Environmental management - Life cycle assessment - Examples of application of ISO 14041 to goal and scope definition and inventory analysis

Provides examples about practices in carrying out an Live Cycle Inventory analysis (LCI) as a means of satisfying certain provisions of ISO 14041. These examples are only a sample of the possible cases satisfying the provisions of the standard. They should be read as offering a way of ways rather than the unique way of applying the standard. Also they reflect only certain portions of a LCI study.

Management environnemental — Analyse du cycle de vie — Exemples d'application de l'ISO 14041 traitant de la définition de l'objectif et du champ d'étude et analyse de l'inventaire

L'objet du présent Rapport Technique est de fournir des exemples sur les méthodes de réalisation d'un inventaire du cycle de vie comme moyen de satisfaire certaines dispositions de l'ISO 14041. Ces exemples ne représentent qu'un échantillon des exemples susceptibles de répondre aux dispositions de la norme. Il convient de les considérer comme un "moyen" ou "des moyens" représentatifs plutôt que comme "la seule façon" de mettre en pratique ladite norme. A ce titre, ils ne correspondent également qu'à certaines parties d'une étude de l'inventaire du cycle de vie. Il convient de noter que les exemples présentés dans le présent Rapport Technique ne sont pas exclusifs et qu'il existe de nombreux autres exemples permettant d'illustrer les études méthodologiques décrites. Ils ne constituent que des parties d'une étude complète d'inventaire du cycle de vie.

Ravnanje z okoljem - Ocenjevanje življenjskega cikla - Primeri uporabe ISO 14041 za opredelitev cilja in namena ter inventarizacijo

General Information

Status
Withdrawn
Publication Date
29-Mar-2000
Withdrawal Date
29-Mar-2000
Current Stage
9599 - Withdrawal of International Standard
Start Date
23-May-2012
Completion Date
13-Dec-2025

Relations

Technical report
ISO/TR 14049:2000 - Environmental management -- Life cycle assessment -- Examples of application of ISO 14041 to goal and scope definition and inventory analysis
English language
43 pages
sale 15% off
Preview
sale 15% off
Preview
Technical report
TP ISO/TR 14049:2008
English language
48 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Technical report
ISO/TR 14049:2000 - Management environnemental -- Analyse du cycle de vie -- Exemples d'application de l'ISO 14041 traitant de la définition de l'objectif et du champ d'étude et analyse de l'inventaire
French language
45 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO/TR 14049:2000 is a technical report published by the International Organization for Standardization (ISO). Its full title is "Environmental management - Life cycle assessment - Examples of application of ISO 14041 to goal and scope definition and inventory analysis". This standard covers: Provides examples about practices in carrying out an Live Cycle Inventory analysis (LCI) as a means of satisfying certain provisions of ISO 14041. These examples are only a sample of the possible cases satisfying the provisions of the standard. They should be read as offering a way of ways rather than the unique way of applying the standard. Also they reflect only certain portions of a LCI study.

Provides examples about practices in carrying out an Live Cycle Inventory analysis (LCI) as a means of satisfying certain provisions of ISO 14041. These examples are only a sample of the possible cases satisfying the provisions of the standard. They should be read as offering a way of ways rather than the unique way of applying the standard. Also they reflect only certain portions of a LCI study.

ISO/TR 14049:2000 is classified under the following ICS (International Classification for Standards) categories: 13.020.10 - Environmental management; 13.020.60 - Product life-cycles. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO/TR 14049:2000 has the following relationships with other standards: It is inter standard links to ISO/TR 14049:2012. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO/TR 14049:2000 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


TECHNICAL ISO/TR
REPORT 14049
First edition
2000-03-15
Environmental management— Life cycle
assessment — Examples of application of
ISO 14041 to goal and scope definition and
inventoryanalysis
Management environnemental — Analyse du cycle de vie — Exemples
d'application de l'ISO 14041 traitant de la définition de l'objectif
et du champ d'étude et analyse de l'inventaire
Reference number
©
ISO 2000
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2000 – All rights reserved

Page
Contents
1 Scope. 1
2 Technical Introduction . 1
3 Examples of developing functions, functional units and reference flows. 3
4 Examples of distinguishing functions of comparative systems . 6
5 Examples of establishing inputs and outputs of unit processes and system boundaries . 10
6 Examples of avoiding allocation. 17
7 Examples of allocation. 21
8 Example of applying allocation procedures for recycling. 24
9 Examples of conducting data quality assessment . 34
10 Examples of performing sensitivity analysis . 39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
In exceptional circumstances, when a technical committee has collected data of a different kind from that which is
normally published as an International Standard ("state of the art", for example), it may decide by a simple majority
vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature
and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.
ISO/TR 14049 was prepared by Technical Committee ISO/TC 207, Environmental management, Subcommittee
SC 5, Life cycle assessment.
iv © ISO 2000 – All rights reserved

Introduction
The heightened awareness of the importance of environmental protection, and the possible impacts associated
with products manufactured and consumed, has increased the interest in the development of methods to better
comprehend and reduce these impacts. One of the techniques being developed for this purpose is Life Cycle
Assessment (LCA). To facilitate a harmonized approach, a family of standards on life cycle assessment (LCA),
including ISO 14040, ISO 14041, ISO 14042 and ISO 14043 and this document are being developed by ISO.
These International Standards describe principles of conducting and reporting LCA studies with certain minimal
requirements.
This Technical Report provides supplemental information to the International Standard, ISO 14041, Environmental
management - Life cycle assessment - Goal and scope definition and life cycle inventory analysis, based on
several examples on key areas of the Standard in order to enhance the understanding of the requirements of the
standard.
Methodological requirements for conducting LCA studies are provided in the following International Standards
concerning the various phases of LCA:
⎯ ISO 14040: Environmental management - Life cycle assessment - Principles and framework.
⎯ ISO 14041: Environmental management - Life cycle assessment - Goal and scope definition and
inventory analysis.
⎯ ISO 14042: Environmental management - Life cycle assessment - Life cycle impact assessment.
⎯ ISO 14043: Environmental management - Life cycle assessment - Life cycle interpretation.
TECHNICAL REPORT ISO/TR 14049:2000(E)
Environmental management — Life cycle assessment —
Examples of application of ISO 14041 to goal and scope
definition and inventory analysis
1 Scope
This Technical Report provides examples about practices in carrying out an Life Cycle Inventory analysis (LCI) as
a means of satisfying certain provisions of ISO 14041. These examples are only a sample of the possible cases
satisfying the provisions of the standard. They should be read as offering “a way” or “ways” rather than the “unique
way” of applying the standard. Also they reflect only certain portions of an LCI study.
It should be noted that the examples presented in this Technical Report are not exclusive and that many other
examples exist to illustrate the methodological issues described. The examples are only portions of a complete LCI
study.
2 Technical Introduction
The examples focus on six key areas of ISO 14041 as indicated in Table 1.
In some key areas there is more than one example. The reason is that in many cases more than one practice
exists. The decision about the application of one or the other practices is goal dependent and can vary e.g. from the
product system under investigation or in the stages over the life cycle. The examples are described in the context
of the corresponding provisions of the standard and with the specific use.
In the description of the different cases, whenever possible, the following structure has been adopted :
– Context of the standard
– Overview
– Description of the examples
Table 1 – Cross references between ISO 14041 and examples in this document
ISO 14041 Examples in ISO/TR 14049
0 Introduction
1 Scope
2 Normative reference
3 Terms and definitions
4 LCI components
4.1 General
4.2 Product system
4.3 Unit process
4.4 Data categories
4.5 Modelling product systems
5 Definition of goal and scope
5.1 General
5.2 Goal of the study
5.3 Scope of the study
5.3.1 General
5.3.2 Function, functional unit and 3 Examples of developing functions, functional units
reference flow and reference flows
4 Examples of distinguishing functions of
comparative systems
5.3.3 Initial system boundaries
5.3.4 description of data categories
5.3.5 Criteria for initial inclusion of 5 Examples of establishing the inputs, outputs and
inputs and outputs boundary of unit process
10 Examples of performing sensitivity analysis
5.3.6 Data quality requirements 9 Examples of conducting data quality assessment
5.3.7 Critical review
6 Inventory analysis
6.1 General
6.2 Preparing for data collection
6.3 Data collection 9 Examples of conducting data quality assessment
6.4 Calculation procedures
6.4.1 General
6.4.2 Validation of data 9 Examples of conducting data quality assessment
6.4.3 Relating data to the unit
process
6.4.4 Relating data to functional unit 3 Examples of developing functions, functional
and data aggregation units and reference flows
6.4.5 Refining the system boundaries 10 Examples of performing sensitivity analysis
6.5 Allocation of flows and releases
6.5.1 General
6.5.2 Allocation principles 6 Examples of avoiding allocation
6.5.3 Allocation procedure 6 Examples of avoiding allocation
7 Examples of applying allocation
6.5.4 Allocation procedures for reuse 8 Examples of applying allocation procedures for
and recycling recycling
7 Limitation of LCI (interpreting LCI results) 9 Examples of conducting data quality assessment
10 Examples of performing sensitivity analysis
8 Study report
ANNEX
A Example of a data collection sheet
B Examples of different allocation
procedures
2 © ISO 2000 – All rights reserved

3 Examples of developing functions, functional units and reference flows
3.1 Context of the standard
ISO 14041 states in 5.3.2 that:
⎯ In defining the scope of an LCA study, a clear statement on the specification of the functions (performance
characteristics) of the product shall be made.
⎯ The functional unit defines the quantification of these identified functions. The functional unit shall be
consistent with the goal and scope of the study.
⎯ One of the primary purposes of a functional unit is to provide a reference to which the input and output
data are normalized (in a mathematical sense). Therefore the functional unit shall be clearly defined and
measurable.
⎯ Having defined the functional unit, the amount of product which is necessary to fulfil the function shall be
quantified. The result of this quantification is the reference flow.
and in 6.4.4 that:
⎯ Based on the flow chart and systems boundaries, unit processes are interconnected to allow calculations
on the complete system. This is accomplished by normalizing the flows of all unit processes in the system
to the functional unit. The calculation should result in all system input and output data being referenced to
the functional unit.
3.2 Overview
In defining a functional unit and determining the reference flows, the following steps can be distinguished:
⎯ identification of functions;
⎯ selection of functions and definition of functional unit;
⎯ identification of performance of the product and determination of the reference flow.
The sequence of these steps is depicted in Figure 1 using the example of paint. This example is also used in the
following text (3.3 to 3.5). Further examples are given in 3.6.
3.3
Product Functions
Identification of functions
-Surface protection
Wall paint
- Colouring
- etc.
3.4
Relevant function (s) for the particular LCA
Selection of functions and
definition of functional unit
Colouring wall of type A with paint
Functional unit
Colouring 20 m of wall type A with opacity
98% and durability of 5 years
3.5
Identification of performance of
Performance of the product
the product and determination
of the reference flow
Paint A covers 8,7 m per litre
Reference flow
2,3 l of paint A
Note: It is possible to start with either the product or with the function itself.
Figure 1 – Overview of the example
3.3 Identification of functions
The purpose of the functional unit is to quantify the service delivered by the product system. The first step is thus to
identify the purpose served by the product system, i.e. its function or functions.
The starting point for this procedure may be a specific product to be studied (e.g. wall paint) or it may be the final
need or goal, which in some cases may be fulfilled by several distinct products (e.g. wall decoration, which may be
fulfilled by both paint and wallpaper or a combination of these).
The functions are typically related to specific product or process properties, each of which may:
⎯ fulfil specific needs and thereby have a use value, which typically creates economic value to the supplier
of the product,
⎯ affect the functioning of other economic systems (e.g. wallpaper may have a - small - insulation effect,
thus affecting the heat requirement of the building).
4 © ISO 2000 – All rights reserved

3.4 Selection of functions and definition of functional unit
Not all functions may be relevant for a particular LCA. Thus, out of all the possible functions, the relevant ones
must be identified.
For a solid interior wall, for example, surface protection may be unnecessary, while colouring is a relevant function
of paint.
Subsequently, the relevant functions are quantified in the functional unit, which may be expressed as a
combination of different parameters.
For wall colouring, the functional unit will typically have to specify the area to be covered (e.g. 20 m ), the type of
wall (especially regarding its absorption and binding properties), the ability of the paint to hide the underlying
surface (e.g. 98 % opacity), and its useful life (e.g. 5 years).
In the case of multifunctional units, the different quantities are sometimes linked, e.g. a wall covering insulation
material may be available with a pre-coloured surface, which makes colouring unnecessary, thus delivering both
insulation and colouring. The functional unit could then be:
"20 m wall covering with a heat resistance of 2 m·K/W, with a coloured surface of 98 % opacity, not requiring any
other colouring for 5 years".
Other examples of multifunctional units are given in Table 2.
Table 2 – Examples of functional units for systems with multiple functions.
Example No. (1) (2)
System Paper recycling Cogeneration
Functions - Recovery of waste paper, and - Generation of electric power, and
- Production of de-inked pulp - Production of steam
- etc. - etc.
Selected function - Recovery of waste paper, or - Generation of electric power, or
for a particular LCA
- Production of de-inked pulp - Production of steam
Functional unit - Recovery of 1 000 kg waste paper, - Generation of 100 MW electricity, or
or
- Production of 300 000 kg steam per
- Production of 1 000 kg pulp for hour at 125 °C and 0,3 MPa (3 bar)
newsprint
3.5 Identification of performance of the product and determination of the reference flow
Having defined a certain functional unit, the next task is to determine the quantity of product which is necessary to
fulfil the function quantified by the functional unit. This reference flow is related to the product's performance, and is
typically determined as the result of a standardized measurement method. Of course, the nature of this
measurement and calculation depends on the studied product.
For paint, the reference flow is typically expressed as the amount of litres necessary for covering the surface area
as defined by the functional unit. For example, in a standardized test, paint A may be determined to cover 8,7 m
per litre (i.e. the performance of the product). Using the example illustrated in Figure 1, this requires 2,3 l to cover
the 20 m of the functional unit, provided that the conditions in the standardized test are similar to those required by
the functional unit (with regard to surface type and opacity).
The functional unit may already be expressed in terms of quantities of products, so that the functional unit and the
reference flow are identical. Table 2 gives examples of such functional units, which are already expressed in terms
of quantities of products.
3.6 Additional examples
The following three examples further illustrate the procedure in developing functions, functional units, and
reference flows.
Table 3 – Further examples of developing functions, functional units, and reference flows
Example No. (1) (2) (3)
Product Light bulb Bottle Hand drying
Functions - Providing illumination - Protection of beverage - Drying hands
- Generating heat - Facilitating handling - Removing bacteria
-etc. - Part of product image -etc.
-etc.
Selected function Providing illumination Protection of beverage Drying hands (hygienic
for a particular (outdoor lamp only) function judged
LCA irrelevant)
Functional unit 300 lx in 50 000 h 50 000 l of beverage 1 000 pairs of hands
matching the daylight protected between dried
spectrum at 5 600 K. tapping and consumption
Performance of 100 lx with a lifetime of 0,5 l one-way bottle One paper towel for
the product 10 000 h drying one hand
Reference flow 15 daylight bulbs of 100 000 one-way bottles 2 000 paper towels
100 lx with a lifetime of of volume 0,5 l
10 000 hours
4 Examples of distinguishing functions of comparative systems
4.1 Context of the standard
ISO 14041 states in 5.3.2 that:
⎯ Comparisons between systems shall be made on the basis of the same function, quantified by the same
functional unit in the form of their reference flows.
⎯ If additional functions of any of the systems are not taken into account in the comparison of functional
units, then these omissions shall be documented. For example, systems A and B perform functions x and
y which are represented by the selected functional unit, but system A also performs function z, which is
not represented in the functional unit. It shall then be documented that function z is excluded from its
functional unit. As an alternative, systems associated with the delivery of function z may be added to the
boundary of system B to make the systems more comparable. In these cases, the processes selected
shall be documented and justified.
4.2 Overview
When comparing product systems, special attention has to be made to confirm that the comparison is based on the
same functional unit and equivalent methodological considerations, such as performance, system boundaries, data
quality, allocation procedures, decision rules on evaluating inputs and outputs. In this chapter, some possible
approaches will be described and illustrated by examples.
The general steps to be taken in comparative studies are illustrated in Figure 2.
6 © ISO 2000 – All rights reserved

4.3
Identification of functions (as in 3.3.)
Identification and
Selection of functions
Selection of functions and definition of functional
unit (as in 3.4)
Identification of performance of the product and
4.4
determination of the reference flows
Equivalence of reference flows
Yes
Are the reference
Can be compared
Flows equivalent?
No
No
Can the reference flows
Cannot be compared
be made equivalent?
Yes
Adjusting performance differences
4.5
Adjusting for performance differences
Figure 2 – Overview of the steps in comparative studies
4.3 Identification and selection of functions
The definition of the functional unit is closely bound to the goal of the study. If the goal is to compare product
systems, special care will have to be paid in order to ensure that the comparison is valid, that any additional
functions are identified and described, and that all relevant functions are taken into account.
Example 1: A study on waste management should include other functions than simply disposing of waste (i.e. the functions
performed by the recycling systems in providing recycled material or energy).
Example 2: A study on electric household equipment should include the waste heat delivered to the building in which the
equipment operates, as this influence the amount of heating and/or cooling required.
For comparative studies, the selection of functions becomes much more important than in non-comparative studies.
Referring to the functions in Table 3:
⎯ For bottles (example 2), leaving out of the image function of the packaging may lead to comparison of
packagings that are technically similar (i.e. containing the same volume of beverage), but which the
producer or customer will not accept as comparable.
⎯ For hand-drying systems (example 3), leaving out the hygienic function may be regarded as
unacceptable, e.g. in the food industry, where the bacteria-removing ability of paper towels may be
regarded as such an advantage that a comparison to electrical hand-drying systems may not even be
considered.
4.4 Equivalence of reference flows
The functional unit of the paint example from Clause 3 was "colouring 20 m of wall type A with opacity 98 % and
durability of 5 years". This functional unit can be supplied by several different reference functions:
2,3 l of paint A,
1,9 l of paint B,
1,7 l of paint C, etc.
These reference flows will have been calculated based on a test using standard conditions, concerning e.g. surface
type and opacity.
The standardised test conditions and measurement methods must be appropriate to the intended comparison: In
the hand drying example (example 3 in Table 3), it may be irrelevant to use a standardized test based on the
technical properties of the paper such as mass, absorption-power and tensile strength, if the actual weight of paper
used depends on the dispenser design. A more appropriate measure would then be data collected by weighing the
paper stock at the start and the end of an adequate period in which the number of hands dried are determined by
electronic surveillance of actual wash basins located in relevant institutions. Similarly, technical specifications of an
electrical hand drier, such as the volume of air and its temperature, may be irrelevant as a basis for calculating the
reference function, if the actual running time of the device is fixed by other factors, e.g. a built-in timer. Then, all
that is needed is the running time and the electrical capacity of the equipment.
In the case of the light bulb (example 1 in Table 3), the functional unit of "300 lx in 50 000 h" may be provided by:
⎯ 5 times 3 bulbs of 100 lx with a lifetime of 10 000 h each, or
⎯ 10 times 2 bulbs of 150 lx with a lifetime of 5 000 h each.
The underlying premises of comparing 3 bulbs of 100 lx with 2 bulbs of 150 lx are:
⎯ that the light spectrum of the two bulb types are comparable (or that the difference is acceptable to the
user),
⎯ that the 3 and 2 bulbs, respectively, can be placed so that the distribution of light is equal (or that the
difference is acceptable to the user),
⎯ that the sockets and other fixtures are not affected by the choice (in which case they would have to be
included in the comparison).
Also, the two light bulbs were regarded as comparable in spite of their difference in lifetime. This difference is
simply taken into account in the calculation of the reference flow. However, for long-lived products, such as
refrigerators with lifetimes of 10 or 20 years, technology development may be a factor that cannot be disregarded.
One refrigerator with a lifetime of 20 years cannot simply be compared to two successive, present-day refrigerators
with a lifetime of 10 years. The refrigerators available 10 years from now are certain to be more energy efficient (i.e.
lower energy input per functional unit) than the present, the energy efficiency of the second refrigerator of the 10 +
10 option must be determined by a trend projection, while the energy efficiency of the 20 years option is fixed.
The 100 000 one-way bottles of volume 0,5 l (example 2 in Table 3) may technically fulfil the same function of
protecting 50 000 l of beverage, as would 12 500 returnable bottles of volume 0,4 l with a reuse rate of 90 %.
However, in some situations the consumer may not always be able to distinguish between bottles of different
volumes or masses. If the consumer regards 1 bottle equal to 1 bottle, the total consumption of beverage will
decrease when the returnable bottles are introduced. In this case, the packaging cannot be studied independent of
its contents. This is an example of the "No"-arrow leaving to the right in Figure 2. Of course, the goal of the study
may then be redefined allowing for a comparison of beverage plus packaging taking into account the changes in
consumption.
Another example of non-comparable functions (the "No"-arrow to the right in Figure 2), is that of two freezers, one
with and one without quick-freeze option. If the quick-freeze option is regarded as an essential function by the
consumer, the two freezers are simply not comparable and they cannot be made comparable by any calculation or
system expansion. The same is true for the examples given at the end of 4.3.
8 © ISO 2000 – All rights reserved

In some systems with multiple functions, such as those in Table 2, the functions may be separated and delivered
by several systems:
⎯ Disposing the waste paper in an incineration plant and producing the pulp from virgin fibres may provide
the same functional unit as the paper recycling system.
⎯ Separate power and district heating units, respectively producing only electric power and only heat, may
deliver the same functional unit as the co-generation plant.
However, some functions may be so intimately linked that separation is not possible. For example, the heat
generation of a light bulb cannot be detached from its primary function.
In other situations, separations of two linked functions may be technically possible, but due to other aspects, the
two separate functions may still not be regarded as comparable to the joint functions. An example of this is the
combined freezer-refrigerator, which may or may not be compared to a freezer and separate refrigerator,
depending on the acceptability of this choice to the consumer (the latter option will typically take up more space
than a combined option with the same internal volumes).
Note that in most of the examples above, the equivalence of two products is determined by user acceptance. This
acceptance, and thus whether two products are regarded as comparable or not, may be influenced by the price of
the alternatives and by the additional information given along with the products, e.g. information on their
environmental performance. Thus, for the purposes of product development or strategic management, it may be
reasonable to compare two products which are not immediately regarded as equivalent, but where it is assumed
that they will be regarded as equivalent under specific conditions of price and information.
4.5 Adjusting for performance differences
In those cases where the reference flows are immediately equivalent (as in the paint example at the top of 4.4) no
adjustment is necessary.
In other cases, adjustment is necessary. The adjustment procedure follows the same principles as for co-product
allocation, i.e. the preferred option is modification of the system boundaries to avoid the performance difference. In
some cases, when this modification is not possible or feasible, allocation may be applied. In this section, examples
are given of both options.
In the case of the light bulb in 4.4, it may be necessary to adjust the one of the systems to be compared (expanding
it with an extra bulb socket). Another, more radical, example of such a system expansion or reconsideration of the
studied functions, is that mentioned under the bottle example in 4.4, where the inclusion of the beverage was
necessary.
A comparison of refrigerators may be based on their internal and/or external volume. The primary function is
obviously related to their internal volume, but the external volume may a determining function, if the refrigerator is
to be fitted into an existing kitchen. If the external volume is required to be equal, the internal volume may differ
because of differences in insulation thickness. This can only be adjusted for by assuming differences in behaviour
of the user (e.g. shopping more often, storing certain items outside the refrigerator, adding another secondary
refrigerator elsewhere in the house). Each of these changes in behaviour will involve changes in different
processes, which then have to be included in the study. If, on the other hand, the internal volume is required to be
equal, a change in insulation thickness may require adjustments in the physical surroundings of the refrigerator (the
other kitchen furniture). If both the internal and the external volumes are required to be equal, obviously no
adjustment is possible which can accommodate the change in isolation thickness. This shows that the choice of
required functions also determines the possible alternatives, which can be included in the study.
Adjustment by system expansion, as in the examples above, is not always possible. If one is studying only the
freezing or refrigeration function of a combined freezer-refrigerator (e.g. for inclusion in a life cycle of a food
product, which is refrigerated, but not frozen), there is no adjustment in the surroundings, which can adjust for the
effect of the combination of the two functions. Thus, the inputs and outputs from the combined freezer-refrigerator
must somehow be allocated between the two functions. This may be done based on a measure of the relative
energy requirement for the two compartments, also known as the temperature-adjusted volume, calculated as:
V =V ×(t −t ) /(t − 5) ,
adj c r c r
where V is the volume of the compartment, t , the room temperature, t the temperature of the compartment, and
c r c
5 °C is the reference temperature.
Note that, if analysing freezer-refrigerators as products per se, the comparability of two freezer-refrigerators with
different ratios between volumes of the two compartments will eventually depend on the degree of substitutability in
the eyes of the consumer. In this case, it is not adequate to adjust for the difference by technical coefficients (e.g.
temperature-adjusted volumes).
5 Examples of establishing inputs and outputs of unit processes and system
boundaries
5.1 Context of the standard
ISO 14041 states in 5.3.5 that:
⎯ The initial identification is typically made using available data. Inputs and outputs should be more fully
identified after additional data are collected during the course of the study, and subjected to a sensitivity
analysis.
⎯ The criteria and the assumptions on which they are established shall be clearly described.
⎯ Several criteria are used in LCA practice to decide which inputs to be studied, including a) mass, b)
energy and c) environmental relevance.
a) mass: an appropriate decision, when using mass as a criterion, would require the inclusion in the study of all
inputs that cumulatively contribute more than a defined percentage to the mass input of the product system
being modelled;
b) energy: similarly, an appropriate decision, when using energy as a criterion, would require the inclusion in the
study those inputs that cumulatively contribute more than a defined percentage of the product system’s energy
inputs;
c) environmental relevance: decisions on environmental relevance criteria should be made to include inputs that
contribute more than an additional defined percentage to the estimated quantity of each individual data
category of the product system.
⎯ All of the selected inputs identified by this process should be modelled as elementary flows.
5.2 Overview
The goal of an LCA study provides direction for the selection of the individual data categories. The selection of
individual data categories may include a comprehensive listing of inputs and outputs or may be specific to the
particular questions that the study is examining.
Data categories from the system are listed in the goal and scope definition. Energy flows are typically included in
an LCA study since information on these flows are often readily available and energy flows may have a significant
effect on natural resource use and on emissions.
Decisions regarding the material flows that are selected for inclusion in the scope of an LCA study will impact on
the results. It is important to include all significant material flows that could affect the interpretation of the study.
The process to select material inputs, outputs and the system boundaries is outlined in Figure 3.
10 © ISO 2000 – All rights reserved

Determining the product
5.3
system's unit processes
Initial collection of data at
each unit processes
5.4
Initial estimate of material
and energy flows
5.5
5.6
Applying decision rules
Inputs / outputs and system
5.7
boundary established
Figure 3 – Overview of establishing inputs, outputs and system boundaries
5.3 Determining the product system’s unit processes and their boundaries
The unit processes that comprise a product system should be compiled for the product-supply and use chains,
consistent with the goal and scope of the study. Figure 4 shows a conceptual description of a unit process with its
associated inputs and outputs. An example of a unit process might be "aluminium smelting”, a part of a product
system for an aluminium product. This unit process transforms raw or intermediate material (refined alumina) inputs
associated with ancillary material, energy and environmental releases into a “intermediate product ” that is further
processed within the product system. With this information, specific processes that perform the transformations
may be established. Subsequently, a listing of specific reporting locations that are relevant to the goal of the study
is prepared.
In order to establish the unit process boundaries, the sites within the population of interest may be contacted to
determine the smallest portions of the product system for which data are available. Since there is variability in the
specific processes that are performed by a particular site, unit process boundaries are established with a view to
minimizing the need for allocation procedures.
Emissions
Raw (intermediate)
to air
material inputs
Ancillary material
Unit process
inputs
Intermediate product
Energy inputs
Coproduct
Emissions
to water
Emissions
Waste
to land
for treatment
Figure 4 – Conceptual example of unit process description
Another example of unit process description for white hollow glass production is shown in Figure 5 with associated
list of inputs and outputs.
12 © ISO 2000 – All rights reserved

Glass fragments
Hollow glass white
Raw materials*
Soda (Na CO )
2 3
Sewage
Sodium sulfate (Na CO )
2 4
Glass:
Calumite
White hollow glass
Ammonia (NH )
Waste from hollow glass
production
production
Sodium hydroxide (NaOH)
55% fragments
Lubricants
(Buwal 250, 1996)
Grease and oil;
Cooling water
emission to water
Electrical energy from public grid
Fossil fuel
Emissions to atmosphere**
Diesel Oil
- dolomite - ammonia
* Raw materials: ** Emissions to atmosphere:
- feldspar - hydrogen chloride
- limestone dust - hydrogen fluoride
- quartz sand - carbon dioxide
- carbon monoxide
- sulfur dioxide
- nitric oxide
- lead
- dust
Module: Glass: white hollow glass production, 55 % fragments (Buwal 250, 1996)
Section: packaging production
Input Material categories Unit Quantity
Glass fragments; secondary raw material Product from other systems kg 601,30
Dolomite; raw material Elementary flow kg 72,50
Feldspar; raw material Elementary flow kg 31,10
Limestone dust; raw material Elementary flow kg 27,00
Quartz sand; raw material Elementary flow kg 253,10
Soda (Na CO ) Intermediate product kg 62,80
2 3
Sodium sulfate (Na SO ) Intermediate product kg 3,20
2 4
Calumite Intermediate product kg 6,50
Ammonia (NH ) Intermediate product kg 0,30
Sodium hydroxide (NaOH 50%) Intermediate product kg 21,40
Lubricants Intermediate product kg 0,662
Cooling water Elementary flow m³ 1,70
Electrical energy from public grid (Swiss) Intermediate product kW·h 291,00
Diesel oil (production) Intermediate product kg 0,14
Fuel (integrated incineration ) Intermediate product kg 152,4
Output
Hollow glass white Intermediate product kg 1 000,00
Sewage Intermediate product m³ 1,68
Waste from hollow glass production Intermediate product kg 4,44
Special waste from hollow glass production Intermediate product kg 0,65
Ammonia; emission to atmosphere Elementary flow g 0,72
Hydrogen chloride; emission to atmosphere Elementary flow g 53,3
Hydrogen fluoride; emission to atmosphere Elementary flow g 14,80
Carbon dioxide; emission to atmosphere Elementary flow kg 521
Carbon monoxide; emission to atmosphere Elementary flow g 27,80
Sulfur dioxide; emission to atmosphere Elementary flow g 1 292,00
Nitric oxide; emission to atmosphere Elementary flow g 1 158,80
Lead; emission to atmosphere Elementary flow g 44,60
Dust; emission to atmosphere Elementary flow g 589,60
Grease and oil; emission to water Elementary flow g 42,00
Figure 5 – Example of unit process description for white hollow glass production
5.4 Initial collection of data at each unit processes
The data collection procedure may be guided by the results of an initial data availability survey involving a small
sample of the sites from which data eventually are going to be collected.
It may be a good idea to design and send to the suppliers a questionnaire, which they can copy and send on to
their suppliers. But a questionnaire alone is not enough. Even the most explicit questionnaire with examples and
explanations does not guarantee that everybody understands the questions in the same way. Therefore, the
answers must be treated with care. Contact by telephone, before and after sending the questionnaire, may
increase both the number of answers and the quality of the answers. For important data it may be necessary to
visit the company in order to ensure that the data is correct.
When working with foreign companies, special attention should be paid to units and abbreviations which may
appear obvious in one’s native tongue but may be incomprehensible or misleading to others, e.g. "bbl", "el", "ha",
"t", "ton". Ask that no abbreviations are used, and that SI units are used when relevant.
The general information requested for each unit processes may be structured as follows:
⎯ reference unit (e.g. "Data has been given per kilogram oil"). The reference unit of a unit process could be
one or more incoming or outgoing material or energy flows. The reference unit may also be a certain
amount of time (e.g. "annual production");
⎯ what the data includes, i.e. the beginning and the end of the unit process and whether or not the data
includes ancillary substances, packaging, cleaning, administration, marketing, research & development,
laboratory facilities, activities related to employees (heating, lighting, work clothes, transportation, canteen,
toilet facilities), machines and maintenance. It should also be stated whether the data are for normal
operating conditions only or includes also shut-down/start-up conditions and reasonably foreseeable or
emergency situations;
⎯ geographical location of the facility;
⎯ the applied technology/the technological level;
⎯ if the unit process produces more than one product, data relevant for the allocation of the environmental
exchanges, if allocation has been made and if so, how this was done.
The following information may need to be specified for every single input or output:
⎯ the period during which data has been collected, and whether the data represents an average of the
whole indicated period, or only parts of it;
⎯ how data has been collected and how representative they are (e.g. "1 sample per month", "continuous
measurements", "calculated from recorded consumption", "estimated"), including number of measuring
sites, measuring methods, calculation methods (including how the average is calculated), and the
significance of possible exclusions and assumptions;
⎯ name and affiliation of the person responsible for the data collection and the date of collection;
⎯ validation procedure.
The inputs and outputs should, as far as possible, be given with indication of uncertainty (preferably with statistical
information such as standard deviation and type of distribution, but at least as an interval). It should be stated
where an ingoing flow is coming from (e.g. "water from private waterworks") as well as the destination of outgoing
flows (e.g. "to waste water treatment facility"). It should be easy to see if the flow comes from/goes to nature (e.g.
purified waste water to a stream) or to/from another technical process (e.g. sludge to agricultural land). For certain
flows it is also important to state the quality (e.g. dry matter content, oil content, energy content).
14 © ISO 2000 – All rights reserved

Transports are preferably reported as separate unit processes. A transport system can be divided in the fixed
infrastructure (e.g. roads, lines, pipes, ports, stations), the movable carrier (e.g. truck, plane, container) and the
energy source (e.g. diesel, electricity). For each mode of conveyance the following values may be reported:
⎯ The energy type and amount in relation to both distance (e.g. in km) and transport performance ( mass ×
distance, e.g. kg·km),
⎯ The environmental exchanges in relation to both distance and transport performance,
⎯ The average load percentages including empty return trips, and the adjustment factors used for this.
5.5 Initial estimate of material and energy flows
Based on the initial data collection, an initial estimate of the material and energy flows is prepared as shown by the
example of glass bottles in Tables 4 and 5.
Table 4 – Solids inputs for glass bottles listed decreasing order of content
Material Amount Unit Running total
a
Coal (lignite and pit coal) 53,1 kg 53,1
a
Crude oil 43,7 kg 96,8
a
Sand 8,7 kg 105,5
a
Scrap of tinplate and steel from other systems 7,3 kg 112,8
a
Limestone and lime 6,9 kg 119,7
a
Broken glass pieces from other systems 6,8 kg 126,5
3 a
Natural gas (6.22 m ) 4,9 kg 131,4
a
Sodium hydroxide 4,5 kg 135,9
a
Wood 4,0 kg 139,9
a
Sodium chloride 2,7 kg 142,6
a
Sulfuric acid 1,1 kg 143,7
a
Glue 0,7 kg 144,4
b
Kaolin and binder 0,6 kg
b
Soap 0,5 kg
Sodium sulphate 0,06 kg
Hypochlorite 0,05 kg
Roller oil 0,048 kg
Chlorine 0,030 kg
Sodium chlorate 0,030 kg
Oxygen 0,030 kg
b
Tin 0,025 kg
Anthracite coal 0,020 kg
Sulfur dioxide 0,020 kg
Not specified 0,012 kg
Peroxide 0,005 kg
Hydrogen 0,002 kg
Cobalt oxide 0,002 kg
Total 145,8 kg
b
+ Printing ink and colours  no data available
+ Water 7 000 litres
a
See text under decision rules for mass contribution in 5.6.1
b
See text under decision rules for environmental relevance in 5.6.3
Table 5 – Energy consuming processes in the life cycle stages of
...


SLOVENSKI STANDARD
01-november-2008
Ravnanje z okoljem - Ocenjevanje življenjskega cikla - Primeri uporabe ISO 14041
za opredelitev cilja in namena ter inventarizacijo
Environmental management - Life cycle assessment - Examples of application of ISO
14041 to goal and scope definition and inventory analysis
Management environnemental - Analyse du cycle de vie - Exemples d'application de
l'ISO 14041 traitant de la définition de l'objectif et du champ d'étude et analyse de
l'inventaire
Ta slovenski standard je istoveten z: ISO/TR 14049:2000
ICS:
13.020.10 Ravnanje z okoljem Environmental management
13.020.60 Življenjski ciklusi izdelkov Product life-cycles
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

TECHNICAL ISO/TR
REPORT 14049
First edition
2000-03-15
Environmental management— Life cycle
assessment — Examples of application of
ISO 14041 to goal and scope definition and
inventoryanalysis
Management environnemental — Analyse du cycle de vie — Exemples
d'application de l'ISO 14041 traitant de la définition de l'objectif
et du champ d'étude et analyse de l'inventaire
Reference number
©
ISO 2000
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 734 10 79
E-mail copyright@iso.ch
Web www.iso.ch
Printed in Switzerland
ii © ISO 2000 – All rights reserved

Page
Contents
1 Scope. 1
2 Technical Introduction . 1
3 Examples of developing functions, functional units and reference flows. 3
4 Examples of distinguishing functions of comparative systems . 6
5 Examples of establishing inputs and outputs of unit processes and system boundaries . 10
6 Examples of avoiding allocation. 17
7 Examples of allocation. 21
8 Example of applying allocation procedures for recycling. 24
9 Examples of conducting data quality assessment . 34
10 Examples of performing sensitivity analysis . 39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
The main task of technical committees is to prepare International Standards. Draft International Standards adopted
by the technical committees are circulated to the member bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the member bodies casting a vote.
In exceptional circumstances, when a technical committee has collected data of a different kind from that which is
normally published as an International Standard ("state of the art", for example), it may decide by a simple majority
vote of its participating members to publish a Technical Report. A Technical Report is entirely informative in nature
and does not have to be reviewed until the data it provides are considered to be no longer valid or useful.
ISO/TR 14049 was prepared by Technical Committee ISO/TC 207, Environmental management, Subcommittee
SC 5, Life cycle assessment.
iv © ISO 2000 – All rights reserved

Introduction
The heightened awareness of the importance of environmental protection, and the possible impacts associated
with products manufactured and consumed, has increased the interest in the development of methods to better
comprehend and reduce these impacts. One of the techniques being developed for this purpose is Life Cycle
Assessment (LCA). To facilitate a harmonized approach, a family of standards on life cycle assessment (LCA),
including ISO 14040, ISO 14041, ISO 14042 and ISO 14043 and this document are being developed by ISO.
These International Standards describe principles of conducting and reporting LCA studies with certain minimal
requirements.
This Technical Report provides supplemental information to the International Standard, ISO 14041, Environmental
management - Life cycle assessment - Goal and scope definition and life cycle inventory analysis, based on
several examples on key areas of the Standard in order to enhance the understanding of the requirements of the
standard.
Methodological requirements for conducting LCA studies are provided in the following International Standards
concerning the various phases of LCA:
⎯ ISO 14040: Environmental management - Life cycle assessment - Principles and framework.
⎯ ISO 14041: Environmental management - Life cycle assessment - Goal and scope definition and
inventory analysis.
⎯ ISO 14042: Environmental management - Life cycle assessment - Life cycle impact assessment.
⎯ ISO 14043: Environmental management - Life cycle assessment - Life cycle interpretation.
TECHNICAL REPORT ISO/TR 14049:2000(E)
Environmental management — Life cycle assessment —
Examples of application of ISO 14041 to goal and scope
definition and inventory analysis
1 Scope
This Technical Report provides examples about practices in carrying out an Life Cycle Inventory analysis (LCI) as
a means of satisfying certain provisions of ISO 14041. These examples are only a sample of the possible cases
satisfying the provisions of the standard. They should be read as offering “a way” or “ways” rather than the “unique
way” of applying the standard. Also they reflect only certain portions of an LCI study.
It should be noted that the examples presented in this Technical Report are not exclusive and that many other
examples exist to illustrate the methodological issues described. The examples are only portions of a complete LCI
study.
2 Technical Introduction
The examples focus on six key areas of ISO 14041 as indicated in Table 1.
In some key areas there is more than one example. The reason is that in many cases more than one practice
exists. The decision about the application of one or the other practices is goal dependent and can vary e.g. from the
product system under investigation or in the stages over the life cycle. The examples are described in the context
of the corresponding provisions of the standard and with the specific use.
In the description of the different cases, whenever possible, the following structure has been adopted :
– Context of the standard
– Overview
– Description of the examples
Table 1 – Cross references between ISO 14041 and examples in this document
ISO 14041 Examples in ISO/TR 14049
0 Introduction
1 Scope
2 Normative reference
3 Terms and definitions
4 LCI components
4.1 General
4.2 Product system
4.3 Unit process
4.4 Data categories
4.5 Modelling product systems
5 Definition of goal and scope
5.1 General
5.2 Goal of the study
5.3 Scope of the study
5.3.1 General
5.3.2 Function, functional unit and 3 Examples of developing functions, functional units
reference flow and reference flows
4 Examples of distinguishing functions of
comparative systems
5.3.3 Initial system boundaries
5.3.4 description of data categories
5.3.5 Criteria for initial inclusion of 5 Examples of establishing the inputs, outputs and
inputs and outputs boundary of unit process
10 Examples of performing sensitivity analysis
5.3.6 Data quality requirements 9 Examples of conducting data quality assessment
5.3.7 Critical review
6 Inventory analysis
6.1 General
6.2 Preparing for data collection
6.3 Data collection 9 Examples of conducting data quality assessment
6.4 Calculation procedures
6.4.1 General
6.4.2 Validation of data 9 Examples of conducting data quality assessment
6.4.3 Relating data to the unit
process
6.4.4 Relating data to functional unit 3 Examples of developing functions, functional
and data aggregation units and reference flows
6.4.5 Refining the system boundaries 10 Examples of performing sensitivity analysis
6.5 Allocation of flows and releases
6.5.1 General
6.5.2 Allocation principles 6 Examples of avoiding allocation
6.5.3 Allocation procedure 6 Examples of avoiding allocation
7 Examples of applying allocation
6.5.4 Allocation procedures for reuse 8 Examples of applying allocation procedures for
and recycling recycling
7 Limitation of LCI (interpreting LCI results) 9 Examples of conducting data quality assessment
10 Examples of performing sensitivity analysis
8 Study report
ANNEX
A Example of a data collection sheet
B Examples of different allocation
procedures
2 © ISO 2000 – All rights reserved

3 Examples of developing functions, functional units and reference flows
3.1 Context of the standard
ISO 14041 states in 5.3.2 that:
⎯ In defining the scope of an LCA study, a clear statement on the specification of the functions (performance
characteristics) of the product shall be made.
⎯ The functional unit defines the quantification of these identified functions. The functional unit shall be
consistent with the goal and scope of the study.
⎯ One of the primary purposes of a functional unit is to provide a reference to which the input and output
data are normalized (in a mathematical sense). Therefore the functional unit shall be clearly defined and
measurable.
⎯ Having defined the functional unit, the amount of product which is necessary to fulfil the function shall be
quantified. The result of this quantification is the reference flow.
and in 6.4.4 that:
⎯ Based on the flow chart and systems boundaries, unit processes are interconnected to allow calculations
on the complete system. This is accomplished by normalizing the flows of all unit processes in the system
to the functional unit. The calculation should result in all system input and output data being referenced to
the functional unit.
3.2 Overview
In defining a functional unit and determining the reference flows, the following steps can be distinguished:
⎯ identification of functions;
⎯ selection of functions and definition of functional unit;
⎯ identification of performance of the product and determination of the reference flow.
The sequence of these steps is depicted in Figure 1 using the example of paint. This example is also used in the
following text (3.3 to 3.5). Further examples are given in 3.6.
3.3
Product Functions
Identification of functions
-Surface protection
Wall paint
- Colouring
- etc.
3.4
Relevant function (s) for the particular LCA
Selection of functions and
definition of functional unit
Colouring wall of type A with paint
Functional unit
Colouring 20 m of wall type A with opacity
98% and durability of 5 years
3.5
Identification of performance of
Performance of the product
the product and determination
of the reference flow
Paint A covers 8,7 m per litre
Reference flow
2,3 l of paint A
Note: It is possible to start with either the product or with the function itself.
Figure 1 – Overview of the example
3.3 Identification of functions
The purpose of the functional unit is to quantify the service delivered by the product system. The first step is thus to
identify the purpose served by the product system, i.e. its function or functions.
The starting point for this procedure may be a specific product to be studied (e.g. wall paint) or it may be the final
need or goal, which in some cases may be fulfilled by several distinct products (e.g. wall decoration, which may be
fulfilled by both paint and wallpaper or a combination of these).
The functions are typically related to specific product or process properties, each of which may:
⎯ fulfil specific needs and thereby have a use value, which typically creates economic value to the supplier
of the product,
⎯ affect the functioning of other economic systems (e.g. wallpaper may have a - small - insulation effect,
thus affecting the heat requirement of the building).
4 © ISO 2000 – All rights reserved

3.4 Selection of functions and definition of functional unit
Not all functions may be relevant for a particular LCA. Thus, out of all the possible functions, the relevant ones
must be identified.
For a solid interior wall, for example, surface protection may be unnecessary, while colouring is a relevant function
of paint.
Subsequently, the relevant functions are quantified in the functional unit, which may be expressed as a
combination of different parameters.
For wall colouring, the functional unit will typically have to specify the area to be covered (e.g. 20 m ), the type of
wall (especially regarding its absorption and binding properties), the ability of the paint to hide the underlying
surface (e.g. 98 % opacity), and its useful life (e.g. 5 years).
In the case of multifunctional units, the different quantities are sometimes linked, e.g. a wall covering insulation
material may be available with a pre-coloured surface, which makes colouring unnecessary, thus delivering both
insulation and colouring. The functional unit could then be:
"20 m wall covering with a heat resistance of 2 m·K/W, with a coloured surface of 98 % opacity, not requiring any
other colouring for 5 years".
Other examples of multifunctional units are given in Table 2.
Table 2 – Examples of functional units for systems with multiple functions.
Example No. (1) (2)
System Paper recycling Cogeneration
Functions - Recovery of waste paper, and - Generation of electric power, and
- Production of de-inked pulp - Production of steam
- etc. - etc.
Selected function - Recovery of waste paper, or - Generation of electric power, or
for a particular LCA
- Production of de-inked pulp - Production of steam
Functional unit - Recovery of 1 000 kg waste paper, - Generation of 100 MW electricity, or
or
- Production of 300 000 kg steam per
- Production of 1 000 kg pulp for hour at 125 °C and 0,3 MPa (3 bar)
newsprint
3.5 Identification of performance of the product and determination of the reference flow
Having defined a certain functional unit, the next task is to determine the quantity of product which is necessary to
fulfil the function quantified by the functional unit. This reference flow is related to the product's performance, and is
typically determined as the result of a standardized measurement method. Of course, the nature of this
measurement and calculation depends on the studied product.
For paint, the reference flow is typically expressed as the amount of litres necessary for covering the surface area
as defined by the functional unit. For example, in a standardized test, paint A may be determined to cover 8,7 m
per litre (i.e. the performance of the product). Using the example illustrated in Figure 1, this requires 2,3 l to cover
the 20 m of the functional unit, provided that the conditions in the standardized test are similar to those required by
the functional unit (with regard to surface type and opacity).
The functional unit may already be expressed in terms of quantities of products, so that the functional unit and the
reference flow are identical. Table 2 gives examples of such functional units, which are already expressed in terms
of quantities of products.
3.6 Additional examples
The following three examples further illustrate the procedure in developing functions, functional units, and
reference flows.
Table 3 – Further examples of developing functions, functional units, and reference flows
Example No. (1) (2) (3)
Product Light bulb Bottle Hand drying
Functions - Providing illumination - Protection of beverage - Drying hands
- Generating heat - Facilitating handling - Removing bacteria
-etc. - Part of product image -etc.
-etc.
Selected function Providing illumination Protection of beverage Drying hands (hygienic
for a particular (outdoor lamp only) function judged
LCA irrelevant)
Functional unit 300 lx in 50 000 h 50 000 l of beverage 1 000 pairs of hands
matching the daylight protected between dried
spectrum at 5 600 K. tapping and consumption
Performance of 100 lx with a lifetime of 0,5 l one-way bottle One paper towel for
the product 10 000 h drying one hand
Reference flow 15 daylight bulbs of 100 000 one-way bottles 2 000 paper towels
100 lx with a lifetime of of volume 0,5 l
10 000 hours
4 Examples of distinguishing functions of comparative systems
4.1 Context of the standard
ISO 14041 states in 5.3.2 that:
⎯ Comparisons between systems shall be made on the basis of the same function, quantified by the same
functional unit in the form of their reference flows.
⎯ If additional functions of any of the systems are not taken into account in the comparison of functional
units, then these omissions shall be documented. For example, systems A and B perform functions x and
y which are represented by the selected functional unit, but system A also performs function z, which is
not represented in the functional unit. It shall then be documented that function z is excluded from its
functional unit. As an alternative, systems associated with the delivery of function z may be added to the
boundary of system B to make the systems more comparable. In these cases, the processes selected
shall be documented and justified.
4.2 Overview
When comparing product systems, special attention has to be made to confirm that the comparison is based on the
same functional unit and equivalent methodological considerations, such as performance, system boundaries, data
quality, allocation procedures, decision rules on evaluating inputs and outputs. In this chapter, some possible
approaches will be described and illustrated by examples.
The general steps to be taken in comparative studies are illustrated in Figure 2.
6 © ISO 2000 – All rights reserved

4.3
Identification of functions (as in 3.3.)
Identification and
Selection of functions
Selection of functions and definition of functional
unit (as in 3.4)
Identification of performance of the product and
4.4
determination of the reference flows
Equivalence of reference flows
Yes
Are the reference
Can be compared
Flows equivalent?
No
No
Can the reference flows
Cannot be compared
be made equivalent?
Yes
Adjusting performance differences
4.5
Adjusting for performance differences
Figure 2 – Overview of the steps in comparative studies
4.3 Identification and selection of functions
The definition of the functional unit is closely bound to the goal of the study. If the goal is to compare product
systems, special care will have to be paid in order to ensure that the comparison is valid, that any additional
functions are identified and described, and that all relevant functions are taken into account.
Example 1: A study on waste management should include other functions than simply disposing of waste (i.e. the functions
performed by the recycling systems in providing recycled material or energy).
Example 2: A study on electric household equipment should include the waste heat delivered to the building in which the
equipment operates, as this influence the amount of heating and/or cooling required.
For comparative studies, the selection of functions becomes much more important than in non-comparative studies.
Referring to the functions in Table 3:
⎯ For bottles (example 2), leaving out of the image function of the packaging may lead to comparison of
packagings that are technically similar (i.e. containing the same volume of beverage), but which the
producer or customer will not accept as comparable.
⎯ For hand-drying systems (example 3), leaving out the hygienic function may be regarded as
unacceptable, e.g. in the food industry, where the bacteria-removing ability of paper towels may be
regarded as such an advantage that a comparison to electrical hand-drying systems may not even be
considered.
4.4 Equivalence of reference flows
The functional unit of the paint example from Clause 3 was "colouring 20 m of wall type A with opacity 98 % and
durability of 5 years". This functional unit can be supplied by several different reference functions:
2,3 l of paint A,
1,9 l of paint B,
1,7 l of paint C, etc.
These reference flows will have been calculated based on a test using standard conditions, concerning e.g. surface
type and opacity.
The standardised test conditions and measurement methods must be appropriate to the intended comparison: In
the hand drying example (example 3 in Table 3), it may be irrelevant to use a standardized test based on the
technical properties of the paper such as mass, absorption-power and tensile strength, if the actual weight of paper
used depends on the dispenser design. A more appropriate measure would then be data collected by weighing the
paper stock at the start and the end of an adequate period in which the number of hands dried are determined by
electronic surveillance of actual wash basins located in relevant institutions. Similarly, technical specifications of an
electrical hand drier, such as the volume of air and its temperature, may be irrelevant as a basis for calculating the
reference function, if the actual running time of the device is fixed by other factors, e.g. a built-in timer. Then, all
that is needed is the running time and the electrical capacity of the equipment.
In the case of the light bulb (example 1 in Table 3), the functional unit of "300 lx in 50 000 h" may be provided by:
⎯ 5 times 3 bulbs of 100 lx with a lifetime of 10 000 h each, or
⎯ 10 times 2 bulbs of 150 lx with a lifetime of 5 000 h each.
The underlying premises of comparing 3 bulbs of 100 lx with 2 bulbs of 150 lx are:
⎯ that the light spectrum of the two bulb types are comparable (or that the difference is acceptable to the
user),
⎯ that the 3 and 2 bulbs, respectively, can be placed so that the distribution of light is equal (or that the
difference is acceptable to the user),
⎯ that the sockets and other fixtures are not affected by the choice (in which case they would have to be
included in the comparison).
Also, the two light bulbs were regarded as comparable in spite of their difference in lifetime. This difference is
simply taken into account in the calculation of the reference flow. However, for long-lived products, such as
refrigerators with lifetimes of 10 or 20 years, technology development may be a factor that cannot be disregarded.
One refrigerator with a lifetime of 20 years cannot simply be compared to two successive, present-day refrigerators
with a lifetime of 10 years. The refrigerators available 10 years from now are certain to be more energy efficient (i.e.
lower energy input per functional unit) than the present, the energy efficiency of the second refrigerator of the 10 +
10 option must be determined by a trend projection, while the energy efficiency of the 20 years option is fixed.
The 100 000 one-way bottles of volume 0,5 l (example 2 in Table 3) may technically fulfil the same function of
protecting 50 000 l of beverage, as would 12 500 returnable bottles of volume 0,4 l with a reuse rate of 90 %.
However, in some situations the consumer may not always be able to distinguish between bottles of different
volumes or masses. If the consumer regards 1 bottle equal to 1 bottle, the total consumption of beverage will
decrease when the returnable bottles are introduced. In this case, the packaging cannot be studied independent of
its contents. This is an example of the "No"-arrow leaving to the right in Figure 2. Of course, the goal of the study
may then be redefined allowing for a comparison of beverage plus packaging taking into account the changes in
consumption.
Another example of non-comparable functions (the "No"-arrow to the right in Figure 2), is that of two freezers, one
with and one without quick-freeze option. If the quick-freeze option is regarded as an essential function by the
consumer, the two freezers are simply not comparable and they cannot be made comparable by any calculation or
system expansion. The same is true for the examples given at the end of 4.3.
8 © ISO 2000 – All rights reserved

In some systems with multiple functions, such as those in Table 2, the functions may be separated and delivered
by several systems:
⎯ Disposing the waste paper in an incineration plant and producing the pulp from virgin fibres may provide
the same functional unit as the paper recycling system.
⎯ Separate power and district heating units, respectively producing only electric power and only heat, may
deliver the same functional unit as the co-generation plant.
However, some functions may be so intimately linked that separation is not possible. For example, the heat
generation of a light bulb cannot be detached from its primary function.
In other situations, separations of two linked functions may be technically possible, but due to other aspects, the
two separate functions may still not be regarded as comparable to the joint functions. An example of this is the
combined freezer-refrigerator, which may or may not be compared to a freezer and separate refrigerator,
depending on the acceptability of this choice to the consumer (the latter option will typically take up more space
than a combined option with the same internal volumes).
Note that in most of the examples above, the equivalence of two products is determined by user acceptance. This
acceptance, and thus whether two products are regarded as comparable or not, may be influenced by the price of
the alternatives and by the additional information given along with the products, e.g. information on their
environmental performance. Thus, for the purposes of product development or strategic management, it may be
reasonable to compare two products which are not immediately regarded as equivalent, but where it is assumed
that they will be regarded as equivalent under specific conditions of price and information.
4.5 Adjusting for performance differences
In those cases where the reference flows are immediately equivalent (as in the paint example at the top of 4.4) no
adjustment is necessary.
In other cases, adjustment is necessary. The adjustment procedure follows the same principles as for co-product
allocation, i.e. the preferred option is modification of the system boundaries to avoid the performance difference. In
some cases, when this modification is not possible or feasible, allocation may be applied. In this section, examples
are given of both options.
In the case of the light bulb in 4.4, it may be necessary to adjust the one of the systems to be compared (expanding
it with an extra bulb socket). Another, more radical, example of such a system expansion or reconsideration of the
studied functions, is that mentioned under the bottle example in 4.4, where the inclusion of the beverage was
necessary.
A comparison of refrigerators may be based on their internal and/or external volume. The primary function is
obviously related to their internal volume, but the external volume may a determining function, if the refrigerator is
to be fitted into an existing kitchen. If the external volume is required to be equal, the internal volume may differ
because of differences in insulation thickness. This can only be adjusted for by assuming differences in behaviour
of the user (e.g. shopping more often, storing certain items outside the refrigerator, adding another secondary
refrigerator elsewhere in the house). Each of these changes in behaviour will involve changes in different
processes, which then have to be included in the study. If, on the other hand, the internal volume is required to be
equal, a change in insulation thickness may require adjustments in the physical surroundings of the refrigerator (the
other kitchen furniture). If both the internal and the external volumes are required to be equal, obviously no
adjustment is possible which can accommodate the change in isolation thickness. This shows that the choice of
required functions also determines the possible alternatives, which can be included in the study.
Adjustment by system expansion, as in the examples above, is not always possible. If one is studying only the
freezing or refrigeration function of a combined freezer-refrigerator (e.g. for inclusion in a life cycle of a food
product, which is refrigerated, but not frozen), there is no adjustment in the surroundings, which can adjust for the
effect of the combination of the two functions. Thus, the inputs and outputs from the combined freezer-refrigerator
must somehow be allocated between the two functions. This may be done based on a measure of the relative
energy requirement for the two compartments, also known as the temperature-adjusted volume, calculated as:
V =V ×(t −t ) /(t − 5) ,
adj c r c r
where V is the volume of the compartment, t , the room temperature, t the temperature of the compartment, and
c r c
5 °C is the reference temperature.
Note that, if analysing freezer-refrigerators as products per se, the comparability of two freezer-refrigerators with
different ratios between volumes of the two compartments will eventually depend on the degree of substitutability in
the eyes of the consumer. In this case, it is not adequate to adjust for the difference by technical coefficients (e.g.
temperature-adjusted volumes).
5 Examples of establishing inputs and outputs of unit processes and system
boundaries
5.1 Context of the standard
ISO 14041 states in 5.3.5 that:
⎯ The initial identification is typically made using available data. Inputs and outputs should be more fully
identified after additional data are collected during the course of the study, and subjected to a sensitivity
analysis.
⎯ The criteria and the assumptions on which they are established shall be clearly described.
⎯ Several criteria are used in LCA practice to decide which inputs to be studied, including a) mass, b)
energy and c) environmental relevance.
a) mass: an appropriate decision, when using mass as a criterion, would require the inclusion in the study of all
inputs that cumulatively contribute more than a defined percentage to the mass input of the product system
being modelled;
b) energy: similarly, an appropriate decision, when using energy as a criterion, would require the inclusion in the
study those inputs that cumulatively contribute more than a defined percentage of the product system’s energy
inputs;
c) environmental relevance: decisions on environmental relevance criteria should be made to include inputs that
contribute more than an additional defined percentage to the estimated quantity of each individual data
category of the product system.
⎯ All of the selected inputs identified by this process should be modelled as elementary flows.
5.2 Overview
The goal of an LCA study provides direction for the selection of the individual data categories. The selection of
individual data categories may include a comprehensive listing of inputs and outputs or may be specific to the
particular questions that the study is examining.
Data categories from the system are listed in the goal and scope definition. Energy flows are typically included in
an LCA study since information on these flows are often readily available and energy flows may have a significant
effect on natural resource use and on emissions.
Decisions regarding the material flows that are selected for inclusion in the scope of an LCA study will impact on
the results. It is important to include all significant material flows that could affect the interpretation of the study.
The process to select material inputs, outputs and the system boundaries is outlined in Figure 3.
10 © ISO 2000 – All rights reserved

Determining the product
5.3
system's unit processes
Initial collection of data at
each unit processes
5.4
Initial estimate of material
and energy flows
5.5
5.6
Applying decision rules
Inputs / outputs and system
5.7
boundary established
Figure 3 – Overview of establishing inputs, outputs and system boundaries
5.3 Determining the product system’s unit processes and their boundaries
The unit processes that comprise a product system should be compiled for the product-supply and use chains,
consistent with the goal and scope of the study. Figure 4 shows a conceptual description of a unit process with its
associated inputs and outputs. An example of a unit process might be "aluminium smelting”, a part of a product
system for an aluminium product. This unit process transforms raw or intermediate material (refined alumina) inputs
associated with ancillary material, energy and environmental releases into a “intermediate product ” that is further
processed within the product system. With this information, specific processes that perform the transformations
may be established. Subsequently, a listing of specific reporting locations that are relevant to the goal of the study
is prepared.
In order to establish the unit process boundaries, the sites within the population of interest may be contacted to
determine the smallest portions of the product system for which data are available. Since there is variability in the
specific processes that are performed by a particular site, unit process boundaries are established with a view to
minimizing the need for allocation procedures.
Emissions
Raw (intermediate)
to air
material inputs
Ancillary material
Unit process
inputs
Intermediate product
Energy inputs
Coproduct
Emissions
to water
Emissions
Waste
to land
for treatment
Figure 4 – Conceptual example of unit process description
Another example of unit process description for white hollow glass production is shown in Figure 5 with associated
list of inputs and outputs.
12 © ISO 2000 – All rights reserved

Glass fragments
Hollow glass white
Raw materials*
Soda (Na CO )
2 3
Sewage
Sodium sulfate (Na CO )
2 4
Glass:
Calumite
White hollow glass
Ammonia (NH )
Waste from hollow glass
production
production
Sodium hydroxide (NaOH)
55% fragments
Lubricants
(Buwal 250, 1996)
Grease and oil;
Cooling water
emission to water
Electrical energy from public grid
Fossil fuel
Emissions to atmosphere**
Diesel Oil
- dolomite - ammonia
* Raw materials: ** Emissions to atmosphere:
- feldspar - hydrogen chloride
- limestone dust - hydrogen fluoride
- quartz sand - carbon dioxide
- carbon monoxide
- sulfur dioxide
- nitric oxide
- lead
- dust
Module: Glass: white hollow glass production, 55 % fragments (Buwal 250, 1996)
Section: packaging production
Input Material categories Unit Quantity
Glass fragments; secondary raw material Product from other systems kg 601,30
Dolomite; raw material Elementary flow kg 72,50
Feldspar; raw material Elementary flow kg 31,10
Limestone dust; raw material Elementary flow kg 27,00
Quartz sand; raw material Elementary flow kg 253,10
Soda (Na CO ) Intermediate product kg 62,80
2 3
Sodium sulfate (Na SO ) Intermediate product kg 3,20
2 4
Calumite Intermediate product kg 6,50
Ammonia (NH ) Intermediate product kg 0,30
Sodium hydroxide (NaOH 50%) Intermediate product kg 21,40
Lubricants Intermediate product kg 0,662
Cooling water Elementary flow m³ 1,70
Electrical energy from public grid (Swiss) Intermediate product kW·h 291,00
Diesel oil (production) Intermediate product kg 0,14
Fuel (integrated incineration ) Intermediate product kg 152,4
Output
Hollow glass white Intermediate product kg 1 000,00
Sewage Intermediate product m³ 1,68
Waste from hollow glass production Intermediate product kg 4,44
Special waste from hollow glass production Intermediate product kg 0,65
Ammonia; emission to atmosphere Elementary flow g 0,72
Hydrogen chloride; emission to atmosphere Elementary flow g 53,3
Hydrogen fluoride; emission to atmosphere Elementary flow g 14,80
Carbon dioxide; emission to atmosphere Elementary flow kg 521
Carbon monoxide; emission to atmosphere Elementary flow g 27,80
Sulfur dioxide; emission to atmosphere Elementary flow g 1 292,00
Nitric oxide; emission to atmosphere Elementary flow g 1 158,80
Lead; emission to atmosphere Elementary flow g 44,60
Dust; emission to atmosphere Elementary flow g 589,60
Grease and oil; emission to water Elementary flow g 42,00
Figure 5 – Example of unit process description for white hollow glass production
5.4 Initial collection of data at each unit processes
The data collection procedure may be guided by the results of an initial data availability survey involving a small
sample of the sites from which data eventually are going to be collected.
It may be a good idea to design and send to the suppliers a questionnaire, which they can copy and send on to
their suppliers. But a questionnaire alone is not enough. Even the most explicit questionnaire with examples and
explanations does not guarantee that everybody understands the questions in the same way. Therefore, the
answers must be treated with care. Contact by telephone, before and after sending the questionnaire, may
increase both the number of answers and the quality of the answers. For important data it may be necessary to
visit the company in order to ensure that the data is correct.
When working with foreign companies, special attention should be paid to units and abbreviations which may
appear obvious in one’s native tongue but may be incomprehensible or misleading to others, e.g. "bbl", "el", "ha",
"t", "ton". Ask that no abbreviations are used, and that SI units are used when relevant.
The general information requested for each unit processes may be structured as follows:
⎯ reference unit (e.g. "Data has been given per kilogram oil"). The reference unit of a unit process could be
one or more incoming or outgoing material or energy flows. The reference unit may also be a certain
amount of time (e.g. "annual production");
⎯ what the data includes, i.e. the beginning and the end of the unit process and whether or not the data
includes ancillary substances, packaging, cleaning, administration, marketing, research & development,
laboratory facilities, activities related to employees (heating, lighting, work clothes, transportation, canteen,
toilet facilities), machines and maintenance. It should also be stated whether the data are for normal
operating conditions only or includes also shut-down/start-up conditions and reasonably foreseeable or
emergency situations;
⎯ geographical location of the facility;
⎯ the applied technology/the technological level;
⎯ if the unit process produces more than one product, data relevant for the allocation of the environmental
exchanges, if allocation has been made and if so, how this was done.
The following information may need to be specified for every single input or output:
⎯ the period during which data has been collected, and whether the data represents an average of the
whole indicated period, or only parts of it;
⎯ how data has been collected and how representative they are (e.g. "1 sample per month", "continuous
measurements", "calculated from recorded consumption", "estimated"), including number of measuring
sites, measuring methods, calculation methods (including how the average is calculated), and the
significance of possible exclusions and assumptions;
⎯ name and affiliation of the person responsible for the data collection and the date of collection;
⎯ validation procedure.
The inputs and outputs should, as far as possible, be given with indication of uncertainty (preferably with statistical
information such as standard deviation and type of distribution, but at least as an interval). It should be stated
where an ingoing flow is coming from (e.g. "water from private waterworks") as well as the destination of outgoing
flows (e.g. "to waste water treatment facility"). It should be easy to see if the flow comes from/goes to nature (e.g.
purified waste water to a stream) or to/from another technical process (e.g. sludge to agricultural land). For certain
flows it is also important to state the quality (e.g. dry matter content, oil content, energy content).
14 © ISO 2000 – All rights reserved

Transports are preferably reported as separate unit processes. A transport system can be divided in the fixed
infrastructure (e.g. roads, lines, pipes, ports, stations), the movable carrier (e.g. truck, plane, container) and the
energy source (e.g. diesel, electricity). For each mode of conveyance the following values may be reported:
⎯ The energy type and amount in relation to both distance (e.g. in km) and transport performance ( mass ×
distance, e.g. kg·km),
⎯ The environmental exchanges
...


RAPPORT ISO/TR
TECHNIQUE 14049
Première édition
2000-03-15
Management environnemental — Analyse
du cycle de vie — Exemples d'application
de l'ISO 14041 traitant de la définition de
l'objectif et du champ d'étude et analyse de
l'inventaire
Environmental management — Life cycle assessment — Examples of
application of ISO 14041 to goal and scope definition and inventory
analysis
Numéro de référence
©
ISO 2000
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier peut
être imprimé ou visualisé, mais ne doit pas être modifiéà moins que l'ordinateur employéà cet effet ne bénéficie d'une licence autorisant
l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées acceptent de fait la
responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute responsabilité en la
matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la créationduprésent fichier PDF sont disponibles dans la rubrique General Info du
fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir l'exploitation de
ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation, veuillez en informer le
Secrétariat central à l'adresse donnée ci-dessous.
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l’ISO à
l’adresse ci-aprèsouducomité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch
Imprimé en Suisse
ii © ISO 2000 – Tous droits réservés

Sommaire
Introduction.v
1 Domaine d'application.1
2 Introduction technique.1
3 Exemples de développement de fonctions, d'unités fonctionnelles et de flux de référence .3
4 Exemples de différenciation des fonctions des systèmes comparatifs .6
5 Exemples de détermination d'entrants et de sortants de processus élémentaires et frontières
du système .10
6 Exemples pour éviter une imputation .17
7 Exemples d'imputation.22
8 Exemple d'application des règles d'imputation pour le recyclage.25
9 Exemples de réalisation d'évaluation de la qualité des données.36
10 Exemples de réalisation d'analyse de sensibilité.40
Avant propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication
comme Normes internationales requiert l'approbation de 75 % au moins des comités membres votants.
Exceptionnellement, lorsqu'un comité technique a réuni des données de nature différente de celles qui sont
normalement publiées comme Normes internationales (ceci pouvant comprendre des informations sur l'état de la
technique par exemple), il peut décider, à la majorité simple de ses membres, de publier un Rapport technique. Les
Rapports techniques sont de nature purement informative et ne doivent pas nécessairement être révisés avant que
les données fournies ne soient plus jugées valables ou utiles.
L'ISO/TR 14049 a étéélaboré par le comité technique ISO/TC 207, Management environnemental, sous-comité
SC 5, Analyse du cycle de vie.
iv © ISO 2000 – Tous droits réservés

Introduction
La sensibilisation accrue de l'importance de la protection de l'environnement, et les éventuels impacts associés à la
fabrication et à la consommation de produits, a augmenté l'intérêt porté au développement de méthodes
permettant de mieux comprendre et donc de réduire ces impacts. Une des techniques développées à cet effet est
l'Analyse du Cycle de Vie. Pour permettre une approche harmonisée, l'ISO développe toute une série de normes
sur l'analyse du cycle de vie, comprenant l'ISO 14040, l'ISO 14041, l'ISO 14042 et l'ISO 14043 ainsi que le présent
document. Ces Normes internationales décrivent les principes concernant la réalisation et la communication des
études d'analyse du cycle de vie, selon certaines exigences minimales.
Le présent rapport technique fournit des informations complémentaires concernant la norme internationale
ISO 14041, Management environnemental – Analyse du cycle de vie – Définition de l’objectif et du champ d’étude
et analyse de l’inventaire, à partir de plusieurs exemples portant sur des points clé de la norme afin de mieux
comprendre ses exigences.
Des exigences méthodologiques permettant de mener des études d'analyse du cycle de vie sont données dans les
Normes internationales suivantes qui traitent des différentes phases de l'analyse du cycle de vie :
� ISO 14040 : Management environnemental – Analyse du cycle de vie – Principes et cadre.
� ISO 14041 : Management environnemental – Analyse du cycle de vie – Définition de l’objectif et du
champ d’étude et analyse de l’inventaire.
� ISO 14042 : Management environnemental – Analyse du cycle de vie –Évaluation de l’impact du cycle de
vie.
� ISO 14043 : Management environnemental – Analyse du cycle de vie – Interprétation du cycle de vie.
RAPPORT TECHNIQUE ISO/TR 14049:2000(F)
Management environnemental — Analyse du cycle de vie —
Exemples d'application de l'ISO 14041 traitant de la définition de
l'objectif et du champ d'étude et analyse de l'inventaire
1 Domaine d'application
L'objet du présent Rapport Technique est de fournir des exemples sur les méthodes de réalisation d'un inventaire
du cycle de vie comme moyen de satisfaire certaines dispositions de l'ISO 14041. Ces exemples ne représentent
qu'un échantillon des exemples susceptibles de répondre aux dispositions de la norme. Il convient de les
considérer comme un "moyen" ou "des moyens" représentatifs plutôt que comme "la seule façon" de mettre en
pratique ladite norme. A ce titre, ils ne correspondent également qu'à certaines parties d'une étude de l'inventaire
ducycledevie.
Il convient de noter que les exemples présentés dans le présent Rapport Technique ne sont pas exclusifs et qu'il
existe de nombreux autres exemples permettant d'illustrer les études méthodologiques décrites. Ils ne constituent
que des parties d'une étude complète d’inventaire du cycle de vie.
2 Introduction technique
Les exemples mettent l'accent sur six points clé de la norme ISO 14041 comme indiqué dans le Tableau 1.
Certains points clé sont illustrés par plusieurs exemples. Cela est dû au fait que dans de nombreux cas, il existe
plusieurs méthodes. La décision d'appliquer telle ou telle méthode dépend de l'objectif et peut varier par exemple
en fonction du système de produits en cours d'étude ou des étapes du cycle de vie. Les exemples sont décrits
dans le contexte des dispositions correspondantes de la norme et de l'usage spécifique.
Dans la mesure du possible, les différents exemples sont décrits selon la structure suivante :
Contexte de la norme
Aperçu
Description des exemples
Tableau 1 — Correspondances entre l'ISO 14041 et les exemples du présent document
ISO 14041 Exemples dans l’ISO/TR 14049
0 Introduction
1 Domaine d'application
2Référence normative
3Termesetdéfinitions
4 Composantes d'une analyse de l'inventaire du cycle de vie
4.1 Généralités
4.2 Système de produits
4.3 Processus élémentaire
4.4 Catégories de données
4.5 Modélisation des systèmes de produits
5Définition de l'objectif et du champ de l'étude
5.1 Généralités
5.2 Objectif de l'étude
5.3 Champ de l'étude
5.3.1 Généralités
3Exemplesdedéveloppement de fonctions,
5.3.2 Fonction, unité fonctionnelle et flux de référence
d'unités fonctionnelles et de flux de référence.
4 Exemples de différenciation des fonctions des
systèmes comparatifs
5.3.3 Frontières initiales du système
5.3.4 Description des catégories de données
5Exemplesdedétermination d’entrants et de
5.3.5 Critères pour l'inclusion initiale des entrants et des
sortants de processus élémentaire et frontières du
sortants
système
10 Exemples de réalisation d'analyse de sensibilité
9Exemplesderéalisation d'évaluation de la qualité
5.3.6 Exigences relatives à la qualité des données
des données
5.3.7 Revue critique
6 Analyse de l'inventaire
6.1 Généralités
6.2 Préparation pour le recueil des données
9Exemplesderéalisation d'évaluation de la qualité
6.3 Recueil des données
des données
6.4 Procédures de calcul
6.4.1 Généralités
9Exemplesderéalisation d'évaluation de la qualité
6.4.2 Validation des données
des données
6.4.3 Mise en rapport des données avec le processus
élémentaire
3Exemplesdedéveloppement de fonctions,
6.4.4 Mise en rapport des données avec l'unité fonctionnelle
d'unités fonctionnelles et de flux de référence
et agrégation des données
10 Exemples de réalisation d'analyse de sensibilité
6.4.5 Affinement des frontières du système
6.5 Imputation des flux et dégagements
6.5.1 Généralités
6Exemplespour éviter une imputation
6.5.2 Principes d'imputation
6Exemplespour éviter une imputation
6.5.3 Règles d'imputation
7 Exemples d'imputation
8 Exemple d'application des règles d'imputation pour
6.5.4 Règles d'imputation pour la réutilisation et le recyclage
le recyclage
7 Limitation de l'inventaire du cycle de vie (interprétation des 9Exemplesderéalisation d'évaluation de la qualité
résultats) des données
10 Exemples de réalisation d'analyse de sensibilité
8 Rapport d'étude
ANNEXES
A Exemples d'une fiche de recueil des données
B Exemples de différentes règles d'imputation
2 © ISO 2000 – Tous droits réservés

3 Exemples de développement de fonctions, d'unités fonctionnelles et de flux de
référence
3.1 Contexte de la norme
L'ISO 14041 stipule en 5.3.2 que :
� Lorsqu'on définit le champ d'une étude d'analyse du cycle de vie, il faut spécifier de manière claire les
fonctions (caractéristiques de performance) du produit.
� C'est l'unité fonctionnelle qui permet de quantifier les fonctions ainsi identifiées. Elle doit donc être
cohérente avec l'objectif et le champ de l'étude.
� Une unité fonctionnelle sert principalement de référence à partir de laquelle sont (mathématiquement)
normalisées les données d'entrée et de sortie. Il faut donc que l'unité fonctionnelle doit être clairement
définie et mesurable.
� S'agissant d'unité fonctionnelle donnée, il faut mesurer la quantité de produit nécessaire pour remplir la
fonction. Le résultat de la mesure est le flux de référence.
ainsi qu'en 6.4.4 que :
� sur la base du diagramme des flux et des frontières du système, des processus élémentaires sont
interconnectés pour permettre d'effectuer les calculs du système complet. Ceci est réalisé en normalisant
les flux de tous les processus élémentaires dans le système par rapport à l'unité fonctionnelle. Le calcul
conduit, en règle générale, au référencement de toutes les données d'entréeet desortie du système par
rapport à l'unité fonctionnelle.
3.2 Aperçu
Lors de la définition d'une unité fonctionnelle et de la détermination des flux de référence, on peut distinguer les
étapes suivantes :
� identification des fonctions ;
� sélection des fonctions et définition d'une unité fonctionnelle ;
� identification de la performance du produit et déterminationduflux deréférence.
L'exemple de la peinture dans la Figure 1 illustre la séquence de ces étapes. Cet exemple est également repris
dans le texte qui suit (3.3 à 3.5). D'autres exemples sont donnésen3.6.
3.3
Produit Fonctions
Identification des fonctions
-Protection de la surface
Peinture murale
- Coloration
-etc.
Fonction(s) pertinentes pour l'analyse du cycle de vie
3.4
particulier
Sélection des fonctions et
définition d'une unité fonctionnelle
Coloration d'un mur de type A à l'aide de peinture
Unité fonctionnelle
Coloration de 20 m d'un mur de type A avec une opacité
de 98% et une durabilité de5ans
3.5
Identification de la performance
du produit et détermination du Performance du produit
flux de référence
La peinture A couvre 8,7 m par litre
Flux de référence
2,3 l de peinture A
NOTE Il est possible de commencer soit par le produit soit par l'unité fonctionnelle elle-même.
Figure 1 — Aperçu de l'exemple
3.3 Identification des fonctions
L'objet de l'unité fonctionnelle est de quantifier le service fourni par le système de produits. La première étape
consiste donc à identifier l'objet du système de produits, c'est-à-dire sa fonction ou ses fonctions.
Le point de départ de cette procédure peut être un produit particulier àétudier (par exemple de la peinture murale)
ou bien il peut s'agir du besoin ou de l'objectif final, qui dans certains cas peut être satisfait par plusieurs produits
distincts (par exemple la décoration murale, que l'on peut réaliser avec de la peinture murale ou du papier peint, ou
une combinaison des deux).
Les fonctions sont généralement associées à desproduitsspécifiques ou à des propriétés du processus, chacune
d'entre elles pouvant :
� répondre à des besoins spécifiques et de ce fait avoir une valeur d'usage, ce qui crée d'ordinaire une
valeur économique pour le fournisseur du produit,
4 © ISO 2000 – Tous droits réservés

� affecter le fonctionnement d'autres systèmes économiques (le papier peint peut, par exemple, avoir un
petit effet isolant, affectant ainsi l'exigence de chaleur du bâtiment).
3.4 Sélection des fonctions et définition de l'unité fonctionnelle
Toutes les fonctions peuvent ne pas correspondre à une analyse du cycle de vie particulière. Ainsi, parmi toutes
les fonctions possibles, seules les plus pertinentes doivent être identifiées.
S'agissant d'un mur intérieur plein, par exemple, la protection de la surface peut s'avérer inutile, alors que la
couleur est une fonction pertinente de la peinture.
Les fonctions pertinentes sont par conséquent quantifiées dans l'unité fonctionnelle, qui peut être exprimée comme
une combinaison de différents paramètres.
Pour la coloration du mur, l'unité fonctionnelle, typiquement, doit spécifier la zone à couvrir (par exemple 20 m²), le
type de mur (notamment ses propriétés d'absorption et de liaison), l'aptitude de la peinture à cacher la surface
sous-jacente (par exemple 98 % d'opacité), et sa durée de vieutile(par exemple5ans).
Dans le cas des unités multifonctionnelles, les différentes quantités sont parfois liées : par exemple, un matériau
d'isolation des murs peut être disponible en couleur prédéfinie, ce qui rend la coloration inutile, puisque l'isolation et
la peinture sont fournies en même temps. L'unité fonctionnelle pourrait alors être :
"Un mur couvert sur 20 m²,d'une résistance thermique de 2 m K/W avec une surface peinte sur 98 % ne
nécessitant pas d'autre coloration pendant 5 ans."
Le Tableau 2 donne d'autres exemples d'unités multifonctionnelles.
Tableau 2 – Exemples d'unités fonctionnelles pour systèmes à fonctions multiples
Exemple n° (1) (2)
Système Recyclage de papier Cogénération
Fonctions - Valorisation de vieux papiers et -Génération d'énergie électrique, et
- Production de pâte désencrée - Production de vapeur
-etc. -etc.
Fonction choisie pour une - Valorisation de vieux papiers, ou -Génération d'énergie électrique, ou
analyse du cycle de vie
particulière - Production de pâte désencrée - Production de vapeur
Unité fonctionnelle - Récupération de 1 000 kg de -Génération de 100 MW d'électricité,
vieux papiers, ou ou
- Production de 1 000 kg de pâte - Production de 300 000 kg de
pour papier journal vapeur par heure à 125°Cet
0,3 MPA (3 bar)
3.5 Identification de la performance du produit et détermination du flux de référence
Aprèsavoir défini une certaine unité fonctionnelle, l'étape suivante consiste à déterminer la quantité de produit
nécessaire pour remplir la fonction mesurée par l'unité fonctionnelle. Ce flux de référence est liéà la performance
du produit, et est généralement déterminé commelerésultat d'une méthode de mesure normalisée. Il va de soi
que la nature de cette mesure et de ce calcul dépend du produit étudié.
En ce qui concerne la peinture, le flux de référence est généralement exprimé comme la quantité de litres
nécessaire pour couvrir la superficie définie par l'unité fonctionnelle. Dans un essai normalisé, par exemple, la
peinture A peut être déterminée pour couvrir 8,7 m² par litre (c'est-à-dire la performance du produit). A la lumière
de l'exemple illustré en Figure 1, il faut 2,3 l pour couvrir les 20 m² de l'unité fonctionnelle, sous réserve que les
conditions de l'essai normalisé soient similaires à celles exigées par l'unité fonctionnelle (en termes de type de
surface et d'opacité).
On peut déjà exprimer l'unité fonctionnelle en terme de quantités de produits, de sorte que l'unité fonctionnelle et le
flux de référence soient identiques. Le Tableau 2 donne des exemples de telles unités fonctionnelles déjà
exprimées en termes de quantitésdeproduits.
3.6 Exemples supplémentaires
Les trois exemples suivants illustrent davantage la procédurededéveloppement de fonctions, d'unités
fonctionnelles et de flux de référence.
Tableau 3 — Autres exemples de développement de fonctions, d'unités fonctionnelles et de flux de
référence
Exemple n° (1) (2) (3)
Produit Ampoule électrique Bouteille Séchage des mains
Fonctions - Eclairage -Protectiondelaboisson -Séchage des mains
-Génération de chaleur - Manipulation facilitée - Elimination des
-etc. - Partie de l'image du bactéries
produit -etc.
-etc.
Fonction choisie pour une Eclairage Protection de la boisson Séchage des mains
analyse du cycle de vie (uniquement lampe (fonction hygiénique
particulière extérieure) jugée non pertinente)
Unité fonctionnelle 300 lx en 50 000 h 50 000 l de boisson 1 000 paires de mains
correspondant au spectre protégés entre le séchées
de la lumière à 5 600 K. soutirage et la
consommation
Performance du produit 100 lx d'une duréedevie Bouteille non consignée Une serviette en papier
de 10 000 h de 0,5 l pour sécher une main
Flux de référence 15 ampoules de 100 lx 100 000 bouteilles non 2 000 serviettes en papier
d'une duréede vie de consignées de 0,5 l
10 000 heures
4 Exemples de différenciation des fonctions des systèmes comparatifs
4.1 Contexte de la norme
L'ISO 14041 stipule en 5.3.2 que :
� C'est sur la base des flux de référence que s'effectuent les comparaisons entre systèmes pour une même
fonction quantifiée par la même unité fonctionnelle.
� Si la comparaison des unités fonctionnelles ignore des fonctions supplémentaires de l'un ou l'autre des
systèmes, ces omissions doivent être consignées par écrit. Par exemple, les systèmes A et B exécutent
des fonctions x et y qui sont représentées par l'unité fonctionnelle choisie, mais le système A effectue
aussi la fonction z qui n'est pas représentée dans l'unité fonctionnelle. Il doit être clairement indiqué que la
fonction z est exclue de cette unité fonctionnelle. Autre possibilité, des systèmes associés à l'exécution de
la fonction z peuvent être ajoutés à la frontière du système B pour rendre les systèmes plus comparables.
Dans ce cas, les processus choisis doivent être documentésetjustifiés.
6 © ISO 2000 – Tous droits réservés

4.2 Aperçu
Lorsque l'on compare des systèmes de produits, il faut s'assurer que la comparaison est fondéesur la même unité
fonctionnelle et des considérations méthodologiques équivalentes, telles que la performance, les frontières du
système, la qualité des données, les règles d'imputation, les règles de décision sur l'évaluation des entrants et
sortants. Dans cet article, des approches possibles sont décrites et illustrées par des exemples.
La Figure 2 représente les principales étapes à suivre lors d'études comparatives.
4.3
Identification des fonctions (comme en 3.3.)
Identification et
sélection des fonctions
Sélection des fonctions et détermination de l'unité
fonctionnelle (comme en 3.4)
Identification de la performance du produit et
4.4
détermination des flux de référence
Equivalence des flux de référence
Oui
Les flux de référence
Peuvent être comparés
sont-ils équivalents ?
Non
Non
Peux-t-on rendre les flux de
Ne peuvent pas être
référence équivalents ?
comparés
Oui
Ajustement des différences de
4.5
Ajustement des différences de
performances
performances
Figure 2 — Aperçudes étapes lors d'études comparatives
4.3 Identification et sélection des fonctions
La définition de l'unité fonctionnelle est étroitement liée à l'objectif de l'étude. Si le but est de comparer des
systèmes de produits, il faudra tout particulièrement s'assurer que la comparaison est valide, que toutes fonctions
supplémentaires sont identifiées et décrites et que toutes les fonctions pertinentes sont prises en compte.
EXEMPLE 1 : Il convient d'inclure dans une étude de gestion des déchets, d'autres fonctions que la simple élimination des
déchets (c'est-à-dire les fonctions exécutées par les systèmes de recyclage qui fournissent un matériau ou une énergie
recyclé).
EXEMPLE 2 : Il convient d'inclure dans une étude d'appareils électriques ménagers la chaleur perdue fournie au bâtiment dans
lequel l'équipement fonctionne, dans la mesure où cela a une incidence sur la quantité de chaleur et/ou de refroidissement
exigé.
Contrairement aux études non comparatives, la sélection des fonctions s'avère beaucoup plus importante dans les
études comparatives. Sur la base des fonctions données dans le Tableau 3 :
� En ce qui concerne les bouteilles (exemple 2), l'omission de la fonction image de l'emballage peut
entraîner une comparaison des emballages qui sont techniquement similaires (c'est-à-dire qui contiennent
le même volume de boisson), mais que le producteur ou le consommateur refusera de comparer.
� S'agissant des systèmes de séchage de mains (exemple 3), on peut considérer l'omission de la fonction
hygiénique comme inacceptable, par exemple dans l'industrie alimentaire, où la capacité de désinfection
des serviettes en papier peut être considérée comme un avantage tel que la comparaison avec les
systèmes de séchage électrique n'a même pas lieu d'être.
4.4 Equivalence des flux de référence
L'unité fonctionnelle de l'exemple de la peinture de l'article 3 était "coloration de 20 m² d'un mur de type A avec une
opacité de 98 % et une durée de vie de 5 ans." Cette unité fonctionnelle peut être fournie par plusieurs fonctions de
référence différentes :
2,3 l de peinture A,
1,9 l de peinture B,
1,7 l de peinture C, etc.
Cesfluxde référence auront été calculés à partir d'un essai utilisant des conditions normalisées concernant par
exemple le type de surface et l'opacité.
Les conditions de l'essai normalisé et les méthodes de mesure doivent être appropriées à la comparaison prévue :
dans l'exemple du séchage de mains (exemple 3 du Tableau 3), le recours à l'essai normalisé fondé sur les
propriétés techniques du papier telles que la masse, la capacité d'absorption et la résistance à la traction peut être
non pertinent, si le poids réel du papier utilisé dépend de la conception du distributeur automatique. Une mesure
plus appropriée consisterait alors à recueillir des données en pesant le stock de papier au début et à la fin d'une
période donnée durant laquelle le nombre de mains séchées est déterminé au moyen d'une surveillance
électronique des lavabos réels situésdansles établissements concernés. De même, les caractéristiques
techniques d'un séchoir électrique, telles que le volume d'air et sa température, peuvent ne pas s'appliquer au
calcul de la fonction de référence, si le temps d'utilisation réel de l'appareil est déterminé par d'autres facteurs
comme par exemple une minuterie incorporée. Tout ce qui est alors nécessaire est le temps d'utilisation et la
capacitéélectriquedel'équipement.
Dans le cas de l'ampoule électrique (exemple 1 du Tableau 3), l'unité fonctionnelle de "300 lx en 50 000 h" peut
être fournie par :
� 5 fois 3 ampoules de 100 lx d'une durée de vie de 10 000 h chacune, ou
� 10 fois 2 ampoules de 150 lx d'une duréedevie de 5000hchacune.
Les principes sous-jacents à la comparaison des 3 ampoules de 100 lx aux 2 ampoules de 150 lx sont:
� que le spectre de lumière des deux types d'ampoule est comparable (ou la différence est acceptable aux
yeux de l'utilisateur),
� que les 3 ampoules et les 2 ampoules peuvent être disposées de tellesorte queladistributiondelumière
est égale (ou la différence est acceptable aux yeux de l'utilisateur),
� que le choix n'affecte pas les douilles et autres dispositifs (auquel cas, il faudrait les inclure dans la
comparaison).
En outre, malgré leur différence en terme de durée de vie, les deux ampoules électriques étaient considérées
comme comparables. Cette différence est simplement prise en compte dans le calcul du flux de référence.
Cependant, en ce qui concerne les produits à longue durée de vie, tels que les réfrigérateurs dont les durées de
8 © ISO 2000 – Tous droits réservés

vie vont de 10 à 20 ans, les progrès technologiques peuvent constituer un facteur non négligeable. Un réfrigérateur
d'une durée de vie de 20 ans ne peut être simplement comparéà deux réfrigérateurs courants successifs d'une
durée de vie de 10 ans. Il est certain que les réfrigérateurs disponibles dans 10 ans vont consommer moins
d'énergie (c'est-à-dire un intrant énergétique plus faible par unité fonctionnelle) que ceux d'aujourd'hui, le
rendement énergétique du second réfrigérateur à option 10 + 10 doit être déterminé par extrapolation alors que le
rendement énergétique de l'option sur 20 ans est fixé.
Les 100 000 bouteilles non consignées de 0,5 l (exemple 2 du Tableau 3) peuvent techniquement remplir la même
fonction relative à la protection des 50 000 l de boisson, tout comme les 12 500 bouteilles consignées de 0,4 l dont
le taux de réutilisation est de 90 %. Cependant, dans certaines situations, le consommateur peut ne pas toujours
être capable de distinguer des bouteilles de volumes ou de masses différents. Si le consommateur considère
qu'une bouteille est égale à une bouteille, l'introduction de bouteilles consignées diminuera la consommation totale
de boisson. Dans ce cas, on ne peut étudier l'emballage sans son contenu. C'est un exemple de la flèche "non"
figurant à droite de la Figure 2. Il va de soi qu'on peut alors redéfinir l'objectif de l'étude, ce qui permet une
comparaison de la boisson plus l'emballage en tenant compte des changements vis à vis de la consommation.
Les deux congélateurs, l'un avec et l'autre sans l'option congélation rapide, sont un autre exemple de fonctions non
comparables (la flèche "non" à droite de la Figure 2). Si le consommateur considère l'option de congélation rapide
comme une fonction essentielle, les deux congélateurs sont tout simplement incomparables et ne peuvent être
rendus comparables sur la base d'aucun calcul ni aucune extension du système. Cela vaut pour les exemples qui
figurent à la finde4.3.
Dans certains systèmes à fonctions multiples, tels que ceux du Tableau 2, les fonctions peuvent être divisées et
fournies par plusieurs systèmes :
� L'élimination de vieux papiers dans une usine d'incinération et la fabrication de la pâte à partir de fibres
vierges peut fournir la même unité fonctionnelle que le système de recyclage de papier.
� Des groupes distincts d'énergie et de chauffage ne produisant respectivement que de l'électricité et de la
chaleur peuvent fournir la même fonction qu'une centrale de cogénération.
Toutefois, certaines fonctions peuvent être si étroitement liées que la séparation n'est pas possible. Par exemple,
la génération de chaleur d'une ampoule électrique ne peut être dissociée de sa fonction primaire.
Dans d'autres situations, il peut être techniquement possible de séparer deux fonctions liées, mais en raison
d'autres aspects, on ne peut toujours pas considérer les deux fonctions séparées comme comparables aux
fonctions conjointes. Un exemple illustrant ce point est celui du réfrigérateur-congélateur, qui peut ou ne peut faire
l'objet d'une comparaison avec un congélateur et un réfrigérateur séparés, en fonction de l'acceptabilité par le
consommateur de ce choix (la dernière option prend généralement plus de place qu'une option combinéeavec les
mêmes volumes intérieurs).
Il est à noter que dans la plupart des exemples susmentionnés, c'est l'acceptation de l'utilisateur qui détermine
l'équivalence de deux produits. Le prix des appareils équivalents ainsi que les informations supplémentaires
fournies avec les produits, comme par exemple des informations relatives à la performance environnementale,
peut avoir une incidence sur cette acceptation, et par là même sur le fait de savoir si deux produits sont considérés
comme comparables ou non. Ainsi, il peut être raisonnable, pour les besoins de développement du produit ou de
gestion stratégique, de comparer deux produits qui à première vue ne sont pas équivalents mais qui, si l'on
suppose des conditions de prix et d'information spécifiques, peuvent être considéréscommetels.
4.5 Ajustement des différences de performance
Aucun ajustement n'est nécessaire lorsque les flux de référence sont immédiatement équivalents (comme dans
l'exemple de la peinture au début de 4.4).
Dans d'autres cas, l'ajustement est nécessaire. La procédure d'ajustement obéit aux mêmes principes que ceux de
l'imputation de coproduit, c'est-à-dire qu'on préfère modifier les frontières du système pour éviter l'écart de
performance. Lorsque cette modification n'est pas possible ou réalisable, il est admis d'appliquer l'imputation. Des
exemples illustrant les deux options sont donnés dans cette partie.
Dans le cas des ampoules électriques du paragraphe 4.4, pour être comparé, l'ajustement d'un des systèmes peut
être nécessaire (en l'élargissant à une douille de lampe supplémentaire). Un autre exemple, plus radical,
d'extension du système ou de reconsidération des fonctions étudiées est celui mentionné dans l'exemple de la
bouteille du paragraphe 4.4, où l'inclusion de la boisson était nécessaire.
Le volume interne et/ou externe peut constituer la base de comparaison entre réfrigérateurs. La fonction principale
est évidemment liée à leur volume interne, toutefois le volume externe peut s'avérer une fonction importante, si le
réfrigérateur doit être installé dans une cuisine déjàéquipée. Si le volume externe doit être égal, le volume interne
peut différer en raison des différences d'épaisseur des isolants. L'ajustement ne peut alors se faire que sur la base
des différents comportements possibles de l'utilisateur (par exemple, des courses plus fréquentes, le stockage de
certains produits en dehors du réfrigérateur, le rajout d'un autre réfrigérateur d'appoint ailleurs dans la maison).
Chacun de ces comportements implique des modifications à apporter aux différents processus et qui devront alors
être incluses dans l'étude. D'autre part, s'il est nécessaire que le volume interne soit égal, une modification de
l'épaisseur des isolants peut nécessiter des ajustements de l'environnement physique du réfrigérateur (les autres
meubles de cuisine). Si les volumes interne et externe doivent tous deux être égaux, aucun ajustement pouvant
tenir compte des modifications d'épaisseur des isolants n'est évidemment possible. Cela prouve que le choix des
fonctions requises détermine également les alternatives possibles pouvant être incluses dans l'étude.
Un ajustement par extension du système, comme dans les exemples précédemment cités, n'est pas toujours
possible. Si l'on n'étudie que la fonction congélation ou réfrigération d'un réfrigérateur-congélateur (par exemple
pour inclusion d'un cycle de vie d'un produit alimentaire qui peut être réfrigéré mais non congelé), il n'y a pas
d'ajustement de l'environnement qui puisse correspondre à l'effet de la combinaison des deux fonctions. Ainsi,
l'imputation des entrants et des sortants du réfrigérateur-congélateur doit d'une manière ou d'une autre s'effectuer
entre les deux fonctions. Cela peut se faire sur la base d'une mesure du besoin énergétique relatif pour les deux
compartiments, également appelée volume ajustéà la température, calculé comme suit :
��� �
V � V � t � t / t � 5 ,
aj c r c r
où V est le volume du compartiment, t,la température ambiante, t la température du compartiment, et 5°Cla
c r c
température de référence.
Il est à noter que, si les réfrigérateurs-congélateurs sont analysés en tant que produits en soi, la comparabilité de
deux réfrigérateurs-congélateurs dont les rapports entre volumes des deux compartiments sont différents, sera
finalement tributaire du degré de substituabilité aux yeux du consommateur. Dans ce cas, l'ajustement des
différences au moyen de coefficients techniques (par exemple des volumes ajustés à la température) n'est pas
approprié.
5 Exemples de détermination d'entrants et de sortants de processus élémentaires et
frontières du système
5.1 Contexte de la norme
L'ISO 14041 stipule en 5.3.5 que :
� L'identification initiale doit, en règle générale, se faire à l'aide des données disponibles. Il est recommandé
d'identifier plus complètement les entrants et les sortants après recueil des données supplémentaires
pendant l'étude, puis sous réserve d'une analyse de sensibilité.
� Les critères, et les hypothèses sur lesquels ceux-ci sont établis, doivent être clairement décrits.
� Dans la pratique, plusieurs critères sont retenus dans les analyses du cycle de vie pour décider des
entrants àétudier, à savoir a) la masse, b) l'énergie, c) la pertinence environnementale.
a) la masse : une bonne règlededécision, lorsque la masse est utiliséecomme critère, est d'inclure dans l'étude
tous les entrants qui, cumulés, contribuent au-delà d'un pourcentage défini à l'entrant massique du système de
produits à modéliser ;
10 © ISO 2000 – Tous droits réservés

b) l'énergie : de même, pour établir une règlededécision et lorsque l'énergie est un critère,ilconvientd'inclure
dans l'étude les entrants qui, cumulés, contribuent au-delà d'un pourcentage défini aux entrants énergétiques
du système de produits ;
c) la pertinence environnementale : des règles sont en général établies pour décider des critères de pertinence
environnementale afin d'inclure les entrants qui contribuent au-delà d'un pourcentage défini supplémentaire à
la participation quantitative estimée de chaque catégorie individuelle de données du système de produits.
� La totalité des entrants sélectionnés et identifiés par ce procédé devrait, en règle générale, être prise
compte en tant que flux élémentaires.
5.2 Aperçu
L'objectif d'une étude d'analyse du cycle de vie oriente le choix des catégories individuelles de données. Le choix
des catégories individuelles de données peut comprendre une liste détaillée des entrants et des sortants ou peut
être spécifique aux questions spéciales qui font l'objet de l'étude.
La définition de l'objectif et du champ d'étude répertorie les catégories de données partant du système. En règle
générale, une étude d'analyse du cycle de vie comprend les flux énergétiques dans la mesure où les informations
correspondantes sont le plus souvent disponibles et qu'ils peuvent avoir une incidence significative sur l'utilisation
des ressources naturelles et sur les émissions.
Les décisions concernant les flux de matières sélectionnés pour inclusion dans le champ d'étude d'une analyse du
cycle de vie ont un impact sur les résultats. L'inclusion de l'ensemble des flux importants de matières susceptible
d'avoir une incidence sur l'interprétation de l'étude est primordiale.
Le processus de sélection des entrants et des sortants sous forme de matières et des frontières du système est
illustréà la Figure 3.
5.3
Détermination des processus
élémentaires du système de produits
5.4
Recueil initial des données à chaque
processus élémentaire
5.5
Estimation initiale des flux d’énergie et
de matières
5.6
Application des règles
5.7
Entrants/sortants et frontière du
système établis
Figure 3 — Aperçu deladétermination des entrants, sortants et des frontières du système
5.3 Détermination des processus élémentaires du système de produits et de leurs frontières
Il est recommandé de compiler les processus élémentaires qui constituent un système de produits pour les
chaînes d'approvisionnement en produits et d'utilisation, conformément à l'objectif et au champ de l'étude. La
Figure 4 illustre une description conceptuelle d'un processus élémentaire avec les entrants et sortants qui lui sont
associés. La "fusion de l'aluminium", une partie du système de produits d'un produit en aluminium pourrait être un
autre exemple de processus élémentaire. Ce processus élémentaire transforme les entrants sous forme de
matières premières ou intermédiaires (alumine raffinée) associésaux dégagements environnementaux, d'énergie
et de matières auxiliaires en un "produit intermédiaire" qui subit une transformation supplémentaire dans le
système de produits. Sur la base de cette information, on peut établir des processus spécifiques qui effectuent les
transformations. Une liste des emplacements des rapports spécifiques présentant un intérêt pour l'objectif de
l'étude est ensuite élaborée.
Afin d'établir les frontières des processus élémentaires, les sites au sein de la population concernée peuvent être
contactés pour déterminer les plus petites portions du système de produits pour lequel des données sont
disponibles. Compte tenu de la variabilité des processus spécifiques d'un site particulier, les frontières des
processus élémentaires sont établies dans le but de réduirelanécessité de règles d'imputation.
Entrants sous forme
Rejets dans l'air
de matières premières
(intermédiaires)
Entrants sous forme de Processus
matières auxiliaires
élémentaire
Produit Intermédiaire
Entrants énergétiques
Coproduit
Rejets dans l'eau
Rejets dans le Déchets destinés
sol au traitement
Figure 4 — Exemple de description conceptuelle d'un processus élémentaire
Un autre exemple de description de processus élémentaire pour la fabrication de verre creux blanc est illustréà la
Figure 5 avec une liste d'entrants et de sortants.
12 © ISO 2000 – Tous droits réservés

Débris de verre
Verre creux blanc
Matières premières* Verre :
Soude (Na CO )
2 3
Fabrication de verre
Eaux usées
Sulfate de sodium (Na CO )
2 4
creux blanc 55% de
Calumite
débris
Déchets issus de la fabrication
Ammoniac (NH )
De verre creux
Hydroxyde de sodium (NaOH)
Lubrifiants
Graisse et huile ;
(Buwal 250, 1996)
Eau de refroidissement
Rejet dans l'eau
Electricité provenant du réseau public
Carburant diesel
Rejets dans l'atmosphère**
Combustible fossile
**Rejets dans l'atmosphère: - ammoniac,
Matières premières : - dolomite,
- chlorure,
- feldspath,
- fluorure d'hydrogène,
- poussière de calcaire,
- dioxyde de carbone,
- sable quartzeux
- monoxyde de carbone,
- dioxyde de soufre,
- oxyde d'azote,
-plomb,
- poussière
Module : verre : fabrication de verre creux blanc, 55% de fragments (Buwal 250, 1996)
Section : fabrication d'emballages
Quantité
Entrant : Catégorie de matières Unité
Débris de verre ; matière première secondaire 601,30
Produit provenant d'autres systèmes kg
Dolomite ; matière première 72,50
Flux élémentaire kg
Feldspath ; matière première Flux élémentaire kg 31,10
Poussière de calcaire; matière première 27,00
Flux élémentaire kg
Sable quartzeux ; matière première 253,10
Flux élémentaire kg
Soude (Na CO ) 62,80
2 3 Produit intermédiaire kg
Sulfatedesodium (Na SO ) Produit intermédiaire kg 3,20
2 4
Calumite 6,50
Produit intermédiaire kg
Ammoniac (NH 0,30
3) Produit intermédiaire kg
Hydroxyde de sodium (NaOH 50 %) 21,40
Produit intermédiaire kg
Lubrifiants Produit intermédiaire kg 0,662
Eauderefroidissement 1,70
Flux élémentaire m
Electricité provenant du réseau public (Suisse) 291,00
Produit intermédiaire kW·h
Carburant diesel (production) 0,14
Produit intermédiaire kg
Combustible (incinération intégrée) Produit intermédiaire kg 152,4
Sortant :
Verre creux blanc 1 000,00
Produit intermédiaire kg
Eaux usées 1,68
Produit intermédiaire m
Déchets issus de la fabrication de verre creux Produit intermédiaire kg 4,44
Déchets spéciaux issus de la fabrication de verre Produit intermédiaire kg 0,65
creux
Ammoniac ; rejet dans l'atmosphère 0,72
Flux élémentaire g
Chlorure d'hydrogène ; rejet dans l'atmosphère Flux élémentaire g 53,3
Fluorure d'hydrogène ; rejet dans l'atmosphère 14,80
Flux élémentaire g
Dioxyde de carbone ; rejet dans l'atmosphère 521
Flux élémentaire kg
Monoxyde de carbone ; rejet dans l'atmosphère Flux élémentaire g 27,80
Dioxyde de soufre ; rejet dans l'atmosphère Flux élémentaire g 1 292,00
Oxyde d'azote ; rejet dans l'atmosphère 1 158,80
Flux élémentaire g
Plomb ; rejet dans l'atmosphère 44,60
Flux élémentaire g
Poussière ; rejet dans l'atmosphère 589,60
Flux élémentaire g
Graisse et huile ; rejet dans l'eau Flux élémentaire g 42,00
Figure 5 — Exemple de description de processus élémentaire pour la fabrication de verre creux blanc
5.4 Recueil initial de données à chaque processus élémentaires
La procédure de recueil de données peut se fonder sur les résultats d'une enquête sur la disponibilité des données
initiales sur un petit échantillon des sites desquels les données vont éventuellement être recueillies.
Il peut être utile de concevoir et d'envoyer aux fournisseurs un questionnaire qu'ils pourront copier et transmettre à
leurs propres fournisseurs. Mais un questionnaire en lui-même n'est pas suffisant. Même le questionnaire le plus
explicite fourni e
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...