOLHQRVWUDQVNLGHOQRSHQHWULUDQLþHOQL]YDUL
.RWQLNLSULNOMXþHQLSUHNRHQHJDNUDND
9DUMHQMHYREPRþMXKODGQHJDREOLNRYDQMD
$QDOL]DUD]YUãþDQMHLQPRGHOLUDQMH
*OREDOQDDQDOL]D
6SORãQR
(ODVWLþQDJOREDOQDDQDOL]D
7RJRSODVWLþQDJOREDOQDDQDOL]D
(ODVWLþQRSODVWLþQDJOREDOQDDQDOL]D
*OREDOQDDQDOL]DSDOLþQLKQRVLOFHY
5D]YUãþDQMHYR]OLãþ
6SORãQR
5D]YUãþDQMHSRWRJRVWL
6,67(1
5D]YUãþDQMHSRQRVLOQRVWL
0RGHOLUDQMHYR]OLãþSUHþNDVWHEHU
.RQVWUXNFLMVNDYR]OLãþD]DSULNOMXþHYDQMH+DOL,SURILORY
6SORãQR
2VQRYH
.RQVWUXNFLMVNHODVWQRVWL
2VQRYQHNRPSRQHQWHYR]OLãþD
3URMHNWQDQRVLOQRVW
1RWUDQMHVLOH
6WULåQHVLOH
8SRJLEQLPRPHQWL
1DGRPHVWQL7HOHPHQWYQDWHJX
1DGRPHVWQL7HOHPHQWYWODNX
3URMHNWQDQRVLOQRVWRVQRYQLKNRPSRQHQW
3URMHNWQDXSRJLEQDQRVLOQRVWYR]OLãþSUHþNDVWHEHULQSUHNORSQLKVSRMHY
3URMHNWQDQRVLOQRVWSULNOMXþNRYVWHEURY]OHåLãþQLPLSORþHYLQDPLQDWHPHOM
5RWDFLMVNDWRJRVW
2VQRYQLPRGHO
7RJRVWQLNRHILFLHQWL]DRVQRYQHNRPSRQHQWHYR]OLãþ
6SRMLVþHOQRSORþHYLQR]GYHPDDOLYHþYUVWDPLYLMDNRYYQDWHJX
3ULNOMXþNLVWHEURYQDWHPHOMH
5RWDFLMVNDNDSDFLWHWD
6SORãQR
9LMDþHQDYR]OLãþD
9DUMHQDYR]OLãþD
9R]OLãþDSDOLFL]YRWOLKSURILORY
6SORãQR
8YRG
3RGURþMHXSRUDEH
3URMHNWLUDQMH
6SORãQR
1DþLQLSRUXãLWYHYYR]OLãþLK]YRWOLPLSURILOL
=YDUL
3URMHNWQDQRVLOQRVW
9DUMHQDYR]OLãþDYNDWHULKVHVWLNXMHMRRNURJOLYRWOLSURILOL
6SORãQR
5DYQLQVNDYR]OLãþD
3URVWRUVNDYR]OLãþD
9DUMHQDYR]OLãþDYNDWHULKVHVWLNXMHMRRNURJOHDOLSUDYRNRWQHYRWOHSROQLOQHSDOLFHLQ
SUDYRNRWQLYRWOLSDVRYL
6SORãQR
6,67(1
5DYQLQVNDYR]OLãþD
3URVWRUVNDYR]OLãþD
9DUMHQDYR]OLãþDYNDWHULKVHVWLNXMHMRRNURJOHDOLSUDYRNRWQHYRWOHSROQLOQHSDOLFHLQ
,DOL+SURILOLSDVRY
9DUMHQDYR]OLãþDYNDWHULKVHVWLNXMHMRRNURJOHDOLSUDYRNRWQHYRWOHSROQLOQHSDOLFHLQ
8SURILOLSDVRY
6,67(1
3UHGJRYRU
7DHYURSVNLVWDQGDUG(1(YURNRG3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLMMHSULSUDYLOWHKQLþQLRGERU
&(17&.RQVWUXNFLMVNLHYURNRGLNDWHUHJDVHNUHWDULDWMHQD%6,&(17&MHRGJRYRUHQ]DYVH
NRQVWUXNFLMVNHHYURNRGH
7DHYURSVNLVWDQGDUGPRUDSRVWDWLQDFLRQDOQLVWDQGDUG]REMDYRLVWRYHWQHJDEHVHGLODDOL]XUDGQR
UD]JODVLWYLMRQDMSR]QHMHGRQRYHPEUDQDFLRQDOQLVWDQGDUGLNLVR]QMLPYQDVSURWMXSDPRUDMR
ELWLXPDNQMHQLQDMSR]QHMHPDUFD
7DGRNXPHQWQDGRPHãþD(19
&(17&MHRGJRYRUHQ]DYVHNRQVWUXNFLMVNHHYURNRGH
3RGRORþLOLKQRWUDQMLKSUHGSLVRY&(1&(1(/(&VRWDHYURSVNLVWDQGDUGGROåQHVSUHMHWLQDFLRQDOQH
RUJDQL]DFLMH]DVWDQGDUGHQDVOHGQMLKGUåDY$YVWULMH%HOJLMH&LSUDýHãNHUHSXEOLNH'DQVNH(VWRQLMH
)LQVNH )UDQFLMH *UþLMH ,VODQGLMH ,UVNH ,WDOLMH /DWYLMH /LWYH /XNVHPEXUJD 0DGåDUVNH 0DOWH
1HPþLMH1L]R]HPVNH1RUYHãNH3ROMVNH3RUWXJDOVNH6ORYDãNH6ORYHQLMHâSDQLMHâYHGVNHâYLFH
LQ=GUXåHQHJDNUDOMHVWYD
2]DGMHSURJUDPDHYURNRGRY
.RPLVLMD(YURSVNLKVNXSQRVWLVHMHYOHWXQDSRGODJLþOHQD5LPVNHSRJRGEHRGORþLODGD
VSUHMPHDNFLMVNLSURJUDPQDSRGURþMXJUDGEHQLãWYD&LOMSURJUDPDMHELORGVWUDQLWLWHKQLþQHRYLUHSUL
WUJRYDQMXLQXVNODGLWLWHKQLþQHVSHFLILNDFLMH
=QRWUDMWHJDSURJUDPDMH.RPLVLMDVSRGEXGLODSULSUDYRQL]DXVNODMHQLKWHKQLþQLKSUDYLO]DSURMHNWLUDQMH
JUDGEHQLK REMHNWRY NL EL VH VSUYD XSRUDEOMDOD NRW DOWHUQDWLYD UD]OLþQLP SUDYLORP YHOMDYQLP Y
SRVDPH]QLKGUåDYDKþODQLFDKNRQþQRSDELMLKQDGRPHVWLODYFHORWL
.RPLVLMDMHVSRPRþMRXSUDYQHJDRGERUDYNDWHUHPVRELOLSUHGVWDYQLNLGUåDYþODQLFSHWQDMVWOHWYRGLODUD]YRM
SURJUDPDHYURNRGRYNDWHUHJDUH]XOWDWMHELODSUYDJHQHUDFLMDHYURNRGRYYRVHPGHVHWLKOHWLKVWROHWMD
‘
/HWDVRVH.RPLVLMDLQGUåDYHþODQLFH(8LQ()7$RGORþLOHGDQDSRGODJLGRJRYRUD PHG.RPLVLMR
LQ&(1]YHþSRREODVWLOLSUHQHVHMRSULSUDYRLQREMDYOMDQMHHYURNRGRYQD&(1GDELHYURNRGLYSULKRGQMH
LPHOLVWDWXVHYURSVNLKVWDQGDUGRY(17RMHHYURNRGHGHMDQVNRSRYH]DOR]GRORþEDPLYVHKGLUHNWLY
6YHWDLQDOLRGORþEDPL.RPLVLMHNLVHQDQDãDMRQDHYURSVNHVWDQGDUGHQSU'LUHNWLYD6YHWD(*6
RJUDGEHQLKSURL]YRGLK&3'LQ'LUHNWLYH6YHWD(*6(*6WHU(*6RMDYQLKGHOLKLQ
VWRULWYDKWHUXVWUH]QHGLUHNWLYH()7$NLVRELOHVSUHMHWH]DXYHOMDYLWHYQRWUDQMHJDWUJD
3URJUDPNRQVWUXNFLMVNLKHYURNRGRYREVHJDQDVOHGQMHVWDQGDUGHNLLPDMRQDVSORãQRYHþGHORY
(1 (YURNRG 2VQRYHSURMHNWLUDQMDNRQVWUXNFLM
(1 (YURNRG 9SOLYLQDNRQVWUXNFLMH
(1 (YURNRG 3URMHNWLUDQMHEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHMHNOHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHVRYSUHåQLKMHNOHQLKLQEHWRQVNLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHOHVHQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMH]LGDQLKNRQVWUXNFLM
(1 (YURNRG *HRWHKQLþQRSURMHNWLUDQMH
(1 (YURNRG 3URMHNWLUDQMHSRWUHVQRRGSRUQLKNRQVWUXNFLM
(1 (YURNRG 3URMHNWLUDQMHDOXPLQLMVNLKNRQVWUXNFLM
acb
B:d2B8A8BC6eJ?3IgfhB3e6=93=iBjPkA3CB2F898D8=El98D8m:F2<8B:9;=n=:=iBjsOQPSRStBjF2C=F2C78A3=,?:A3CB2DB:I2B8Auq:7
F2CBi?D;=C7
6,67(1
(YURNRGLSUL]QDYDMRRGJRYRUQRVWSULVWRMQLKREODVWLYYVDNLGUåDYLþODQLFLLQMLPGRSXãþDMRSUDYLFRGD
YUHGQRVWLSRYH]DQH]YDUQRVWMRGRORþDMRQDQDFLRQDOQLUDYQLRGGUåDYHGRGUåDYHUD]OLþQR
6WDWXVLQSRGURþMHYHOMDYQRVWLHYURNRGRY
ýODQLFH(8LQ()7$SUL]QDYDMRHYURNRGHNRWUHIHUHQþQHGRNXPHQWH]DQDVOHGQMHQDPHQH
± NRWQDþLQ]DGRND]RYDQMHXVWUH]QRVWLVWDYELQJUDGEHQLKLQåHQLUVNLKREMHNWRYELVWYHQLP]DKWHYDP
'LUHNWLYH6YHWD(*6]ODVWLELVWYHQL]DKWHYLãWª0HKDQVNDRGSRUQRVWLQVWDELOQRVW©LQ
ELVWYHQL]DKWHYLãWª9DUQRVWSULSRåDUX©
± NRWSRGODJR]DVSHFLILNDFLMRSRJRGE]DJUDGQMRJUDGEHQLKREMHNWRYLQVSUHPOMDMRþHLQåHQLUVNH
VWRULWYH
± NRWRJURGMH]DSULSUDYRKDUPRQL]LUDQLKWHKQLþQLKVSHFLILNDFLM]DJUDGEHQHSURL]YRGH(1LQ(7$
z
.MHUVHHYURNRGLQDQDãDMRQDJUDGEHQHREMHNWHVRQHSRVUHGQRSRYH]DQL]UD]ODJDOQLPLGRNXPHQWL
QDYHGHQLPLYþOHQX'LUHNWLYHRJUDGEHQLKSURL]{YRGLK&3'þHSUDYMHQMLKRYDQDUDYDGUXJDþQDRG
QDUDYHKDUPRQL]LUDQLKVWDQGDUGRY]DSURL]YRGH =DWRPRUDMRWHKQLþQLRGERUL&(1LQDOLGHORYQH
VNXSLQH(27$NLSULSUDYOMDMRVWDQGDUGH]DSURL]YRGHXSRãWHYDWLWHKQLþQHYLGLNHHYURNRGRYGDELV
WHPGRVHJOLSRSROQRXVNODMHQRVWWHKWHKQLþQLKVSHFLILNDFLM]HYURNRGL
(YURNRGL YVHEXMHMR VNXSQD SUDYLOD ]D YVDNGDQMR UDER SUL SURMHNWLUDQMX RELþDMQLK LQ LQRYDWLYQLK
NRQVWUXNFLMNRWFHORWHDOLSRVDPH]QLKNRQVWUXNFLMVNLKGHORY(YURNRGLQHYVHEXMHMRSRVHEQLKGRORþE]D
QHQDYDGQHREOLNHNRQVWUXNFLMDOLQHQDYDGQHSURMHNWQHSRJRMH9WHKSULPHULKMHSRWUHEQRVRGHORYDQMH
]L]YHGHQFL
1DFLRQDOQHL]GDMHHYURNRGRY
1DFLRQDOQDL]GDMDHYURNRGDYVHEXMHSROHJFHORWQHJDEHVHGLODHYURNRGD]YVHPLGRGDWNLNRWJDMH
REMDYLO&(1WXGLPRUHELWQRQDFLRQDOQRQDVORYQLFRQDFLRQDOQLSUHGJRYRULQQDFLRQDOQLGRGDWHN
1DFLRQDOQLGRGDWHNODKNRYVHEXMHOHSRGDWNHRSDUDPHWULKNLVRYHYURNRGXQDYHGHQLNRWQDFLRQDOQR
GRORþHQL SDUDPHWUL 1'3 7L SDUDPHWUL YHOMDMR ]D SURMHNWLUDQMH NRQVWUXNFLM VWDYE LQ JUDGEHQLK
LQåHQLUVNLKREMHNWRYYGUåDYLYNDWHULERGR]JUDMHQL7RVR
± YUHGQRVWLLQDOLUD]UHGLNMHUHYURNRGLGRSXãþDMRDOWHUQDWLYH
± YUHGQRVWLNMHUHYURNRGLQDYDMDMROHVLPEROH
± SRGDWNLVSHFLILþQL]DGUåDYRJHRJUDIVNLSRGQHEQLLWQNRWMHQSUNDUWDVQHJD
± SRVWRSHNþHMLKHYURNRGGRSXãþDYHþ
1DFLRQDOQLGRGDWHNODKNRYVHEXMHWXGL
± RGORþLWHYRXSRUDELLQIRUPDWLYQLKGRGDWNRY
± QDSRWNHRGRGDWQLKLQIRUPDFLMDKNLQLVRYQDVSURWMX]HYURNRGL]DSRPRþXSRUDEQLNX
z|b
9:DN7:IKm}9~\KT\M:N?K<8B3eO,i?;C?v:7v2=9;A?K
qA?:q87@eJ?3I6v2=9;A?K<3=e@=q87E;?:A873e6==GPKK&,yPKKQT
{6|b98D8N7:IKmnq6Y/KTM:N?K<8B3eOQeJBC7iB6C78q3N7:d27N<3=I2B2D8m8eJ?K<;=_
7:tDB<:D8C?:;=q3=C78;=8v2=9;A?K
q87GA9872DBGq87E;?:A8BK8D7:I27Ci?G;B@F:B8;C?v2<8BK
v8t<872D78q878;=QeJ?:;B:I3?oq87jF:B8A?:q878A8BgC78q3C?3I2B8Ao7N=,9;B2F8?K:=V=D73>:=i73e6=J<:F2CTGeJ?8;B:I3?gC73M:m3<87=<
I2B2D78q8B8A2;?KE3<3=M:<87@F2C78A3=N7Gq87@F2CBi?2D;=C7
>tv2=;=+m:F:BC72v2<3=SDB8;cF:B:IKN7:d27q87ZF2C=FC78A8BuE87CewB<3=q3=C7<3=E9;7q87?:A3CB2F89:D7;?KE3<3=M:<8798B:dKN7:9i7T,PkA3CB2DB:IK=
=ew7iBJI3?i7<9:DBwF:B:I2B2v2<8BGA3NB:d2B@F2C=v2=9;A?K<3=q87E;?:A3=X;WT2YG=
6,67(1
=YH]HPHGHYURNRGLLQKDUPRQL]LUDQLPLWHKQLþQLPLVSHFLILNDFLMDPL(1LQ(7$]D
SURL]YRGH
+DUPRQL]LUDQHWHKQLþQHVSHFLILNDFLMH]DJUDGEHQHSURL]YRGHPRUDMRELWLXVNODMHQHVWHKQLþQLPLSUDYLOL
]DREMHNWH 1DGDOMHPRUDMRQDYRGLODSRYH]DQD]R]QDþHYDQMHP&(JUDGEHQLKSURL]YRGRYNLVH
VNOLFXMHMRQDHYURNRGHQDWDQþQRGRORþLWLNDWHUHQDFLRQDOQRSUHGSLVDQHSDUDPHWUHXSRãWHYDMR
1DFLRQDOQLGRGDWNLN(1
7DVWDQGDUGYVHEXMHDOWHUQDWLYQHSRVWRSNHYUHGQRVWLLQSULSRURþLOD]DUD]UHGH]RSRPEDPLNLNDåHMR
NMHVHODKNRXYHOMDYLQDFLRQDOQDL]ELUD=DWRQDMELQDFLRQDOQHL]GDMH(1LPHOHQDFLRQDOQL
GRGDWHN]YVHPLQDFLRQDOQRGRORþHQLPLSDUDPHWULNLMLKMHWUHEDXSRUDELWLSULSURMHNWLUDQMXMHNOHQLK
NRQVWUXNFLM]DJUDGLWHYYWHMGUåDYL
1DFLRQDOQDL]ELUDMHY(1GRYROMHQDY
VNXSLQD=DNRYLFH
bGN?i\KT\@=<6Y/kTM8N?K
6,67(1
8YRG
3RGURþMHXSRUDEH
7D GHO HYURSVNHJD VWDQGDUGD (1 QDYDMD PHWRGH SURMHNWLUDQMD VSRMHY L]SRVWDYOMHQLK
SUHWHåQRVWDWLþQLREUHPHQLWYLLQL]GHODQLKL]MHNHOQDVOHGQMLKNDNRYRVWQLKUD]UHGRY66
6LQ6
=YH]D]GUXJLPLVWDQGDUGL
7DHYURSVNLVWDQGDUGYNOMXþXMH]GDWLUDQLPDOLQHGDWLUDQLPVNOLFHYDQMHPGRORþLODL]GUXJLKSXEOLNDFLM7D
VNOLFHYDQMDQDVWDQGDUGHVRQDYHGHQDQDXVWUH]QLKPHVWLKYEHVHGLOXSXEOLNDFLMHSDVRQDãWHWH
VSRGDM3ULGDWLUDQHPVNOLFHYDQMXVHSULXSRUDELWHJDHYURSVNHJDVWDQGDUGDXSRãWHYDMRSR]QHMãD
GRSROQLODDOLVSUHPHPEHNDWHUHNROLRGWHKSXEOLNDFLMOHþHVR]GRSROQLORPDOLVSUHPHPERYNOMXþHQH
YDQM3ULQHGDWLUDQHPVNOLFHYDQMXSDVHXSRUDEOMD]DGQMDL]GDMDSXEOLNDFLMHQDNDWHURVHVNOLFXMH
YNOMXþQR]GRSROQLOL
5HIHUHQþQLVWDQGDUGLVNXSLQD9DULYDNRQVWUXNFLMVNDMHNOD
(1 9URþHYDOMDQLL]GHONLL]NRQVWUXNFLMVNLKMHNHO±6SORãQLWHKQLþQLGREDYQLSRJRML
(1 9URþH YDOMDQL L]GHONL L] NRQVWUXNFLMVNLK MHNHO ± 7HKQLþQL GREDYQL SRJRML ]D
QHOHJLUDQDNRQVWUXNFLMVNDMHNOD
(1 9URþH YDOMDQL L]GHONL L] NRQVWUXNFLMVNLK MHNHO ± 7HKQLþQL GREDYQL SRJRML ]D
QRUPDOL]LDQDQRUPDOL]LUDQDYDOMDQDYDULYDGUREQR]UQDWDNRQVWUXNFLMVNDMHNOD
(1 9URþH YDOMDQL L]GHONL L] NRQVWUXNFLMVNLK MHNHO ± 7HKQLþQL GREDYQL SRJRML ]D
WHUPRPHKDQVNRREGHODQDYDOMDQDYDULYDGUREQR]UQDWDNRQVWUXNFLMVNDMHNOD
(1 9URþH YDOMDQL L]GHONL L] NRQVWUXNFLMVNLK MHNHO ± 7HKQLþQL GREDYQL SRJRML ]D
NRQVWUXNFLMVNDMHNOD]L]EROMãDQR]PRJOMLYRVWMRSURWLDWPRVIHUVNLNRUR]LML
(1 9URþH YDOMDQL L]GHONL L] NRQVWUXNFLMVNLK MHNHO ± 7HKQLþQL GREDYQL SRJRML ]D
SORãþDWHL]GHONHL]NRQVWUXNFLMVNLKMHNHO]YHOLNRSODVWLþQRWUGQRVWMRYNDOMHQHPLQ
SRSXãþHQHPVWDQMX
5HIHUHQþQLVWDQGDUGLVNXSLQD7ROHUDQFHPHUHLQWHKQLþQLGREDYQLSRJRML
(1 9URþHYDOMDQDMHNOHQDSORþHYLQDGHEHODPPDOLYHþ±7ROHUDQFHPHUREOLNHLQ
PDVH
(1 3URILOL,LQ+L]NRQVWUXNFLMVNLKMHNHO±0HMQLRGVWRSNLPHULQWROHUDQFHREOLN
(1 .RQWLQXLUDQRYURþHYDOMDQHSORþHYLQHLQWUDNRYLL]OHJLUDQLKLQQHOHJLUDQLKMHNHO
EUH]SUHYOHN±0HMQLRGVWRSNLPHULQWROHUDQFHREOLN
(1 9URþHYDOMDQLVLPHWULþQLSURILOL7]]DREOMHQLPLURERYLLQNRUHQL±0HUHPHMQL
RGVWRSNLLQWROHUDQFHREOLN
(1 .RWQL / MHNOHQL SURILOL ] HQDNLPL LQ UD]OLþQLPL NUDNL ± GHO 0HUH
(1 .RWQL/MHNOHQLSURILOL]HQDNLPLLQUD]OLþQLPLNUDNL±GHO0HUHPHMQLRGVWRSNL
LQWROHUDQFHREOLN
(1 -HNOHQLL]GHONL]L]EROMãDQLPLGHIRUPDFLMVNLPLODVWQRVWPLSUDYRNRWQRQDSRYUãLQR
L]GHOND±7HKQLþQLGREDYQLSRJRML
5HIHUHQþQLVWDQGDUGLVNXSLQD9RWOLNRQVWUXNFLMVNLSURILOL
(1 +ODGQR REOLNRYDQL YDUMHQL YRWOL NRQVWUXNFLMVNL SURILOL L] QHOHJLUDQLK LQ
GUREQR]UQDWLKMHNHO±GHO7HKQLþQLGREDYQLSRJRML
6,67(1
(1 +ODGQR REOLNRYDQL YDUMHQL YRWOL NRQVWUXNFLMVNL SURILOL L] QHOHJLUDQLK LQ
GUREQR]UQDWLKMHNHO±GHO0HUHPHMQLRGVWRSNLLQ]QDþLOQRVWLSURILORY
(1 9URþHYDOMDQLYRWOLSURILOLL]QHOHJLUDQLKLQGUREQR]QDWLKNRQVWUXNFLMVNLKMHNHO±
GHO7HKQLþQLGREDYQLSRJRML
(1 9URþHYDOMDQLYRWOLSURILOLL]QHOHJLUDQLKLQGUREQR]QDWLKNRQVWUXNFLMVNLKMHNHO±
GHO0HUHPHMQLRGVWRSNLLQ]QDþLOQRVWLSURILORY
5HIHUHQþQLVWDQGDUGLVNXSLQD9LMDNLPDWLFHLQSRGORåNH
(1 9LVRNRWUGQRVWQHYLMDþQH]YH]H]DSUHGQDSHWMH±GHO6SORãQH]DKWHYH
(1 9LVRNRWUGQRVWQHYLMDþQH]YH]H]DSUHGQDSHWMH±GHO8VWUH]QRVWSUHVNXVD]D
SUHGQDSHWMH
(1 9LVRNRWUGQRVWQHYLMDþQH]YH]H]DSUHGQDSHWMH±GHO6LVWHP+5±=YH]H
YLMDNRYVãHVWURERJODYRLQãHVWURERPDWLFR
(1 9LVRNRWUGQRVWQHYLMDþQH]YH]H]DSUHGQDSHWMH±GHO6LVWHP+9±=YH]H
YLMDNRYVãHVWURERJODYRLQãHVWURERPDWLFR
(1 9LVRNRWUGQRVWQHYLMDþQH]YH]H]DSUHGQDSHWMH±GHO3ORãþDWHSRGORåNH
(1 9LVRNRWUGQRVWQH YLMDþQH ]YH]H ]D SUHGQDSHWMH ± GHO 3ORãþDWH SRVQHWH
SRGORåNH
(1,62 0HKDQVNHODVWQRVWLYH]QLKHOHPHQWRYL]RJOMLNRYHJDDOLOHJLUDQHJDMHNOD±GHO
9LMDNL]DWLþLLQVWHEHOQLYLMDNL,62
(1 0HKDQVNHODVWQRVWLYH]QLKHOHPHQWRY±GHO0DWLFH]GRORþHQRSUHVNXãHQR
REUHPHQLWYLMR,62
(1,62 âHVWUREH]DãþLWQHPDWLFH]GHIRUPDFLMR±0HKDQVNHLQL]YHGEHQH]DKWHYH,62
(1,62 9LMDNLVãHVWURERJODYR±5D]UHGDL]GHODYH$LQ%,62
(1,62 9LMDNLVãHVWURERJODYR±5D]UHGL]GHODYH&,62
(1,62 9LMDNLVãHVWURERJODYR]QDYRMHPGRJODYH±5D]UHGDL]GHODYH$LQ%
,62
(1,62 9LMDNL V ãHVWURER JODYR ] QDYRMHP GR JODYH ± 5D]UHG L]GHODYH &
,62
(1,62 âHVWUREHPDWLFHWLS±5D]UHGDL]GHODYH$LQ%,62
(1,62 âHVWUREHPDWLFHWLS±5D]UHGDL]GHODYH$LQ%,62
(1,62 âHVWUREHPDWLFH±5D]UHGL]GHODYH&,62
(1,62 âHVWUREH]DãþLWQHPDWLFHVSODVWLþQLPYORåNRPWLS±5D]UHGLWUGQRVWLLQ
(1,62 âHVWUREH]DãþLWQHPDWLFH]GHIRUPDFLMRWLS±5D]UHGLWUGQRVWLLQ
(1,62 âHVWUREH]DãþLWQHPDWLFH]GHIRUPDFLMRWLS±5D]UHGLWUGQRVWLLQ
,62 6LVWHPPHMQLKPHULQXMHPRY,62±GHO3UHJOHGQLFHVWDQGDUGQLKWROHUDQþQLK
UD]UHGRYLQPHMQLKRGVWRSNRY]DOXNQMHLQJUHGL
,62 0HKDQVNLYH]QLHOHPHQWL±9LMDNLPDWLFHLQSULERU±3RLPHQRYDQMD
(1,62 2NURJOHUDYQHSRGORåNH±1RUPDOQHYUVWH±5D]UHGL]GHODYH$
(1,62 2NURJOHSRVQHWHSRGORåNH±1RUPDOQHYUVWH±5D]UHGL]GHODYH$
6,67(1
(1,62 2NURJOHUDYQHSRGORåNH±1RUPDOQHYUVWH±5D]UHGL]GHODYH&
(1,62 âHVWUREH]DãþLWQHQL]NHPDWLFHVSODVWLþQLPYORåNRP
(1,62 âHVWUREH]DãþLWQHQL]NHPDWLFHVSODVWLþQLPYORåNRPWLS]GUREQLPPHWUVNLP
QDYRMHP±5D]UHGLWUGQRVWLLQ
(1,62 âHVWUREH ]DãþLWQH QL]NH PDWLFH ] GHIRUPDFLMR WLS ] GUREQLP PHWUVNLP
QDYRMHP±5D]UHGLWUGQRVWLLQ
5HIHUHQþQLVWDQGDUGLVNXSLQD9DULOQHHOHNWURGHLQYDUMHQMH
(1 9DUMHQMH±9HþMH]LþQLVORYDUL]UD]RY]D]YDUQHVSRMHVVNLFDPL
(1,62 9DUMHQMH2EORþQRYDUMHQMHþHSRYL]NRYLQVNLKPDWHULDORY
(1,62 9DUMHQMHýHSLLQNHUDPLþQLREURþNL]DREORþQRYDUMHQMHþHSRY
(1 =DKWHYHLQSUL]QDYDQMHYDULOQLKSRVWRSNRY]DNRYLQVNHPDWHULDOHGHO
3UHVNXãDQMHYDULOQLKSRVWRSNRY]DREORþQRYDUMHQMHMHNHO
(1,62 9DUMHQMH7DOLOQR]YDUMHQLVSRMLQDMHNOXQLNOMXWLWDQXLQQMLKRYLK]OLWLQDK
YDUMHQMHVVQRSRPL]NOMXþHQR6WRSQMHVSUHMHPOMLYRVWLQHSUDYLOQRVWL
5HIHUHQþQLVWDQGDUGLVNXSLQD=DNRYLFH
GhcwxKQ_US?:V?KC?K<8M:<3=9;7:=B<87N
5HIHUHQþQLVWDQGDUGLVNXSLQD,]GHODYDLQPRQWDåDMHNOHQLKNRQVWUXNFLM
(1 ,]YHGEDMHNOHQLKLQDOXPLQLMDVWLKNRQVWUXNFLM
5D]OLNRYDQMHPHGQDþHOLLQSUDYLOL]DXSRUDER
9HOMDMRSUDYLODL](1SRGSRJODYMH
,]UD]LLQGHILQLFLMH
6SRGDMQDYHGHQLL]UD]LLQGHILQLFLMHVHY(1XSRUDEOMDMR]QDVOHGQMLPLSRPHQL
2VQRYQDNRPSRQHQWDYR]OLãþD'HOYR]OLãþDNLSULVSHYDNHQLDOLYHþNRQVWUXNFLMVNLPODVWQRVWLP
6SRM0HVWRNMHUVHVSDMDWDGYDDOLYHþHOHPHQWRY=DSRWUHEHSURMHNWLUDQMDMHVSRMVLVWHP
RVQRYQLKNRPSRQHQWNLSUHGVWDYOMDMRREQDãDQMHVSRMDPHGSUHQRVRPUHOHYDQWQLKQRWUDQMLKVLOYVSRMX
3ULNOMXþQLHOHPHQW.DWHULNROLHOHPHQWNLMHSULNOMXþHQVSRMHQQDSRGSRUQLHOHPHQW
9R]OLãþH2EPRþMHNMHUVHSRYH]XMHWDGYDDOLYHþHOHPHQWRY=DSRWUHEHSURMHNWLUDQMDMHYR]OLãþH
VLVWHPYVHKRVQRYQLKNRPSRQHQWNLSUHGVWDYOMDMRREQDãDQMHYR]OLãþDPHGSUHQRVRPUHOHYDQWQLKQRWUDQMLK
VLOPHGVWLNRYDQLPLHOHPHQWL9R]OLãþHSUHþNDVWHEHUVHVWDYOMDMRSDQHOVWRMLQHVWHEUDLQHQHQRVWUDQVND
NRQILJXUDFLMDYR]OLãþDDOLGYDVSRMDGYRVWUDQVNDNRQILJXUDFLMDYR]OLãþDJOHMVOLNR
.RQILJXUDFLMDVSRMD7LSDOL]QDþLOQDJHRPHWULMDYR]OLãþDDOLYR]OLãþYREPRþMXNMHUVHVHNDMRRVL
GYHKDOLYHþHOHPHQWRY
5RWDFLMVNDNDSDFLWHWD.RW]DNDWHUHJDODKNRYR]OLãþH]DURWLUDSULGRORþHQLVWRSQMLRGSRUQRVWLQH
GDELSULãORGRSRUXãLWYH
5RWDFLMVNDWRJRVW8SRJLEQLPRPHQWNLSRY]URþLURWDFLMRYR]OLãþD]DNRWUG
6,67(1
.RQVWUXNFLMVNHODVWQRVWLYR]OLãþD2GSRUQRVWSURWLQRWUDQMLPVLODPLQPRPHQWRPYSULNOMXþHQLK
HOHPHQWLKQRVLOQRVWURWDFLMVNDWRJRVWLQURWDFLMVNDNDSDFLWHWD
5DYQLQVNRYR]OLãþH9SDOLþQLNRQVWUXNFLMLUDYQLQVNRYR]OLãþHSRYH]XMHHOHPHQWHNLOHåLMRYLVWL
UDYQLQL
9R]OLãþH SDQHOVWRMLQHYVWULJXVSRM /HYRYR]OLãþH SDQHOVWRMLQHYVWULJXOHYLVSRM
'HVQRYR]OLãþH SDQHOVWRMLQHYVWULJXGHVQLVSRM
D(QRVWUDQVNDNRQILJXUDFLMDYR]OLãþD E'YRVWUDQVNDNRQILJXUDFLMDYR]OLãþD
SDQHOVWRMLQHVWHEUDYVWULJX
VSRM
NRPSRQHQWHQSUYLMDNLþHOQDSORþHYLQD
6OLND'HOLYR]OLãþDSUHþNDVWHEHU
6,67(1
(QRVWUDQVNDNRQILJXUDFLMD
YR]OLãþDSUHþNDVWHEHU
'YRVWUDQVNDNRQILJXUDFLMD
YR]OLãþDSUHþNDVWHEHU
6SRMYQRVLOFX
6SRMYVWHEUX
3ULNOMXþHNVWHEUDQDWHPHOM
D.RQILJXUDFLMHYR]OLãþ]DPRþQRRV
'YRVWUDQVNDNRQILJXUDFLMDYR]OLãþDSUHþNDVWHEHU 'YRVWUDQVNDNRQILJXUDFLMDYR]OLãþDSUHþNDVWHEHU
E.RQILJXUDFLMHYR]OLãþ]DãLENRRVXSRUDEQHVDPRSULPRPHQWLKYUDYQRWHåMX0¡¢ 0(£¡¢
6OLND.RQILJXUDFLMHYR]OLãþ
6LPEROL
9WHPVWDQGDUGXVHXSRUDEOMDMRVSRGDMQDYHGHQLVLPEROL
G QD]LYQLSUHPHUVWHEODYLMDNDSUHPHUþHSDDOLSUHPHUYH]QHJDVUHGVWYD
G⁄ SUHPHUOXNQMH]DYLMDN]DNRYLFRDOLþHS
G¥ƒ§ YHOLNRVWOXNQMHYQDWH]QLUDYQLQLQDVSORãQRSUHPHUOXNQMHSULOXNQMDKSRGDOMãDQLK
SUDYRNRWQRQDQDWH]QRUDYQLQRGROåLQDYHþMDGLPHQ]LMDOXNQMH
G¥ƒ¤ YHOLNRVW OXNQMH Y VWULåQL UDYQLQL QD VSORãQR SUHPHU OXNQMH SUL OXNQMDK SRGDOMãDQLK
Y]SRUHGQRVVWULåQRUDYQLQRGROåLQDYHþMDGLPHQ]LMDOXNQMH
G' YLãLQDVWRMLQHVWHEUDPHGSDVQLFDPD
G“ VUHGQMDYUHGQRVWYHþMHLQPDQMãHSUHþQHGLPHQ]LMHJODYHYLMDNDDOLPDWLFHYHOMDPDQMãD
RGYUHGQRVWL]DJODYRYLMDNDLQPDWLFR
I«Kƒ‹3› SURMHNWQDYUHGQRVW+HUW]RYLKQDSHWRVWL
Ififl SUHGSLVDQDQDWH]QDWUGQRVW]DNRYLFH
6,67(1
H UREQD UD]GDOMD RG VUHGLãþD OXNQMH ]D YH]QR VUHGVWYR GR URED HOHPHQWD Y VPHUL
GHORYDQMDVLOHJOHMVOLNR
H– UREQD UD]GDOMD RG VUHGLãþD OXNQMH ]D YH]QR VUHGVWYR GR URED HOHPHQWD PHUMHQD
SUDYRNRWQRQDVPHUGHORYDQMDVLOHJOHMVOLNR
H† UD]GDOMDRGY]GROåQHRVLSRGDOMãDQHOXNQMHGRUREDHOHPHQWDJOHMVOLNR
H‡ UD]GDOMDRGFHQWUDNRQþQHJDSROPHUDSRGDOMãDQHOXNQMHGRUREDHOHPHQWDJOHMVOLNR
· HIHNWLYQDGROåLQDNRWQHJD]YDUD
Q ãWHYLORWRUQLKSRYUãLQDOLãWHYLOROXNHQM]DYH]QDVUHGVWYDYVWULåQLUDYQLQLVSRMD
S UD]GDOMDPHGVUHGLãþLOXNHQM]DYH]QDVUHGVWYDYVPHULGHORYDQMDVLOHJOHMVOLNR
Sƒ⁄ UD]GDOMDPHGVUHGLãþLOXNHQM]DYH]QDVUHGVWYDY]XQDQMLYUVWLYVPHULGHORYDQMDVLOHJOHM
VOLNR
Sƒ¶ UD]GDOMDPHGVUHGLãþLOXNHQM]DYH]QDVUHGVWYDYQRWUDQMLYUVWLYVPHULGHORYDQMDVLOH
JOHMVOLNR
S– UD]GDOMDPHGVUHGLãþLOXNHQM]DYH]QDVUHGVWYDYVRVHGQMLKYUVWDKPHUMHQDSUDYRNRWQR
QDVPHUGHORYDQMDVLOHJOHMVOLNR
U ãWHYLONDYUVWHYLMDNRY
•G‚h•c„w”K»Q…‰3¿`3´ˆK˜3¿¯c˘:˙:¨¿¯nnˆ2´G˚¨8¸ˆK˜8¨G3˘¸¨G3¿`2˚¨8nw˜8`8¸ˆ:3˜3¿˝¨˜3¿˘ˆ@¨:˛¸ˆ:3¿ˇ´ˆK˜ˆJ3˘¸23¿`3˚¨8n8`3´:˜ˆ6˙2¿3˘¸¿—:˚¿
ˆ˜8`:¨ˇ¨:32`ˇˆK˜8`J¨:J¸ˇ`3´:˜ˆw˝¨˜ˆK
V ãLULQDWRJHJDQDOHJDQMD
W GHEHOLQDYH]QHJDNRWQLND
W' GHEHOLQDSDVQLFHVWHEUD
W GHEHOLQDSRGORåQHSORãþHSRGJODYRYLMDNDDOLSRGPDWL
...










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...