Gas cylinders - Design, construction and testing of refillable seamless steel gas cylinders and tubes - Part 4: Stainless steel cylinders with an R m value of less than 1 100 MPa

This document specifies the minimum requirements for the materials, design, construction and workmanship, manufacturing processes, examinations and testing at time of manufacture for refillable, seamless, stainless steel gas cylinders with water capacities up to and including 150 l. It is applicable to cylinders for compressed, liquefied and dissolved gases with a maximum actual tensile strength, Rma, of less than 1 100 MPa. NOTE If so desired, cylinders of water capacity between 150 l and 450 l can be manufactured to be in full conformance to this document.

Bouteilles à gaz — Conception, construction et essais des bouteilles à gaz et des tubes rechargeables en acier sans soudure — Partie 4: Bouteilles en acier inoxydable ayant une valeur de Rm inférieure à 1 100 MPa

Le présent document spécifie les exigences minimales concernant le matériau, la conception, la construction et la mise en œuvre, les procédés de fabrication, les examens et les essais au moment de la fabrication des bouteilles à gaz rechargeables en acier sans soudure d’une contenance en eau inférieure ou égale à 150 l. Il s’applique aux bouteilles pour les gaz comprimés, liquéfiés et dissous ayant une résistance à la traction réelle, Rma, maximale inférieure à 1 100 MPa. NOTE Si cela est souhaité, les bouteilles d’une contenance en eau comprise entre 150 l et 450 l peuvent être fabriquées conformément au présent document.

General Information

Status
Not Published
Current Stage
5020 - FDIS ballot initiated: 2 months. Proof sent to secretariat
Start Date
24-Nov-2025
Completion Date
24-Nov-2025

Relations

Effective Date
28-Oct-2023
Effective Date
28-Oct-2023

Overview

ISO/FDIS 9809-4:2025 specifies the international standards for the design, construction, and testing of refillable seamless stainless steel gas cylinders with a maximum tensile strength (R m) of less than 1 100 MPa. This standard targets cylinders with water capacities up to 150 liters and includes provisions for cylinders holding compressed, liquefied, or dissolved gases. The document ensures consistent safety, quality, and performance of stainless steel gas cylinders used worldwide, providing guidelines for materials, manufacturing processes, inspections, and testing methods at the time of manufacture.

This standard forms part 4 of the ISO 9809 series and aligns with global best practices for gas cylinder production, ensuring universal utility while balancing design efficiency and economic feasibility. Additionally, it supports conformance with regulatory requirements such as the UN Model Regulations for transport of dangerous goods.

Key Topics

  • Materials Requirements

    • Defines minimum chemical composition controls specific to stainless steel with tensile strength below 1 100 MPa.
    • Includes heat treatment, cold working, and cryoforming processes to enhance material properties.
  • Design Specifications

    • Guidelines on cylindrical shell thickness, shape and strength of convex and concave ends, neck design, foot and neck rings.
    • Requirements for design drawings to document critical dimensions and properties.
  • Manufacturing and Workmanship

    • Quality control for wall thickness, surface imperfections, out-of-roundness, diameter, straightness, and stability.
    • Methods for ultrasonic examination and thread specifications.
  • Inspection and Testing

    • Prototype tests including bend, flattening, tensile, impact, hydraulic burst, and intergranular corrosion tests.
    • Batch testing procedures and tests to be conducted on every cylinder such as hydraulic, hardness, and leak tests.
    • Rejection criteria and procedures for cylinders failing tests.
  • Certification and Marking

    • Processes for issuing type approval and acceptance certificates.
    • Requirements for permanent markings indicating compliance, capacity, manufacturer, and technical data.

Applications

ISO/FDIS 9809-4:2025 is essential for manufacturers, quality assurance personnel, testing laboratories, and regulatory bodies involved with the production and certification of stainless steel gas cylinders. Key applications include:

  • Industrial Gas Cylinders
    Manufacturing seamless stainless steel cylinders for storing industrial gases like oxygen, nitrogen, hydrogen, and argon with guaranteed strength and safety.

  • Medical Gas Systems
    Compliance to safely contain medical gases under high pressure, ensuring patient safety and regulatory conformity.

  • Transportation and Storage
    Ensuring cylinders are designed and tested for safe transport and storage under international regulatory frameworks to prevent accidents and leaks.

  • Cylinder Inspection and Maintenance
    Providing a framework for periodic inspection and retesting to maintain cylinder integrity throughout its service life.

Related Standards

ISO/FDIS 9809-4 works in conjunction with other relevant international standards to provide a comprehensive approach to gas cylinder safety and quality:

  • ISO 10286 – Gas cylinders vocabulary for consistent terminology.
  • ISO 13341 – Specifications for fitting valves to gas cylinders.
  • ISO 13769 – Guidelines on stamp marking of gas cylinders.
  • ISO 3651-2 – Corrosion resistance testing of stainless steels in aggressive environments.
  • ISO 6892-1 – Tensile testing methods for metallic materials.
  • ISO 9712 – Qualification and certification of non-destructive testing personnel.

These complementary standards ensure interoperability and harmonize technical requirements across the gas cylinder industry.


Keywords: ISO 9809-4, stainless steel gas cylinders, seamless gas cylinders, gas cylinder design, gas cylinder testing, refillable gas cylinders, international gas cylinder standard, tensile strength, compressed gas cylinders, industrial gas cylinder safety, cylinder manufacturing standard.

Draft

ISO/FDIS 9809-4 - Gas cylinders — Design, construction and testing of refillable seamless steel gas cylinders and tubes — Part 4: Stainless steel cylinders with an R m value of less than 1 100 MPa Released:10. 11. 2025

English language
53 pages
sale 15% off
sale 15% off
Draft

REDLINE ISO/FDIS 9809-4 - Gas cylinders — Design, construction and testing of refillable seamless steel gas cylinders and tubes — Part 4: Stainless steel cylinders with an R m value of less than 1 100 MPa Released:10. 11. 2025

English language
53 pages
sale 15% off
sale 15% off
Draft

ISO/FDIS 9809-4 - Bouteilles à gaz — Conception, construction et essais des bouteilles à gaz et des tubes rechargeables en acier sans soudure — Partie 4: Bouteilles en acier inoxydable ayant une valeur de Rm inférieure à 1 100 MPa Released:15. 12. 2025

French language
56 pages
sale 15% off
sale 15% off

Frequently Asked Questions

ISO/FDIS 9809-4 is a draft published by the International Organization for Standardization (ISO). Its full title is "Gas cylinders - Design, construction and testing of refillable seamless steel gas cylinders and tubes - Part 4: Stainless steel cylinders with an R m value of less than 1 100 MPa". This standard covers: This document specifies the minimum requirements for the materials, design, construction and workmanship, manufacturing processes, examinations and testing at time of manufacture for refillable, seamless, stainless steel gas cylinders with water capacities up to and including 150 l. It is applicable to cylinders for compressed, liquefied and dissolved gases with a maximum actual tensile strength, Rma, of less than 1 100 MPa. NOTE If so desired, cylinders of water capacity between 150 l and 450 l can be manufactured to be in full conformance to this document.

This document specifies the minimum requirements for the materials, design, construction and workmanship, manufacturing processes, examinations and testing at time of manufacture for refillable, seamless, stainless steel gas cylinders with water capacities up to and including 150 l. It is applicable to cylinders for compressed, liquefied and dissolved gases with a maximum actual tensile strength, Rma, of less than 1 100 MPa. NOTE If so desired, cylinders of water capacity between 150 l and 450 l can be manufactured to be in full conformance to this document.

ISO/FDIS 9809-4 is classified under the following ICS (International Classification for Standards) categories: 23.020.35 - Gas cylinders. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO/FDIS 9809-4 has the following relationships with other standards: It is inter standard links to ISO/IEC 10116:2017/Amd 1:2021, ISO 9809-4:2021. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

ISO/FDIS 9809-4 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.

Standards Content (Sample)


FINAL DRAFT
International
Standard
ISO/TC 58/SC 3
Gas cylinders — Design,
Secretariat: BSI
construction and testing of
Voting begins on:
refillable seamless steel gas
2025-11-24
cylinders and tubes —
Voting terminates on:
2026-01-19
Part 4:
Stainless steel cylinders with an R
m
value of less than 1 100 MPa
Bouteilles à gaz — Conception, construction et essais des
bouteilles à gaz et des tubes rechargeables en acier sans
soudure —
Partie 4: Bouteilles en acier inoxydable ayant une valeur de Rm
inférieure à 1 100 MPa
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
Reference number
FINAL DRAFT
International
Standard
ISO/TC 58/SC 3
Gas cylinders — Design,
Secretariat: BSI
construction and testing of
Voting begins on:
refillable seamless steel gas
cylinders and tubes —
Voting terminates on:
Part 4:
Stainless steel cylinders with an R
m
value of less than 1 100 MPa
Bouteilles à gaz — Conception, construction et essais des
bouteilles à gaz et des tubes rechargeables en acier sans
soudure —
Partie 4: Bouteilles en acier inoxydable ayant une valeur de Rm
inférieure à 1 100 MPa
RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT,
WITH THEIR COMMENTS, NOTIFICATION OF ANY
RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE
AND TO PROVIDE SUPPOR TING DOCUMENTATION.
© ISO 2025
IN ADDITION TO THEIR EVALUATION AS
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/CEN PARALLEL PROCESSING
LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
INTERNATIONAL STANDARDS MAY ON OCCASION HAVE
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL
or ISO’s member body in the country of the requester.
TO BECOME STAN DARDS TO WHICH REFERENCE MAY BE
MADE IN NATIONAL REGULATIONS.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland Reference number
ii
Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 3
5 Inspection and testing . 4
6 Materials . 4
6.1 General requirements .4
6.2 Controls on chemical composition .5
6.3 Heat treatment.5
6.4 Cold working or cryoforming .5
6.5 Failure to meet test requirements .5
7 Design . 6
7.1 General requirements .6
7.2 Design of cylindrical shell thickness .6
7.3 Design of convex ends (heads and bases) .7
7.4 Design of the concave base ends .9
7.5 Neck design .10
7.6 Foot rings . .10
7.7 Neck rings .10
7.8 Design drawing .11
8 Construction and workmanship .11
8.1 General .11
8.2 Wall thickness .11
8.3 Surface imperfections .11
8.4 Ultrasonic examination .11
8.5 Out-of-roundness . 12
8.6 Mean diameter . 12
8.7 Straightness . 12
8.8 Verticality and stability . 12
8.9 Neck threads . 13
9 Type approval procedure .13
9.1 General requirements . 13
9.2 Prototype test .14
9.2.1 General requirements .14
9.2.2 Pressure cycling test .14
9.2.3 Base check . 15
9.2.4 Bend test and flattening test . 15
9.2.5 Torque test for taper thread only .16
9.2.6 Shear stress calculation for parallel threads .17
9.3 Type approval certificate .17
9.4 Specific type approval/production tests for cylinders ordered in quantities below 200 .17
10 Batch tests . .18
10.1 General requirements .18
10.2 Tensile test .19
10.3 Impact test . 20
10.4 Hydraulic burst test . 22
10.4.1 Test installation . . 22
10.4.2 Test conditions . 23
10.4.3 Interpretation of test results .24

iii
10.5 Intergranular corrosion test . 25
11 Tests/examinations on every cylinder .25
11.1 General . 25
11.2 Hydraulic test . 26
11.2.1 Proof pressure test . 26
11.2.2 Volumetric expansion test . 26
11.3 Hardness test . 26
11.4 Leak test . 26
11.5 Water -capacity check .27
12 Certification .27
13 Marking . .27
Annex A (normative) Description and evaluation of manufacturing imperfections and
conditions for rejection of seamless steel gas cylinders at the time of final inspection by
the manufacturer .28
Annex B (normative) Ultrasonic examination .42
Annex C (informative) Example of type approval certificate .48
Annex D (informative) Example of acceptance certificate .49
Annex E (informative) Example of shear strength calculation for parallel threads .51
Bibliography .53

iv
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee
has been established has the right to be represented on that committee. International organizations,
governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely
with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent
rights identified during the development of the document will be in the Introduction and/or on the ISO list of
patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 58, Gas cylinders, Subcommittee SC 3, Cylinder
design, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/
TC 23, Transportable gas cylinders, in accordance with the Agreement on technical cooperation between ISO
and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 9809-4:2021), which has been technically
revised.
The main changes are as follows:
— modification of definition in 3.8;
— modification of Formula 1 in 7.2;
— bend test and flattening test moved under Clause 9 (prototype tests);
— clarification of shear stress calculation for parallel threads;
— clarification of 9.4;
— update of Bibliography.
A list of all parts in the ISO 9809 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

v
Introduction
This document provides a specification for the design, construction, inspection and testing of a seamless
stainless steel cylinder. The objective is to balance the design and economic efficiency against international
acceptance and universal utility.
ISO 9809 (all parts) aims to eliminate the concern about climate, duplicate inspections and restrictions
because of the lack of definitive International Standards.
[1]
This document has been written so that it is suitable to be referenced in the UN Model Regulations .

vi
FINAL DRAFT International Standard ISO/FDIS 9809-4:2025(en)
Gas cylinders — Design, construction and testing of refillable
seamless steel gas cylinders and tubes —
Part 4:
Stainless steel cylinders with an R value of less than 1 100 MPa
m
1 Scope
This document specifies the minimum requirements for the materials, design, construction and
workmanship, manufacturing processes, examinations and testing at time of manufacture for refillable,
seamless, stainless steel gas cylinders with water capacities up to and including 150 l.
It is applicable to cylinders for compressed, liquefied and dissolved gases with a maximum actual tensile
strength, R , of less than 1 100 MPa.
ma
NOTE If so desired, cylinders of water capacity between 150 l and 450 l can be manufactured to be in full
conformance to this document.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 148-1, Metallic materials — Charpy pendulum impact test — Part 1: Test method
ISO 3651-2, Determination of resistance to intergranular corrosion of stainless steels — Part 2: Ferritic,austenitic
and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric acid
ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method
ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method
ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature
ISO 9328-1, Steel flat products for pressure purposes — Technical delivery conditions — Part 1: General
requirements
ISO 9329-4, Seamless steel tubes for pressure purposes — Technical delivery conditions — Part 4: Austenitic
stainless steels
ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel
ISO 10286, Gas cylinders — Vocabulary
ISO 13341, Gas cylinders — Fitting of valves to gas cylinders
ISO 13769, Gas cylinders — Stamp marking
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 10286 and the following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
batch
quantity of up to 200 cylinders, plus cylinders for destructive testing of the same nominal diameter,
thickness, length and design made successively on the same equipment, from the same cast of steel, and
subjected to the same heat treatment for the same duration of time
3.2
burst pressure
p
b
highest pressure reached in a cylinder during a burst test
3.3
cold working
process in which a cylinder is subjected to a pressure higher than the cylinder test pressure (3.11) to increase
the yield strength (3.12) of the steel
3.4
cryoforming
process where the cylinder is subjected to a controlled low-temperature deformation treatment that results
in a permanent increase in strength
3.5
design stress factor
F
ratio of the equivalent wall stress at test pressure, p , (3.11) to guaranteed minimum yield strength, R
h eg
3.6
quenching
hardening heat treatment in which a cylinder, which has been heated to a uniform temperature is cooled
rapidly on a suitable medium
3.7
reject
action to set aside a cylinder (level 2 or level 3) that is not allowed to go into service
3.8
rendered unserviceable
result of a treatment to a piece of equipment that renders it impossible to enter into service
Note 1 to entry: Examples for acceptable methods to render cylinders unserviceable can be found in ISO 18119.
3.9
repair
action to return a rejected cylinder to a level 1 condition
3.10
tempering
toughening heat treatment which follows quenching (3.6), in which the cylinder is heated to a uniform
temperature below the lower critical point (Ac ) of the steel
3.11
test pressure
p
h
required pressure applied during a pressure test
Note 1 to entry: Test pressure is used for the cylinder wall thickness calculation.

3.12
yield strength
stress value corresponding to the 0,2 % proof stress or, for austenitic steels in the solution-annealed
condition, 1 % proof stress
3.13
working pressure
settled pressure of a compressed gas at a uniform reference temperature of 15 °C in a full gas cylinder
4 Symbols
A percentage elongation after fracture
a calculated minimum thickness, in millimetres, of the cylindrical shell
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
a guaranteed minimum thickness, in millimetres, of a concave base at the knuckle (see Figure 2)
a guaranteed minimum thickness, in millimetres, at the centre of a concave base (see Figure 2)
b guaranteed minimum thickness, in millimetres, at the centre of a convex base (see Figure 1)
c maximum permissible deviation, in millimetres, of burst profile for quenched and tempered cylinders
(see Figure 11)
c maximum permissible deviation, in millimetres, of the burst profile for cryoformed or solution-annealed
cylinders with less than 7,5 mm wall thickness (see Figure 12)
D nominal outside diameter of the cylinder, in millimetres (see Figure 1)
D diameter, in millimetres, of former (see Figure 6)
f
F design stress factor (variable)
H outside height, in millimetres, of the domed part (convex head or base end) (see Figure 1)
h outside depth (concave base end), in millimetres (see Figure 2)
L original gauge length, in millimetres, as defined in ISO 6892-1 (see Figure 5)
o
l overall length of the cylinder, in millimetres (see Figure 3)
n ratio of the diameter of the bend test former to the actual thickness of test piece, t
p measured burst pressure, in bar, above atmospheric pressure
b
NOTE  1 bar = 10 Pa = 0,1 MPa.
p hydraulic test pressure, in bar, above atmospheric pressure
h
p observed pressure when the cylinder starts yielding during the hydraulic burst test, in bar, above at-
y
mospheric pressure
r inside knuckle radius, in millimetres (see Figures 1 and 2)
R actual value of the yield strength, in megapascals, as determined by the tensile test (see 10.2)
ea
R minimum guaranteed value of the yield strength (see 7.1.1), in megapascals, for the finished cylinder
eg
R actual value of the tensile strength, in megapascals, as determined by the tensile test (see 10.2)
ma
R minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder
mg
S original cross-sectional area of the tensile test piece, in square millimetres, in accordance with ISO 6892-1
o
t actual thickness of the test specimen, in millimetres
t average cylinder wall thickness at the position of testing during the flattening test, in millimetres
m
u ratio of the distance between the knife edges or platens in the flattening test to the average cylinder
wall thickness at the position of the test
V water capacity of the cylinder, in litres
w width, in millimetres, of the tensile test piece (see Figure 5)
5 Inspection and testing
For assessment of conformity to this document, users shall be aware of applicable country-specific
regulations
To ensure that cylinders conform to this document, they shall be subject to inspection and testing in
accordance with Clauses 9, 10 and 11.
Tests and examinations performed to demonstrate compliance with this document shall be conducted using
instruments calibrated before being put into service and thereafter according to an established programme.
6 Materials
6.1 General requirements
6.1.1 Materials for the manufacture of gas cylinders shall fall within one of the following categories:
a) internationally recognized cylinder steels;
b) nationally recognized cylinder steels;
c) new cylinder steels resulting from technical progress.
For all categories, the relevant conditions specified in 6.2 and 6.3 shall be satisfied.
6.1.2 There is a risk of intergranular corrosion in austenitic and duplex stainless steels resulting from
hot processing which can cause sensitization of the steel (e.g. chromium depletion in the grain boundary).
Intergranular corrosion testing shall be carried out for such materials in accordance with 10.6.
6.1.3 The cylinder manufacturer shall establish means to identify the cylinders with the cast of steel from
which they are made.
6.1.4 Grades of steel used for the cylinder manufacture shall be compatible with the intended gas service,
e.g. corrosive gases and embrittling gases (see ISO 11114-1).
6.1.5 Some grades of stainless steel can be susceptible to environmental stress corrosion cracking. Special
precautions shall be taken in such cases, such as appropriate coating.
6.1.6 Some grades of stainless steel can be susceptible to phase transformation at low temperatures
resulting in a brittle alloy. Special precautions shall be taken in such cases, i.e. not using the cylinder below
the minimum acceptable temperature.

6.2 Controls on chemical composition
6.2.1 The following are the four broad categories of stainless steels:
— ferritic;
— martensitic;
— austenitic;
— austenitic/ferritic (duplex).
Recognized steels are listed in ISO 15510. Other grades of stainless steel can also be used provided that they
fulfil all the requirements of this document.
6.2.2 The cylinder manufacturer shall obtain and make available certificates of cast (heat) analyses of the
steels supplied for the construction of gas cylinders.
If check are required, they shall be carried out either on the specimens taken during the manufacture from
the material in the form as supplied by the steel maker to the cylinder manufacturer, or from finished
cylinders. In any check analysis, the maximum permissible deviation from the limits specified for the cast
analyses shall conform to the values specified in ISO 9329-4.
6.3 Heat treatment
6.3.1 The cylinder manufacturer shall certify the heat treatment process applied to the finished cylinders.
6.3.2 The finished cylinders made from the ferritic or martensitic steel categories shall be quenched and
tempered, except if they are cold worked (see 6.4).
6.3.3 For the ferritic and martensitic steels, the heat treatment process shall achieve the required
mechanical properties.
6.3.4 The actual temperature to which a type of steel is subjected to obtain a given tensile strength shall
not deviate by more than ±30 °C from the temperature specified by the cylinder manufacturer.
6.4 Cold working or cryoforming
Cold working or cryoforming is used to enhance the finished mechanical properties in certain stainless steel
materials.
For cylinders that are subjected to cold working or to the cryoforming process, all the heat treatment
requirements refer to the cylinder preform operations. Cold worked or cryoformed cylinders shall not be
subjected to any subsequent heat treatment.
6.5 Failure to meet test requirements
In the event of failure to meet the test requirements, retesting or reheat treatment and retesting shall be
carried out as follows to the satisfaction of the inspector.
a) If there is evidence of a fault in carrying out a test, or an error of measurement, a further test shall be
performed. If the result of this test is satisfactory, the first test shall be ignored.
b) If the test has been carried out in a satisfactory manner, the cause of test failure shall be identified.
1) If the failure is considered to be due to the heat treatment applied, the manufacturer may subject
all the cylinders implicated by the failure to only one further heat treatment, e.g. if the failure is
in a test representing the prototype or batch cylinders. Test failure shall require reheat treatment

of all the represented cylinders prior to retesting. This reheat treatment shall consist of either re-
tempering or complete reheat treatment. Whenever the cylinders are reheat-treated, the minimum
guaranteed wall thickness shall be maintained. Only the relevant prototype or batch tests needed
to prove the acceptability of the new batch shall be performed again. If one or more tests prove even
partially unsatisfactory, all the cylinders of the batch shall be rejected.
2) If the failure is due to a cause other than the heat treatment applied, all the cylinders with
imperfections shall be either rejected or repaired such that the repaired cylinders pass the test(s)
required for the repair. They shall then be reinstated as part of the original batch.
7 Design
7.1 General requirements
7.1.1 The calculation of the wall thickness of the pressure-containing parts shall be related to the
guaranteed minimum yield strength, R , of the material in the finished cylinder.
eg
7.1.2 Cylinders shall be designed with one or two openings along the central cylinder axis only.
7.1.3 The internal pressure upon which the calculation of wall thickness is based shall be the hydraulic
test pressure, p .
h
7.2 Design of cylindrical shell thickness
The guaranteed minimum thickness of the cylindrical shell, a′, shall not be less than the thickness calculated
using Formulae (1) and (2), and additionally, Formula (3) shall be satisfied.
 
10FR − 3p
D
eg h
 
a=−1 (1)
 
2 10FR
eg
 
where
a is the calculated minimum thickness, in millimetres, of the cylindrical shell;
D is the nominal outside diameter of the cylinder, in millimetres;
R is the minimum guaranteed value of the yield strength (see 7.1.1), in megapascals, for the
eg
finished cylinder;
p is the hydraulic test pressure, in bar, above atmospheric pressure.
h
06, 5
where the value of F (design stress factor) is the lesser of or 0,85.
RR
eg mg
R
eg
shall not exceed 0,90.
R
mg
where R minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder.
mg
The wall thickness shall also satisfy Formula (2):
D
a 1 (2)
≥+
with an absolute minimum of a = 1,5 mm.
The burst ratio shall be satisfied by test as given in Formula (3).
p /p ≥ 1,6 (3)
b h
NOTE It is generally assumed that p = 1,5 times working pressure for compressed gases for cylinders designed
h
and manufactured to conform with this document.
7.3 Design of convex ends (heads and bases)
7.3.1 When convex base ends (see Figure 1) are used, the thickness, b, at the centre of a convex end shall
be as follows: where the inside knuckle radius, r, is not less than 0,075 D, then:
— b ≥ 1,5 a for 0,40 > H/D ≥ 0,20;
— b ≥ a for H/D ≥ 0,40.
To obtain a satisfactory stress distribution in the region where the end joins the shell, any thickening of the
end, when required, shall be gradual from the point of juncture, particularly at the base. For the application
of this rule, the point of juncture between the shell and the end is defined by the horizontal lines indicating
dimension H in Figure 1.
Shape b) shall not be excluded from this requirement.
7.3.2 The cylinder manufacturer shall prove by the pressure cycling test detailed in 9.2.2 that the design
is satisfactory.
The shapes shown in Figure 1 are typical of convex heads and base ends. Shapes a), b), d) and e) are base
ends, and shapes c) and f) are heads.

a) b) c)
d) e) f)
Key
1 cylindrical part
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
b guaranteed minimum thickness, in millimetres, at the centre of a convex base
D nominal outside diameter of the cylinder, in millimetres
H outside height, in millimetres, of the domed part (convex head or base end)
r inside knuckle radius, in millimetres
Figure 1 — Typical convex ends
7.4 Design of the concave base ends
7.4.1 When concave base ends (see Figure 2) are used, the following design values are recommended:
— a ≥ 2 a;
— a ≥ 2 a;
— h ≥ 0,12 D;
— r ≥ 0,075 D.
where
a is the calculated minimum thickness, in millimetres, of the cylindrical shell;
a guaranteed minimum thickness, in millimetres, of a concave base at the knuckle
a guaranteed minimum thickness, in millimetres, at the centre of a concave base
D is the nominal outside diameter of the cylinder, in millimetres;
h outside depth (concave base end), in millimetres
r inside knuckle radius, in millimetres
The design drawing shall at least show values for a , a , h and r.
1 2
To obtain a satisfactory stress distribution, the thickness of the cylinder shall increase progressively in the
transition region between the cylindrical part and the base.
7.4.2 The cylinder manufacturer shall in any case prove by the application of the pressure cycling test
detailed in 9.2.2 that the design is satisfactory.

Key
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
a guaranteed minimum thickness, in millimetres, of a concave base at the knuckle
a guaranteed minimum thickness, in millimetres, at the centre of a concave base
D nominal outside diameter of the cylinder, in millimetres
r inside knuckle radius, in millimetres
Figure 2 — Concave base ends
7.5 Neck design
7.5.1 The external diameter and thickness of the formed neck end of the cylinder shall be adequate for the
torque applied in fitting the valve to the cylinder. The torque can vary according to the valve type, diameter
of the thread, the form of the thread and the sealant used in the fitting of the valve.
NOTE For information on torques, see ISO 13341.
7.5.2 In establishing the minimum thickness, the thickness of the wall in the cylinder neck shall prevent
permanent expansion of the neck during the initial and subsequent fittings of the valve into the cylinder
without support of an attachment. The external diameter and thickness of the formed neck end of the
cylinder shall not be damaged (no permanent expansion or crack) by the application of the maximum torque
required to fit the valve to the cylinder (see ISO 13341) and the stresses when the cylinder is subjected to its
test pressure. In specific cases (e.g. very thin-walled cylinders) where these stresses cannot be supported
by the neck itself, the neck may be designed to require reinforcement, such as a neck ring or shrunk on
collar, provided the reinforcement material and dimensions are clearly specified by the manufacturer and
this configuration is part of the type approval procedure (see 9.2.4 and 9.2.5).
7.6 Foot rings
When a foot ring is provided, it shall be made of material compatible with that of the cylinder. The shape
should preferably be cylindrical and shall give the cylinder stability. The foot ring shall be secured to the
cylinder by a method other than welding, brazing or soldering. Any gaps which can form water traps shall be
sealed by a method other than welding, brazing or soldering.
7.7 Neck rings
When a neck ring is provided, it shall made of a material compatible with that of the cylinder and shall be
securely attached by a method other than welding, brazing or soldering.
The axial load to remove the neck ring shall be greater than 10 times the weight of the empty cylinder but
not less than 1 000 N, and that the torque to turn the neck ring shall be greater than 100 Nm.

7.8 Design drawing
A fully dimensioned drawing shall be prepared which includes the specification of the material and details
relevant to the design of the permanent fittings. Dimensions of non-safety related fittings can be agreed
between the customer and manufacturer and need not be shown on the design drawing.
8 Construction and workmanship
8.1 General
The cylinder shall be produced by:
a) forging or drop forging from a solid ingot or billet;
b) manufacturing from seamless tube;
c) pressing from a flat plate;
d) cold working or cryoforming preform.
Metal shall not be added in the process of closure of the end. Manufacturing defects shall not be corrected by
plugging of bases (e.g. addition of metal by welding).
8.2 Wall thickness
During production, each cylinder or semi-finished shell shall be examined for thickness. The wall thickness
at any point shall be not less than the minimum thickness specified.
8.3 Surface imperfections
The internal and external surfaces of the finished cylinder shall be free from imperfections which could
adversely affect the safe working of the cylinder. Imperfections shall be evaluated as specified in Annex A.
8.4 Ultrasonic examination
8.4.1 After completion of the final heat treatment and cold working and after the final cylindrical wall
thickness has been achieved, each cylinder shall be ultrasonically examined for internal, external and sub-
surface imperfections in accordance with Annex B.
8.4.2 In addition to the ultrasonic examination as specified in 8.4.1, the cylindrical area to be closed (which
creates the shoulder and in case of cylinders made from tube, also the base) shall be ultrasonically examined
prior to the forming process to detect any defects that after closure could be positioned in the cylinder ends.
In case of cylinders produced from tubes (provided that the thickness of the tube is unaltered), this
additional test is not required if the tube is 100 % ultrasonic tested before closure of the ends in accordance
with Annex B.
The test shall be performed as close as possible to the open end of the shell.
The untested area shall extend to a length of not more than 40 mm from the open end of the shell.
In both 8.4.1 and 8.4.2, it is not required to perform the ultrasonic examination for small cylinders with a
cylindrical length of less than 200 mm or where p × V < 600 bar. l (for R ≥ 650 MPa) or p × V < 1 200 bar.
h ma h
l (for R < 650 MPa).
ma
8.5 Out-of-roundness
The out-of-roundness of the cylindrical shell, i.e. the difference between the maximum and minimum outside
diameters at the same cross-section, shall not exceed 2 % of the mean of these diameters.
For cold stretch and cryoformed cylinders, higher values are acceptable provided they are validated by the
pressure cycling test and the maximum shall be specified on the approved design drawing.
8.6 Mean diameter
The mean external diameter of the cylindrical part outside the transition zones on a cross-section shall not
deviate by more than ±1 % from the nominal design diameter.
For cold stretch and cryoformed cylinders, higher values are acceptable provided they are validated by the
pressure cycling test and the maximum shall be specified on the approved design drawing.
8.7 Straightness
The maximum deviation of the cylindrical part of the shell from a straight line
...


ISO/TC 58/SC 3
Secretariat: BSI
Date: 2025-07-2310-22
Gas cylinders — Design, construction and testing of refillable
seamless steel gas cylinders and tubes — Part 4: Stainless steel
cylinders with an R value of less than 1 100 MPa
m
Part 4:
Stainless steel cylinders with an R m value of less than 1 100 MPa
Bouteilles à gaz — Conception, construction et essais des bouteilles à gaz et des tubes rechargeables en acier
sans soudure — Partie 4: Bouteilles en acier inoxydable avec une valeur R inférieure à 1 100 MPa
m
Partie 4: Bouteilles en acier inoxydable ayant une valeur de Rm inférieure à 1 100 MPa
FDIS stage
MUST BE USED
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication
may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO
at the address below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
Fax: + 41 22 749 09 47
E-mail: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
Contents
MUST BE USED
FOR FINAL
iii
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
Contents
Foreword . vi
Introduction . vii
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Symbols . 3
5 Inspection and testing . 4
6 Materials . 4
6.1 General requirements . 4
6.2 Controls on chemical composition . 5
6.3 Heat treatment . 5
6.4 Cold working or cryoforming . 5
6.5 Failure to meet test requirements . 5
7 Design . 6
7.1 General requirements . 6
7.2 Design of cylindrical shell thickness . 6
7.3 Design of convex ends (heads and bases) . 7
7.4 Design of the concave base ends . 10
7.5 Neck design . 11
7.6 Foot rings . 11
7.7 Neck rings . 12
7.8 Design drawing . 12
8 Construction and workmanship . 12
8.1 General . 12
8.2 Wall thickness . 12
8.3 Surface imperfections . 12
8.4 Ultrasonic examination . 12
8.5 Out-of-roundness . 13
8.6 Mean diameter . 13
8.7 Straightness . 13
8.8 Verticality and stability . 13
8.9 Neck threads . 15
9 Type approval procedure . 15
9.1 General requirements . 15
9.2 Prototype test . 16
9.3 Type approval certificate . 20
9.4 Specific type approval/production tests for cylinders ordered in quantities below 200 . 20
10 Batch tests . 20
10.1 General requirements . 20
10.2 Tensile test . 24
10.3 Impact test . 25
10.4 Hydraulic burst test . 29
10.5 Intergranular corrosion test . 34
11 Tests/examinations on every cylinder . 34
11.1 General . 34
11.2 Hydraulic test . 35
iv
11.3 Hardness test . 35
11.4 Leak test . 35
11.5 Water -capacity check . 36
12 Certification . 36
13 Marking . 36
Annex A (normative) Description and evaluation of manufacturing imperfections and
conditions for rejection of seamless steel gas cylinders at the time of final inspection by
the manufacturer . 37
Annex B (normative) Ultrasonic examination . 61
Annex C (informative) Example of type approval certificate . 71
Annex D (informative) Example of acceptance certificate . 73
Annex E (informative) Example of shear strength calculation for parallel threads . 76
Bibliography . 78

MUST BE USED
FOR FINAL
v
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out through
ISO technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of
ISO documents should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights
identified during the development of the document will be in the Introduction and/or on the ISO list of patent
declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 58, Gas cylinders, Subcommittee SC 3, Cylinder
design, in collaboration with the European Committee for Standardization (CEN) Technical Committee
CEN/TC 23, Transportable gas cylinders, in accordance with the Agreement on technical cooperation between
ISO and CEN (Vienna Agreement).
This third edition cancels and replaces the second edition (ISO 9809-4:2021), which has been technically
revised.
The main changes are as follows:
— — modification of definition in Error! Reference source not found.3.8;;
— — modification of 0Formula 1 in 7.27.2;;
— — bend test and flattening test moved under 9Clause 9 (prototype tests);
— — clarification of shear stress calculation for parallel threads;
— — clarification of 9.49.4;;
— — update of Bibliography.
A list of all parts in the ISO 9809 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
vi
Introduction
This document provides a specification for the design, construction, inspection and testing of a seamless
stainless steel cylinder. The objective is to balance the design and economic efficiency against international
acceptance and universal utility.
ISO 9809 (all parts) aims to eliminate the concern about climate, duplicate inspections and restrictions
because of the lack of definitive International Standards.
[
This document has been written so that it is suitable to be referenced in the UN Model Regulations Error!
[1] ]
Reference source not found. . .
MUST BE USED
FOR FINAL
vii
DRAFT
DRAFT International Standard ISO/FDIS 9809-4:2025(en)

Gas cylinders — Design, construction and testing of refillable seamless
steel gas cylinders and tubes — Part 4: Stainless steel cylinders with
an R value of less than 1 100 MPa
m
Part 4:
Stainless steel cylinders with an R m value of less than 1 100 MPa
1 Scope
This document specifies the minimum requirements for the materials, design, construction and workmanship,
manufacturing processes, examinations and testing at time of manufacture for refillable, seamless, stainless
steel gas cylinders with water capacities up to and including 150 l.
It is applicable to cylinders for compressed, liquefied and dissolved gases with a maximum actual tensile
strength, R , of less than 1 100 MPa.
ma
NOTE If so desired, cylinders of water capacity between 150 l and 450 l can be manufactured to be in full
conformance to this document.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.
ISO 148--1, Metallic materials — Charpy pendulum impact test — Part 1: Test method
ISO 3651--2, Determination of resistance to intergranular corrosion of stainless steels — Part 2:
Ferritic,austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric
acid
ISO 6506--1, Metallic materials — Brinell hardness test — Part 1: Test method
ISO 6508--1, Metallic materials — Rockwell hardness test — Part 1: Test method
ISO 6892--1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature
ISO 9328--1, Steel flat products for pressure purposes — Technical delivery conditions — Part 1: General
requirements
ISO 9329--4, Seamless steel tubes for pressure purposes — Technical delivery conditions — Part 4: Austenitic
stainless steels
ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel
ISO 10286, Gas cylinders — Vocabulary
ISO 13341, Gas cylinders — Fitting of valves to gas cylinders
ISO/DISFDIS 9809-4:2023(E2025(en)
ISO 13769, Gas cylinders — Stamp marking
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 10286 and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— — ISO Online browsing platform: available at https://www.iso.org/obp
— — IEC Electropedia: available at http://www.electropedia.org/
3.1 3.1
batch
quantity of up to 200 cylinders, plus cylinders for destructive testing of the same nominal diameter, thickness,
length and design made successively on the same equipment, from the same cast of steel, and subjected to the
same heat treatment for the same duration of time
3.2 3.2
burst pressure
p
b
highest pressure reached in a cylinder during a burst test
3.3 3.3
cold working
process in which a cylinder is subjected to a pressure higher than the cylinder test pressure (Error! Reference
source not found.(3.11)) to increase the yield strength (Error! Reference source not found.(3.12)) of the
steel
3.4 3.4
cryoforming
process where the cylinder is subjected to a controlled low-temperature deformation treatment that results
in a permanent increase in strength
3.5 3.5
design stress factor
F
ratio of the equivalent wall stress at test pressure, p , (Error! Reference source not found.(3.11)) to
h
guaranteed minimum yield strength, R
eg
3.6 3.6
quenching
hardening heat treatment in which a cylinder, which has been heated to a uniform temperature is cooled
rapidly on a suitable medium
3.7 3.7
reject
action to set aside a cylinder (level 2 or level 3) that is not allowed to go into service
3.8 3.8
rendered unserviceable
result of a treatment to a piece of equipment that renders it impossible to enter into service
Note 1 to entry: Examples for acceptable methods to render cylinders unserviceable can be found in ISO 18119.
3.9 3.9
repair
action to return a rejected cylinder to a level 1 condition
3.10 3.10
tempering
toughening heat treatment which follows quenching (Error! Reference source not found.(3.6),), in which
the cylinder is heated to a uniform temperature below the lower critical point (Ac ) of the steel
3.11 3.11
test pressure
p
h
required pressure applied during a pressure test
Note 1 to entry: Test pressure is used for the cylinder wall thickness calculation.
3.12 3.12
yield strength
stress value corresponding to the 0,2 % proof stress or, for austenitic steels in the solution-annealed condition,
1 % proof stress
3.13 3.13
working pressure
settled pressure of a compressed gas at a uniform reference temperature of 15 °C in a full gas cylinder
4 Symbols
A percentage elongation after fracture
a calculated minimum thickness, in millimetres, of the cylindrical shell
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
a guaranteed minimum thickness, in millimetres, of a concave base at the knuckle (see 0Figure 2))
a guaranteed minimum thickness, in millimetres, at the centre of a concave base (see 0Figure 2))
b guaranteed minimum thickness, in millimetres, at the centre of a convex base (see 0Figure 1))
c maximum permissible deviation, in millimetres, of burst profile for quenched and tempered cylinders
(see 0Figure 11))
c maximum permissible deviation, in millimetres, of the burst profile for cryoformed or solution-
annealed cylinders with less than 7,5 mm wall thickness (see 0Figure 12))
D nominal outside diameter of the cylinder, in millimetres (see 0Figure 1))
D diameter, in millimetres, of former (see 0Figure 6))
f
F design stress factor (variable)
H outside height, in millimetres, of the domed part (convex head or base end) (see 0Figure 1))
h outside depth (concave base end), in millimetres (see 0Figure 2))
L original gauge length, in millimetres, as defined in ISO 6892-1 (see 0Figure 5))
o
l overall length of the cylinder, in millimetres (see 0Figure 3))
n ratio of the diameter of the bend test former to the actual thickness of test piece, t
MUST BE USED
p measured burst pressure, in bar, above atmospheric pressure
b
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
NOTE  1 bar = 10 Pa = 0,1 MPa.
p hydraulic test pressure, in bar, above atmospheric pressure
h
p observed pressure when the cylinder starts yielding during the hydraulic burst test, in bar, above
y
atmospheric pressure
r inside knuckle radius, in millimetres (see 0Figures 1 and 02))
R actual value of the yield strength, in megapascals, as determined by the tensile test (see 10.210.2))
ea
R minimum guaranteed value of the yield strength (see 7.1.17.1.1),), in megapascals, for the finished
eg
cylinder
R actual value of the tensile strength, in megapascals, as determined by the tensile test (see 10.210.2))
ma
R minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder
mg
S original cross-sectional area of the tensile test piece, in square millimetres, in accordance with
o
ISO 6892-1
t actual thickness of the test specimen, in millimetres
t average cylinder wall thickness at the position of testing during the flattening test, in millimetres
m
u ratio of the distance between the knife edges or platens in the flattening test to the average cylinder
wall thickness at the position of the test
V water capacity of the cylinder, in litres
w width, in millimetres, of the tensile test piece (see 0Figure 5))
5 Inspection and testing
For assessment of conformity to this document, users shall be aware of applicable country-specific regulations
To ensure that cylinders conform to this document, they shall be subject to inspection and testing in
accordance with 9Clauses 9, 10, 10 and 1111.
Tests and examinations performed to demonstrate compliance with this document shall be conducted using
instruments calibrated before being put into service and thereafter according to an established programme.
6 Materials
6.1 General requirements
6.1.1 6.1.1 Materials for the manufacture of gas cylinders shall fall within one of the following categories:
a) a) internationally recognized cylinder steels;
b) b) nationally recognized cylinder steels;
c) c) new cylinder steels resulting from technical progress.
For all categories, the relevant conditions specified in 6.26.2 and 6.36.3 shall be satisfied.
6.1.2 6.1.2 There is a risk of intergranular corrosion in austenitic and duplex stainless steels resulting
from hot processing which can cause sensitization of the steel (e.g. chromium depletion in the grain boundary).
Intergranular corrosion testing shall be carried out for such materials in accordance with 10.6.
6.1.3 6.1.3 The cylinder manufacturer shall establish means to identify the cylinders with the cast of steel
from which they are made.
6.1.4 6.1.4 Grades of steel used for the cylinder manufacture shall be compatible with the intended gas
service, e.g. corrosive gases and embrittling gases (see ISO 11114-1).
6.1.5 6.1.5 Some grades of stainless steel can be susceptible to environmental stress corrosion cracking.
Special precautions shall be taken in such cases, such as appropriate coating.
6.1.6 6.1.6 Some grades of stainless steel can be susceptible to phase transformation at low temperatures
resulting in a brittle alloy. Special precautions shall be taken in such cases, i.e. not using the cylinder below the
minimum acceptable temperature.
6.2 Controls on chemical composition
6.2.1 6.2.1 The following are the four broad categories of stainless steels:
— — ferritic;
— — martensitic;
— — austenitic;
— — austenitic/ferritic (duplex).
Recognized steels are listed in ISO 15510. Other grades of stainless steel can also be used provided that they
fulfil all the requirements of this document.
6.2.2 6.2.2 The cylinder manufacturer shall obtain and make available certificates of cast (heat) analyses
of the steels supplied for the construction of gas cylinders.
If check are required, they shall be carried out either on the specimens taken during the manufacture from the
material in the form as supplied by the steel maker to the cylinder manufacturer, or from finished cylinders.
In any check analysis, the maximum permissible deviation from the limits specified for the cast analyses shall
conform to the values specified in ISO 9329-4.
6.3 Heat treatment
6.3.1 6.3.1 The cylinder manufacturer shall certify the heat treatment process applied to the finished
cylinders.
6.3.2 6.3.2 The finished cylinders made from the ferritic or martensitic steel categories shall be quenched
and tempered, except if they are cold worked (see 6.46.4).).
6.3.3 6.3.3 For the ferritic and martensitic steels, the heat treatment process shall achieve the required
mechanical properties.
6.3.4 6.3.4 The actual temperature to which a type of steel is subjected to obtain a given tensile strength
shall not deviate by more than ±30 °C from the temperature specified by the cylinder manufacturer.
6.4 Cold working or cryoforming
Cold working or cryoforming is used to enhance the finished mechanical properties in certain stainless steel
materials.
For cylinders that are subjected to cold working or to the cryoforming process, all the heat treatment
requirements refer to the cylinder preform operations. Cold worked or cryoformed cylinders shall not be
subjected to any subsequent heat treatment.
MUST BE USED
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
6.5 Failure to meet test requirements
In the event of failure to meet the test requirements, retesting or reheat treatment and retesting shall be
carried out as follows to the satisfaction of the inspector.
a) a) If there is evidence of a fault in carrying out a test, or an error of measurement, a further test
shall be performed. If the result of this test is satisfactory, the first test shall be ignored.
b) b) If the test has been carried out in a satisfactory manner, the cause of test failure shall be
identified.
1) 1) If the failure is considered to be due to the heat treatment applied, the manufacturer may
subject all the cylinders implicated by the failure to only one further heat treatment, e.g. if the failure
is in a test representing the prototype or batch cylinders. Test failure shall require reheat treatment
of all the represented cylinders prior to retesting. This reheat treatment shall consist of either re-
tempering or complete reheat treatment. Whenever the cylinders are reheat-treated, the minimum
guaranteed wall thickness shall be maintained. Only the relevant prototype or batch tests needed to
prove the acceptability of the new batch shall be performed again. If one or more tests prove even
partially unsatisfactory, all the cylinders of the batch shall be rejected.
2) 2) If the failure is due to a cause other than the heat treatment applied, all the cylinders with
imperfections shall be either rejected or repaired such that the repaired cylinders pass the test(s)
required for the repair. They shall then be reinstated as part of the original batch.
7 Design
7.1 General requirements
7.1.1 7.1.1 The calculation of the wall thickness of the pressure-containing parts shall be related to the
guaranteed minimum yield strength, R , of the material in the finished cylinder.
eg
7.1.2 7.1.2 Cylinders shall be designed with one or two openings along the central cylinder axis only.
7.1.3 7.1.3 The internal pressure upon which the calculation of wall thickness is based shall be the
hydraulic test pressure, p .
h
7.2 Design of cylindrical shell thickness
The guaranteed minimum thickness of the cylindrical shell, a′, shall not be less than the thickness calculated
using 0Formulae (1) and 0(2),, and additionally, 0Formula (3) shall be satisfied.
(1)
𝐷 10𝐹𝑅 −√3𝑝
eg h
𝑎 = (1 − √ ) (1)
2 10𝐹𝑅
eg
where
a is the calculated minimum thickness, in millimetres, of the cylindrical shell;
D is the nominal outside diameter of the cylinder, in millimetres;
R is the minimum guaranteed value of the yield strength (see 7.1.1
eg
a is the calculated minimum thickness, in millimetres, of the cylindrical shell;
D is the nominal outside diameter of the cylinder, in millimetres;
R is the minimum guaranteed value of the yield strength (see 7.1.1), in megapascals, for the
eg
finished cylinder;
p is the hydraulic test pressure, in bar, above atmospheric pressure.
h
), in megapascals, for the finished cylinder;
p is the hydraulic test pressure, in bar, above atmospheric pressure.
h
0,65
where the value of F (design stress factor) is the lesser of or 0,85.
𝑅 ⁄𝑅
𝑒𝑔 𝑚𝑔
𝑅
𝑒𝑔
shall not exceed 0,90.
𝑅
𝑚𝑔
where
R minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder.
mg
where R minimum guaranteed value of the tensile strength, in megapascals, for the finished cylinder.
mg
The wall thickness shall also satisfy 0Formula (2)::
𝐷
𝑎 ≥ + 1 (2)
with an absolute minimum of a = 1,5 mm.
The burst ratio shall be satisfied by test as given in 0Formula (3).
p /p ≥ 1,6 (3)
b h
NOTE It is generally assumed that p = 1,5 times working pressure for compressed gases for cylinders designed and
h
manufactured to conform with this document.
7.3 Design of convex ends (heads and bases)
7.3.1 7.3.1 When convex base ends (see 0Figure 1)) are used, the thickness, b, at the centre of a convex
end shall be as follows: where the inside knuckle radius, r, is not less than 0,075 D, then:
— — b ≥ 1,5 a for 0,40 > H/D ≥ 0,20;
— — b ≥ a for H/D ≥ 0,40.
To obtain a satisfactory stress distribution in the region where the end joins the shell, any thickening of the
end, when required, shall be gradual from the point of juncture, particularly at the base. For the application of
this rule, the point of juncture between the shell and the end is defined by the horizontal lines indicating
dimension H in 0Figure 1.
Shape b) shall not be excluded from this requirement.
7.3.2 7.3.2 The cylinder manufacturer shall prove by the pressure cycling test detailed in 9.2.29.2.2 that
the design is satisfactory.
The shapes shown in 0Figure 1 are typical of convex heads and base ends. Shapes a), b), d) and e) are base
ends, and shapes c) and f) are heads.
MUST BE USED
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)

a) b) c)
d) e) f)
Key
1 cylindrical part
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
b guaranteed minimum thickness, in millimetres, at the centre of a convex base
D nominal outside diameter of the cylinder, in millimetres
H outside height, in millimetres, of the domed part (convex head or base end)
r inside knuckle radius, in millimetres
1 cylindrical part
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
MUST BE USED
b guaranteed minimum thickness, in millimetres, at the centre of a convex base
D nominal outside diameter of the cylinder, in millimetres
H outside height, in millimetres, of the domed part (convex head or base end)
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
r inside knuckle radius, in millimetres
Figure 1 — Typical convex ends
7.4 Design of the concave base ends
7.4.1 7.4.1 When concave base ends (see 0Figure 2)) are used, the following design values are
recommended:
— — a ≥ 2 a;
— — a ≥ 2 a;
— — h ≥ 0,12 D;
— — r ≥ 0,075 D.
where
a is the calculated minimum thickness, in millimetres, of the cylindrical shell;
a guaranteed minimum thickness, in millimetres, of a concave base at the knuckle
a guaranteed minimum thickness, in millimetres, at the centre of a concave base
D is the nominal outside diameter of the cylinder, in millimetres;
h outside depth (concave base end), in millimetres
r inside knuckle radius, in millimetres
The design drawing shall at least show values for a , a , h and r.
1 2
To obtain a satisfactory stress distribution, the thickness of the cylinder shall increase progressively in the
transition region between the cylindrical part and the base.
7.4.2 7.4.2 The cylinder manufacturer shall in any case prove by the application of the pressure cycling
test detailed in 9.2.29.2.2 that the design is satisfactory.

Key
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
a1 guaranteed minimum thickness, in millimetres, of a concave base at the knuckle
a2 guaranteed minimum thickness, in millimetres, at the centre of a concave base
D nominal outside diameter of the cylinder, in millimetres
r inside knuckle radius, in millimetres
a′ guaranteed minimum thickness, in millimetres, of the cylindrical shell
a1 guaranteed minimum thickness, in millimetres, of a concave base at the knuckle
a2 guaranteed minimum thickness, in millimetres, at the centre of a concave base
D nominal outside diameter of the cylinder, in millimetres
r inside knuckle radius, in millimetres
Figure 2 — Concave base ends
7.5 Neck design
7.5.1 7.5.1 The external diameter and thickness of the formed neck end of the cylinder shall be adequate
for the torque applied in fitting the valve to the cylinder. The torque can vary according to the valve type,
diameter of the thread, the form of the thread and the sealant used in the fitting of the valve.
NOTE For information on torques, see ISO 13341.
7.5.2 7.5.2 In establishing the minimum thickness, the thickness of the wall in the cylinder neck shall
prevent permanent expansion of the neck during the initial and subsequent fittings of the valve into the
cylinder without support of an attachment. The external diameter and thickness of the formed neck end of the
cylinder shall not be damaged (no permanent expansion or crack) by the application of the maximum torque
required to fit the valve to the cylinder (see ISO 13341) and the stresses when the cylinder is subjected to its
test pressure. In specific cases (e.g. very thin-walled cylinders) where these stresses cannot be supported by
the neck itself, the neck may be designed to require reinforcement, such as a neck ring or shrunk on collar,
provided the reinforcement material and dimensions are clearly specified by the manufacturer and this
configuration is part of the type approval procedure (see 9.2.49.2.4 and 9.2.59.2.5).).
7.6 Foot rings
When a foot ring is provided, it shall be made of material compatible with that of the cylinder. The shape
should preferably be cylindrical and shall give the cylinder stability. The foot ring shall be secured to the
cylinder by a method other than welding, brazing or soldering. Any gaps which can form water traps shall be
sealed by a method other than welding, brazing or soldering.
MUST BE USED
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)
7.7 Neck rings
When a neck ring is provided, it shall made of a material compatible with that of the cylinder and shall be
securely attached by a method other than welding, brazing or soldering.
The axial load to remove the neck ring shall be greater than 10 times the weight of the empty cylinder but not
less than 1 000 N, and that the torque to turn the neck ring shall be greater than 100 Nm.
7.8 Design drawing
A fully dimensioned drawing shall be prepared which includes the specification of the material and details
relevant to the design of the permanent fittings. Dimensions of non-safety related fittings can be agreed
between the customer and manufacturer and need not be shown on the design drawing.
8 Construction and workmanship
8.1 General
The cylinder shall be produced by:
a) a) forging or drop forging from a solid ingot or billet;
b) b) manufacturing from seamless tube;
c) c) pressing from a flat plate;
d) d) cold working or cryoforming preform.
Metal shall not be added in the process of closure of the end. Manufacturing defects shall not be corrected by
plugging of bases (e.g. addition of metal by welding).
8.2 Wall thickness
During production, each cylinder or semi-finished shell shall be examined for thickness. The wall thickness at
any point shall be not less than the minimum thickness specified.
8.3 Surface imperfections
The internal and external surfaces of the finished cylinder shall be free from imperfections which could
adversely affect the safe working of the cylinder. Imperfections shall be evaluated as specified in
Annex AAnnex A. .
8.4 Ultrasonic examination
8.4.1 8.4.1 After completion of the final heat treatment and cold working and after the final cylindrical
wall thickness has been achieved, each cylinder shall be ultrasonically examined for internal, external and sub-
surface imperfections in accordance with Annex BAnnex B.
8.4.2 8.4.2 In addition to the ultrasonic examination as specified in 8.4.18.4.1,, the cylindrical area to be
closed (which creates the shoulder and in case of cylinders made from tube, also the base) shall be
ultrasonically examined prior to the forming process to detect any defects that after closure could be
positioned in the cylinder ends.
In case of cylinders produced from tubes (provided that the thickness of the tube is unaltered), this additional
test is not required if the tube is 100 % ultrasonic tested before closure of the ends in accordance with
Annex BAnnex B.
The test shall be performed as close as possible to the open end of the shell.
The untested area shall extend to a length of not more than 40 mm from the open end of the shell.
In both 8.4.18.4.1 and 8.4.28.4.2,, it is not required to perform the ultrasonic examination for small cylinders
with a cylindrical length of less than 200 mm or where p × V < 600 bar. l (for R ≥ 650 MPa) or
h ma
p × V < 1 200 bar. l (for R < 650 MPa).
h ma
8.5 Out-of-roundness
The out-of-roundness of the cylindrical shell, i.e. the difference between the maximum and minimum outside
diameters at the same cross-section, shall not exceed 2 % of the mean of these diameters.
For cold stretch and cryoformed cylinders, higher values are acceptable provided they are validated by the
pressure cycling test and the maximum shall be specified on the approved design drawing.
8.6 Mean diameter
The mean external diameter of the cylindrical part outside the transition zones on a cross-section shall not
deviate by more than ±1 % from the nominal design diameter.
For cold stretch and cryoformed cylinders, higher values are acceptable provided they are validated by the
pressure cycling test and the maximum shall be specified on the approved design drawing.
8.7 Straightness
The maximum deviation of the cylindrical part of the shell from a straight line shall not exceed 3 mm per metre
in length (see footnote 'b' in 0Figure 3).).
For cold stretch and cryoformed cylinders, higher values can be used provided that they are acceptable for the
intended application.
8.8 Verticality and stability
For a cylinder designed to stand on its base, the deviation from vertical shall not exceed 10 mm per metre in
length (l ) (see footnote 'a' in 0Figure 3).). The outer diameter of the surface in contact with the ground is
recommended to be greater than 75 % of the nominal outside diameter.
For cold stretch and cryoformed cylinders, higher values for deviation from vertical can be used provided that
they are acceptable for the intended application.
MUST BE USED
FOR FINAL
DRAFT
ISO/DISFDIS 9809-4:2023(E2025(en)

a
≤ 0,01 × l2 (see 8.8).
b
≤ 0,003 × l (see 8.7
a
≤ 0,01 × l (see 8.8).
b
≤ 0,003 × l (see 8.7).
).
Figure 3 — Deviation of the cylindrical part of the shell from a straight line and from vertical
8.9 Neck threads
The internal neck threads shall conform to a recognized standard agreed between the parties to permit the
use of a corresponding valve thus minimizing neck stresses following the valve torqueing operation. Internal
neck threads shall be checked using gauges corresponding to the agreed neck thread or by an alternative
method agreed between the parties.
EXAMPLE Where the neck thread is specified to be in accordance with ISO 11363-1, the corresponding gauges are
specified in ISO 11363-2.
Particular care shall be taken to ensure that neck threads are accurately cut, are of full form and are free from
any sharp profiles, e.g. burrs.
9 Type approval procedure
9.1 General requirements
A technical specification of each new design of cylinder or cylinder family as specified in f), including design
drawing, design calculations, steel details, manufacturing process and heat treatment details, shall be
submitted by the manufacturer to the inspector. The type approval tests detailed in 9.29.2 shall be carried out
on each new design under the supervision of the inspector.
A cylinder shall be considered to be of a new design, compared with an existing approved design, when at least
one of the following applies:
a) a) it is manufactured in a different factory;
b) b) it is manufactured by a different process (see 8.18.1);); this includes the case when major
process changes are made during the production period, e.g. end forging to spinning, change in heat
treatment process;
c) c) it is manufactured from a steel of different specified chemical composition range from that
specified in 6.26.2;;
d) d) it is given a different heat treatment beyond the limits stipulated in 6.36.3 and 6.46.4;;
e) e) the base or the base profile has changed, e.g. concave, convex, hemispherical, or the base
thickness/cylinder diameter ratio has changed;
f) f) the overall length of the cylinder has increased by more than 50 % (cylinders with a
length/diameter ratio less than 3 shall not be used as reference cylinders for any new design with this
ratio greater than 3);
g) g) the nominal outside diameter has changed;
h) h) the guaranteed minimum thickness has changed;
i) i) the hydraulic test pressure, p , has been increased (where a cylinder is to be used for lower-
h
pressure duty than that for which design approval has been gi
...


PROJET FINAL
Norme
internationale
ISO/TC 58/SC 3
Bouteilles à gaz — Conception,
Secrétariat: BSI
construction et essais des bouteilles
Début de vote:
à gaz et des tubes rechargeables en
2025-11-24
acier sans soudure —
Vote clos le:
2026-01-19
Partie 4:
Bouteilles en acier inoxydable ayant
une valeur de R inférieure à 1 100
m
MPa
Gas cylinders — Design, construction and testing of refillable
seamless steel gas cylinders and tubes —
Part 4: Stainless steel cylinders with an R value of less than 1
m
100 MPa
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
NORMES POUVANT
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
Numéro de référence
PROJET FINAL
Norme
internationale
ISO/TC 58/SC 3
Bouteilles à gaz — Conception,
Secrétariat: BSI
construction et essais des bouteilles
Début de vote:
à gaz et des tubes rechargeables en
2025-11-24
acier sans soudure —
Vote clos le:
2026-01-19
Partie 4:
Bouteilles en acier inoxydable ayant
inférieure à 1 100
une valeur de R
m
MPa
Gas cylinders — Design, construction and testing of refillable
seamless steel gas cylinders and tubes —
Part 4: Stainless steel cylinders with an R value of less than 1
m
100 MPa
LES DESTINATAIRES DU PRÉSENT PROJET SONT
INVITÉS À PRÉSENTER, AVEC LEURS OBSERVATIONS,
NOTIFICATION DES DROITS DE PROPRIÉTÉ DONT ILS
AURAIENT ÉVENTUELLEMENT CONNAISSANCE ET À
FOURNIR UNE DOCUMENTATION EXPLICATIVE.
DOCUMENT PROTÉGÉ PAR COPYRIGHT
OUTRE LE FAIT D’ÊTRE EXAMINÉS POUR
ÉTABLIR S’ILS SONT ACCEPTABLES À DES FINS
© ISO 2025 INDUSTRIELLES, TECHNOLOGIQUES ET COM-MERCIALES,
AINSI QUE DU POINT DE VUE DES UTILISATEURS, LES
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
PROJETS DE NORMES
TRAITEMENT PARALLÈLE ISO/CEN
INTERNATIONALES DOIVENT PARFOIS ÊTRE CONSIDÉRÉS
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
DU POINT DE VUE DE LEUR POSSI BILITÉ DE DEVENIR DES
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
NORMES POUVANT
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
SERVIR DE RÉFÉRENCE DANS LA RÉGLEMENTATION
NATIONALE.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse Numéro de référence
ii
Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Symboles . 3
5 Contrôles et essais . 4
6 Matériaux . 4
6.1 Exigences générales .4
6.2 Contrôles de la composition chimique .5
6.3 Traitement thermique .5
6.4 Formage à froid ou cryoformage .6
6.5 Non-respect des exigences relatives aux essais .6
7 Conception . 6
7.1 Exigences générales .6
7.2 Conception de l’épaisseur de l’enveloppe cylindrique .6
7.3 Conception des extrémités convexes (ogives et fonds) .7
7.4 Conception des fonds concaves .9
7.5 Conception du goulot .10
7.6 Frettes de pied .10
7.7 Collerettes .10
7.8 Plan de conception .11
8 Construction et exécution .11
8.1 Généralités .11
8.2 Épaisseur de la paroi .11
8.3 Imperfections de surface .11
8.4 Contrôle ultrasons .11
8.5 Ovalisation . 12
8.6 Diamètre moyen . 12
8.7 Rectitude . 12
8.8 Verticalité et stabilité . 12
8.9 Filetage du goulot . 13
9 Procédure d’approbation de type .13
9.1 Exigences générales . 13
9.2 Essai de prototype.14
9.2.1 Exigences générales .14
9.2.2 Essai de cyclage en pression . 15
9.2.3 Vérification du fond . 15
9.2.4 Essai de pliage et essai d’aplatissement .16
9.2.5 Essai de serrage pour filtrage conique uniquement .17
9.2.6 Calcul de la contrainte de cisaillement pour les filetages parallèles .17
9.3 Certificat d’approbation de type .18
9.4 Essais d’approbation de type/de production spécifiques pour les bouteilles
commandées en quantités inférieures à 200.18
10 Essais par lot . 19
10.1 Exigences générales .19
10.2 Essai de traction . 20
10.3 Essai de résistance aux chocs .21
10.4 Essai de rupture hydraulique . 23
10.4.1 Installation d’essai . 23
10.4.2 Conditions d’essai .24

iii
10.4.3 Interprétation des résultats d’essai . 25
10.5 Essai de corrosion intergranulaire . 26
11 Essais/examens sur chaque bouteille .26
11.1 Généralités . 26
11.2 Essai hydraulique .27
11.2.1 Essai de résistance à la pression .27
11.2.2 Essai d’expansion volumétrique .27
11.3 Essai de dureté .27
11.4 Essai de fuites .27
11.5 Vérification de la contenance en eau . 28
12 Certification .28
13 Marquage .28
Annexe A (normative) Description et évaluation des imperfections de fabrication et des
critères de rejet des bouteilles à gaz en acier sans soudure au moment de l’inspection
finale par le fabricant .29
Annexe B (normative) Contrôles ultrasons .43
Annexe C (informative) Exemple de certificat d’approbation de type .49
Annexe D (informative) Exemple de certification de réception.50
Annexe E (informative) Exemple de calcul de la résistance au cisaillement pour les filetages
parallèles.53
Bibliographie .55

iv
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes nationaux
de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est en général
confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude a le droit de faire
partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l’ISO participent également aux travaux. L’ISO collabore étroitement avec
la Commission électrotechnique internationale (IEC) en ce qui concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet
de droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant les
références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de l’élaboration du
document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de brevets reçues par l’ISO
(voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données pour
information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion de
l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles techniques au
commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 58, Bouteilles à gaz, sous-comité
SC 3, Construction des bouteilles, en collaboration avec le comité technique CEN/TC 23, Bouteilles à gaz
transportables, du Comité européen de normalisation (CEN), conformément à l’Accord de coopération
technique entre l’ISO et le CEN (Accord de Vienne).
Cette troisième édition annule et remplace la deuxième édition (ISO 9809-4:2021), qui a fait l’objet d’une
révision technique.
Les principales modifications sont les suivantes:
— modification de la définition en 3.8;
— modification de la Formule 1 en 7.2;
— déplacement de l’essai de pliage et de l’essai d’aplatissement vers l’Article 9 (essais de prototype);
— clarification du calcul de la contrainte de cisaillement pour les filetages parallèles;
— clarification de 9.4;
— mise à jour de la Bibliographie.
Une liste de toutes les parties de la série ISO 9809 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes se
trouve à l’adresse www.iso.org/fr/members.html.

v
Introduction
Le présent document fournit une spécification pour la conception, la construction, le contrôle et les essais
d’une bouteille en acier inoxydable sans soudure. L’objectif est de parvenir à un équilibre entre les aspects
liés à la conception et au rendement économique d’une part, et les exigences d’acceptabilité internationale et
d’utilité universelle d’autre part.
L’ISO 9809 (toutes les parties) vise à éliminer les préoccupations concernant le climat, les contrôles
redondants et les restrictions imposées du fait de l’absence de Normes internationales reconnues.
Le présent document a été élaboré de sorte à pouvoir être référencé dans le Règlement type des Nations
[1]
Unies .
vi
PROJET FINAL Norme internationale ISO/FDIS 9809-4:2025(fr)
Bouteilles à gaz — Conception, construction et essais des
bouteilles à gaz et des tubes rechargeables en acier sans
soudure —
Partie 4:
Bouteilles en acier inoxydable ayant une valeur de R
m
inférieure à 1 100 MPa
1 Domaine d’application
Le présent document spécifie les exigences minimales concernant le matériau, la conception, la construction
et la mise en œuvre, les procédés de fabrication, les examens et les essais au moment de la fabrication des
bouteilles à gaz rechargeables en acier sans soudure d’une contenance en eau inférieure ou égale à 150 l.
Il s’applique aux bouteilles pour les gaz comprimés, liquéfiés et dissous ayant une résistance à la traction
réelle, R , maximale inférieure à 1 100 MPa.
ma
NOTE Si cela est souhaité, les bouteilles d’une contenance en eau comprise entre 150 l et 450 l peuvent être
fabriquées conformément au présent document.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour
les références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 148-1, Matériaux métalliques — Essai de flexion par choc sur éprouvette Charpy — Partie 1: Méthode d’essai
ISO 3651-2, Détermination de la résistance à la corrosion intergranulaire des aciers inoxydables — Partie 2:
Aciers ferritiques, austénitiques et austéno-ferritiques (duplex) — Essais de corrosion en milieux contenant de
l'acide sulfurique
ISO 6506-1, Matériaux métalliques — Essai de dureté Brinell — Partie 1: Méthode d'essai
ISO 6508-1, Matériaux métalliques — Essai de dureté Rockwell — Partie 1: Méthode d'essai
ISO 6892-1, Matériaux métalliques — Essai de traction — Partie 1: Méthode d'essai à température ambiante
ISO 9328-1, Produits plats en acier pour service sous pression — Conditions techniques de livraison — Partie 1:
Exigences générales
ISO 9329-4, Tubes sans soudure en acier pour service sous pression — Conditions techniques de livraison —
Partie 4: Aciers inoxydables austénitiques
ISO 9712, Essais non destructifs — Qualification et certification du personnel END
ISO 10286, Bouteilles à gaz — Vocabulaire
ISO 13341, Bouteilles à gaz — Montage des robinets sur les bouteilles à gaz
ISO 13769, Bouteilles à gaz — Marquage

3 Termes et définitions
Pour les besoins du présent document, les termes et les définitions de l’ISO 10286 ainsi que les suivants
s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en normalisation,
consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
3.1
lot
quantité pouvant atteindre 200 bouteilles, plus celles nécessaires aux essais destructifs, de même diamètre
nominal, de même épaisseur, de même longueur et de même conception, fabriquées de manière consécutive
sur une même installation à partir de la même coulée d’acier et ayant subi le même traitement thermique
pendant la même durée
3.2
pression de rupture
p
b
pression la plus haute atteinte dans une bouteille lors d’un essai de rupture
3.3
formage à froid
procédé dans lequel la bouteille est soumise à une pression supérieure à la pression d’épreuve (3.11) de la
bouteille afin d’accroître la limite d’élasticité (3.12) de l’acier
3.4
cryoformage
procédé selon lequel la bouteille est soumise à un traitement de déformation contrôlé à basse température
afin d’augmenter sa résistance de façon permanente
3.5
facteur de contrainte théorique
F
rapport de la contrainte équivalente de paroi à la pression d’épreuve, p , (3.11) à la contrainte minimale
h
d’élasticité garantie, R
eg
3.6
trempe
traitement thermique de durcissement au cours duquel une bouteille qui a été portée à une température
uniforme est refroidie rapidement dans un milieu adapté
3.7
rejeter
mettre une bouteille de côté (niveau 2 ou 3) et refuser sa mise en service
3.8
rendu inutilisable
résultat du traitement d’un équipement visant à rendre sa mise en service impossible
Note 1 à l'article: Des exemples de méthodes acceptables pour rendre les bouteilles inutilisables peuvent être trouvés
dans l’ISO 18119.
3.9
réparer
ramener l’état d’une bouteille rejetée au niveau 1

3.10
revenu
traitement thermique d’adoucissement qui suit la trempe (3.6), au cours duquel une bouteille est portée à
une température uniforme inférieure à celle du point critique inférieur (Ac ) de l’acier
3.11
pression d’épreuve
p
h
pression requise appliquée pendant un essai de pression
Note 1 à l'article: La pression d’épreuve est utilisée pour le calcul de l’épaisseur de la paroi de la bouteille.
3.12
limite d’élasticité
valeur correspondant à la limite conventionnelle d’élasticité à 0,2 %, ou, pour les aciers austénitiques à l’état
recuit de mise en solution, à la limite conventionnelle d’élasticité à 1 %
3.13
pression de service
pression établie d’un gaz comprimé à une température de référence uniforme de 15 °C dans une bouteille à
gaz pleine
4 Symboles
A allongement après rupture, exprimé en pourcentage
a épaisseur minimale calculée de l’enveloppe cylindrique, exprimée en millimètres
a′ épaisseur minimale garantie de l’enveloppe cylindrique, exprimée en millimètres
a épaisseur minimale garantie d’un fond concave à la jointure, exprimée en millimètres (voir Figure 2)
a épaisseur minimale garantie au centre d’un fond concave, exprimée en millimètres (voir Figure 2)
b épaisseur minimale garantie au centre d’un fond convexe, exprimée en millimètres (voir Figure 1)
c écart maximal autorisé du profil de rupture pour les bouteilles trempées et revenues, exprimé en mil-
limètres (voir Figure 11)
c écart maximal autorisé du profil de rupture pour les bouteilles cryoformées ou en recuit de mise en
solution ayant une épaisseur de paroi inférieure à 7,5 mm, exprimé en millimètres (voir Figure 12)
D diamètre nominal extérieur de la bouteille, exprimé en millimètres (voir Figure 1)
D diamètre du mandrin, exprimé en millimètres (voir Figure 6)
f
F facteur de contrainte théorique (variable)
H hauteur extérieure de la partie bombée (ogive ou fond convexe), exprimée en millimètres (voir Figure 1)
h profondeur extérieure (fond concave), exprimée en millimètres (voir Figure 2)
L longueur initiale entre repères comme définie dans l’ISO 6892-1, exprimée en millimètres (voir Figure 5)
o
l longueur totale de la bouteille, exprimée en millimètres (voir Figure 3)
n rapport du diamètre du mandrin utilisé pour l’essai de pliage à l’épaisseur réelle de l’éprouvette, t
p pression de rupture réelle, exprimée en bars, au-dessus de la pression atmosphérique
b
NOTE  1 bar = 10 Pa = 0,1 MPa.
p pression d’épreuve hydraulique, exprimée en bars, au-dessus de la pression atmosphérique
h
p pression à la limite élastique observée pendant l’essai de rupture hydraulique, exprimée en bars, au-
y
dessus de la pression atmosphérique
r rayon de raccordement interne, exprimé en millimètres (voir Figures 1 et 2)
R valeur réelle de la limite d’élasticité déterminée par l’essai de résistance à la traction, exprimée en
ea
mégapascals (voir 10.2)
R valeur minimale garantie de la limite d’élasticité (voir 7.1.1) pour la bouteille finie, exprimée en méga-
eg
pascals
R valeur réelle de la résistance à la traction déterminée par l’essai de résistance à la traction, exprimée
ma
en mégapascals (voir 10.2)
R valeur minimale garantie de la résistance à la traction pour la bouteille finie, exprimée en mégapascals
mg
S section initiale de l’éprouvette de traction conformément à l’ISO 6892-1, exprimée en millimètres carrés
o
t épaisseur réelle de l’éprouvette, exprimée en millimètres
t épaisseur moyenne de la paroi d’une bouteille dans la zone de l’essai d’aplatissement, exprimée en
m
millimètres
u rapport de la distance entre les bords du couteau ou des plateaux pour l’essai d’aplatissement à l’épais-
seur moyenne de la paroi de la bouteille dans la zone de l’essai
V contenance en eau de la bouteille, en litres
w largeur de l’éprouvette de traction, en millimètres (voir Figure 5)
5 Contrôles et essais
Pour l’évaluation de la conformité au présent document, les utilisateurs doivent connaître la règlementation
applicable dans le pays concerné.
Afin de s’assurer que les bouteilles sont conformes au présent document, elles doivent être soumises à des
contrôles et essais conformément aux Articles 9, 10 et 11.
Les essais et examens visant à démontrer la conformité au présent document doivent être effectués à l’aide
d’instruments étalonnés avant leur mise en service et réalisés selon un programme établi.
6 Matériaux
6.1 Exigences générales
6.1.1 Les matériaux utilisés pour la fabrication des bouteilles à gaz doivent faire partie de l’une des
catégories suivantes:
a) aciers pour bouteilles reconnus au plan international;
b) aciers pour bouteilles reconnus au plan national;
c) nouvelles catégories d’acier pour bouteilles, résultant de progrès techniques.
Toutes ces catégories doivent respecter les conditions pertinentes énoncées en 6.2 et 6.3.

6.1.2 Le traitement à chaud des aciers inoxydables austénitiques et duplex entraîne un risque de
sensibilisation à la corrosion intergranulaire (par exemple, appauvrissement en chrome au joint de grains).
Un essai de corrosion intergranulaire doit être réalisé pour ces matériaux conformément à 10.6.
6.1.3 Le fabricant de bouteilles doit établir des moyens permettant d’identifier les bouteilles avec les
coulées d’acier à partir desquelles elles ont été fabriquées.
6.1.4 Les nuances d’acier utilisées pour la fabrication des bouteilles doivent être compatibles avec le gaz
prévu en service, par exemple, gaz corrosifs et gaz fragilisants (voir l’ISO 11114-1).
6.1.5 Certaines nuances d’acier inoxydable peuvent être sensibles au phénomène de corrosion sous
contrainte lié à l’environnement. Des précautions particulières, telles qu’un revêtement approprié, doivent
être prises dans ces cas.
6.1.6 Certaines nuances d’acier inoxydable peuvent être sensibles à une transformation de phase à basse
température conduisant à un alliage fragile. Des précautions particulières doivent être prises dans ces cas,
c’est-à-dire ne pas utiliser la bouteille à une température inférieure à la température minimale acceptable.
6.2 Contrôles de la composition chimique
6.2.1 Les quatre grandes catégories d’aciers inoxydables sont les suivantes:
— ferritique;
— martensitique;
— austénitique;
— austéno-ferritique (duplex).
Les aciers reconnus sont listés dans l’ISO 15510. D’autres nuances d’acier inoxydable peuvent également être
utilisées sous réserve qu’elles satisfassent à toutes les exigences du présent document.
6.2.2 Le fabricant de bouteilles doit obtenir et tenir à disposition les certificats d’analyses (thermiques) de
coulée des aciers fournis pour la fabrication des bouteilles à gaz.
Si des vérifications sont exigées, elles doivent être réalisées soit sur des échantillons prélevés pendant la
fabrication sur le matériau tel que fourni par l’aciériste au fabricant de bouteilles, soit sur des bouteilles
finies. Dans toute analyse de vérification, les écarts maximaux admis par rapport aux limites spécifiées pour
les analyses de coulée doivent être conformes aux valeurs indiquées dans l’ISO 9329-4.
6.3 Traitement thermique
6.3.1 Le fabricant de bouteilles doit certifier le traitement thermique appliqué aux bouteilles finies.
6.3.2 Les bouteilles finies fabriquées à partir des catégories d’acier ferritique ou martensitique doivent
être trempées et revenues, sauf si elles sont formées à froid (voir 6.4).
6.3.3 Pour les aciers ferritiques et martensitiques, le procédé de traitement thermique doit permettre
d’obtenir les propriétés mécaniques requises.
6.3.4 La température réelle appliquée à un type d’acier pour obtenir une résistance à la traction donnée ne
doit pas s’écarter de plus de 30 °C de celle spécifiée par le fabricant de bouteilles.

6.4 Formage à froid ou cryoformage
Le formage à froid ou cryoformage est utilisé pour améliorer les propriétés mécaniques finies de certains
matériaux en acier inoxydable.
Pour les bouteilles soumises au formage à froid ou au processus de cryoformage, toutes les exigences de
traitement thermique se réfèrent aux opérations de préformage de la bouteille. Les bouteilles formées à
froid ou cryoformées ne doivent être soumises à aucun traitement thermique ultérieur.
6.5 Non-respect des exigences relatives aux essais
En cas de non-respect des exigences relatives aux essais, un contre-essai ou un nouveau traitement thermique
suivi d’un nouvel essai doivent être effectués de la manière suivante à la satisfaction de l’inspecteur.
a) lorsqu’il est prouvé qu’une erreur a été commise dans l’exécution de l’essai, ou dans le cas d’une erreur
de mesure, un nouvel essai doit être effectué. Si ce dernier est satisfaisant, le premier essai doit être
ignoré;
b) si l’essai a été réalisé de façon satisfaisante, la cause de la non-conformité de l’essai doit être identifiée:
1) si la non-conformité est due au traitement thermique appliqué, le fabricant peut soumettre toutes les
bouteilles non conformes à un seul nouveau traitement thermique. Par exemple, si la non-conformité
concerne un essai de bouteilles d’un lot ou de prototypes, toutes les bouteilles représentatives
doivent faire l’objet d’un nouveau traitement thermique avant le contre-essai. Ce nouveau traitement
thermique doit consister en un nouveau revenu ou un nouveau traitement thermique total. Lorsque
les bouteilles sont soumises à un nouveau traitement thermique, l’épaisseur minimale garantie de
la paroi doit être conservée. Seuls les essais applicables à un prototype ou à un lot doivent être
réalisés une nouvelle fois pour prouver la conformité du nouveau lot. Si un ou plusieurs d’entre eux
ne sont pas satisfaisants, même partiellement, toutes les bouteilles du lot doivent être refusées;
2) si la non-conformité porte sur autre chose que le traitement thermique appliqué, toutes les
bouteilles défectueuses doivent être refusées ou réparées par une méthode approuvée. Si les
bouteilles réparées satisfont à l’essai ou aux essais requis pour la réparation, elles doivent ensuite
être considérées comme faisant partie du lot d’origine.
7 Conception
7.1 Exigences générales
7.1.1 Le calcul de l’épaisseur de la paroi des parties soumises à des pressions doit prendre en compte la
valeur minimale garantie de la limite d’élasticité, R , du matériau de la bouteille finie.
eg
7.1.2 Les bouteilles doivent être conçues avec une ou deux ouvertures le long de l’axe central de la bouteille
uniquement.
7.1.3 La pression interne, sur laquelle est basé le calcul de l’épaisseur de paroi, doit être la pression
d’épreuve hydraulique p .
h
7.2 Conception de l’épaisseur de l’enveloppe cylindrique
L’épaisseur minimale garantie de l’enveloppe cylindrique, a′, ne doit pas être inférieure à l’épaisseur calculée
à l’aide des Formules (1) et (2), et la Formule (3) doit en outre être satisfaite:

 
10FR  3p
D eg h
 
a 1 (1)
 
2 10FR
 
eg
 

a est l’épaisseur minimale calculée de l’enveloppe cylindrique, exprimée en millimètres;
D est le diamètre nominal extérieur de la bouteille, exprimé en millimètres;
R est la valeur minimale garantie de la limite d’élasticité (voir 7.1.1) pour la bouteille finie,
eg
exprimée en mégapascals;
p est la pression d’épreuve hydraulique, exprimée en bars, au-dessus de la pression atmosphérique.
h
06, 5
F (facteur de contrainte théorique) correspond à la valeur la plus faible entre et 0,85.
RR/
eg mg
R
eg
ne doit pas dépasser 0,90.
R
mg
R est la valeur minimale garantie de la résistance à la traction pour la bouteille finie, exprimée en
mg
mégapascals.
L’épaisseur de la paroi doit également satisfaire à la Formule (2):
D
a1 (2)
avec un minimum absolu de a = 1,5 mm.
Le rapport de rupture doit être satisfait par essai selon la Formule (3):
p /p ≥ 1,6 (3)
b h
NOTE Il est généralement admis que, pour les gaz comprimés, p = 1,5 fois la pression de service pour les bouteilles
h
conçues et fabriquées en vue d’une conformité au présent document.
7.3 Conception des extrémités convexes (ogives et fonds)
7.3.1 Lorsque les bouteilles sont à fond convexe (voir Figure 1), l’épaisseur b au centre du fond convexe
doit être comme suit: si le rayon de raccordement interne r n’est pas inférieur à 0,075 D, alors:
— b ≥ 1,5 a pour 0,40 > H/D ≥ 0,20;
— b ≥ a pour H/D ≥ 0,40.
Afin d’obtenir une répartition satisfaisante des contraintes dans la zone de raccordement de l’extrémité à la
partie cylindrique, toute augmentation de l’épaisseur du fond, lorsqu’elle est requise, doit être progressive
à partir du point de raccordement, en particulier au fond. Pour l’application de cette règle, le point de
raccordement entre la partie cylindrique et l’extrémité est défini par les lignes horizontales indiquant la
cote H à la Figure 1.
La forme b) ne doit pas être exclue de ces exigences.
7.3.2 Le fabricant de bouteilles doit prouver, par l’essai de cyclage en pression détaillé en 9.2.2, que la
conception est satisfaisante.
La Figure 1 montre des configurations types d’ogives et de fonds convexes. Les formes a), b), d) et e)
représentent des fonds; les formes c) et f) représentent des ogives.

a) b) c)
Figure 1 — Extrémités convexes types (1 sur 2)
d) e) f)
Légende
1 partie cylindrique
a′ épaisseur minimale garantie de l’enveloppe cylindrique, exprimée en millimètres
b épaisseur minimale garantie au centre d’un fond convexe, exprimée en millimètres
D diamètre nominal extérieur de la bouteille, exprimé en millimètres
H hauteur extérieure de la partie bombée (ogive ou fond convexe), exprimée en millimètres
r rayon de raccordement interne, exprimé en millimètres
Figure 1 — Extrémités convexes types (2 sur 2)
7.4 Conception des fonds concaves
7.4.1 Lorsque les bouteilles sont à fond concave (voir Figure 2), il est recommandé d’utiliser les valeurs de
conception suivantes:
— a ≥ 2 a;
— a ≥ 2 a;
— h ≥ 0,12 D;
— r ≥ 0,075 D.

a est l’épaisseur minimale calculée de l’enveloppe cylindrique, exprimée en millimètres;
a est l’épaisseur minimale garantie d’un fond concave à la jointure, exprimée en millimètres;
a est l’épaisseur minimale garantie au centre d’un fond concave, exprimée en millimètres;
D est le diamètre nominal extérieur de la bouteille, exprimé en millimètres;
h est la profondeur extérieure (fond concave), exprimée en millimètres;
r est le rayon de raccordement interne, exprimé en millimètres.
Le plan de conception doit au moins indiquer les valeurs de a , a , h et r.
1 2
Afin d’obtenir une répartition satisfaisante des contraintes, l’épaisseur de la paroi de la bouteille doit
augmenter progressivement dans la zone de transition entre la partie cylindrique et le fond.
7.4.2 Le fabricant de bouteilles doit, dans tous les cas, prouver par l’essai de cyclage en pression détaillé
en 9.2.2 que la conception est satisfaisante.

Légende
a′ épaisseur minimale garantie de l’enveloppe cylindrique, exprimée en millimètres
a épaisseur minimale garantie d’un fond concave à la jointure, exprimée en millimètres
a épaisseur minimale garantie au centre d’un fond concave, exprimée en millimètres
D diamètre nominal extérieur de la bouteille, exprimé en millimètres
r rayon de raccordement interne, exprimé en millimètres
Figure 2 — Fonds concaves
7.5 Conception du goulot
7.5.1 Le diamètre extérieur du goulot et l’épaisseur de sa paroi doivent être adaptés au couple appliqué
lors du montage du robinet sur la bouteille. Ce couple peut varier selon le type de robinet, le diamètre et la
forme du filetage ainsi que le moyen d’étanchéité utilisé dans le montage du robinet.
NOTE Pour des informations sur les couples, voir l’ISO 13341.
7.5.2 Lors de la détermination de l’épaisseur minimale, l’épaisseur de paroi du goulot de la bouteille doit
empêcher toute dilatation permanente du goulot au cours du montage initial ou des montages ultérieurs
du robinet sur la bouteille, sans aide d’une pièce rapportée. Le diamètre extérieur et l’épaisseur du goulot
de la bouteille ne doivent pas être endommagés (aucune déformation permanente ou fissure) du fait
de l’application du couple maximal requis pour fixer le robinet sur la bouteille (voir l’ISO 13341) et des
contraintes exercées lorsque la bouteille est soumise à sa pression d’épreuve. Dans des cas spécifiques (par
exemple bouteilles à paroi très mince) où ces contraintes ne peuvent pas être supportées par le goulot lui-
même, ce dernier peut être conçu pour être équipé d’un renfort, tel qu’une collerette ou une bague frettée,
à condition que le matériau et les dimensions du renfort soient clairement spécifiés par le fabricant et que
cette configuration fasse partie de la procédure d’approbation de type (voir 9.2.4 et 9.2.5).
7.6 Frettes de pied
Lorsqu’une frette de pied est fournie, elle doit être réalisée dans un matériau compatible avec celui de
la bouteille. Il convient que sa forme soit de préférence cylindrique et elle doit donner de la stabilité à la
bouteille. La frette de pied doit être fixée sur la bouteille par une méthode autre que le soudage, le brasage
dur ou le brasage tendre. Tous les interstices pouvant constituer des retenues d’eau doivent être rendus
étanches par une méthode autre que le soudage, le brasage dur ou le brasage tendre.
7.7 Collerettes
Lorsqu’une collerette est prévue, elle doit être réalisée dans un matériau compatible avec celui de la bouteille
et elle doit être fixée par
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...