ISO 13320-1:1999
(Main)Particle size analysis - Laser diffraction methods - Part 1: General principles
Particle size analysis - Laser diffraction methods - Part 1: General principles
Analyse granulométrique — Méthodes par diffraction laser — Partie 1: Principes généraux
La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions, bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 µm à 3 mm.Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur d'autres principes physiques (par exemple sédimentation, tamisage).
Sejalna analiza - Metoda z lasersko difrakcijo - 1. del: Splošna načela
General Information
- Status
- Withdrawn
- Publication Date
- 10-Nov-1999
- Withdrawal Date
- 10-Nov-1999
- Technical Committee
- ISO/TC 24/SC 4 - Particle characterization
- Drafting Committee
- ISO/TC 24/SC 4/WG 6 - Laser diffraction methods
- Current Stage
- 9599 - Withdrawal of International Standard
- Start Date
- 18-Sep-2009
- Completion Date
- 13-Dec-2025
Relations
- Effective Date
- 15-Apr-2008
ISO 13320-1:1999 - Particle size analysis -- Laser diffraction methods
ISO 13320-1:1999 - Analyse granulométrique -- Méthodes par diffraction laser
Frequently Asked Questions
ISO 13320-1:1999 is a standard published by the International Organization for Standardization (ISO). Its full title is "Particle size analysis - Laser diffraction methods - Part 1: General principles". This standard covers: La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions, bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 µm à 3 mm.Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur d'autres principes physiques (par exemple sédimentation, tamisage).
La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions, bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 µm à 3 mm.Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur d'autres principes physiques (par exemple sédimentation, tamisage).
ISO 13320-1:1999 is classified under the following ICS (International Classification for Standards) categories: 19.120 - Particle size analysis. Sieving. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 13320-1:1999 has the following relationships with other standards: It is inter standard links to ISO 13320:2009. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
ISO 13320-1:1999 is available in PDF format for immediate download after purchase. The document can be added to your cart and obtained through the secure checkout process. Digital delivery ensures instant access to the complete standard document.
Standards Content (Sample)
SLOVENSKI STANDARD
01-januar-2002
6HMDOQDDQDOL]D0HWRGD]ODVHUVNRGLIUDNFLMRGHO6SORãQDQDþHOD
Particle size analysis -- Laser diffraction methods -- Part 1: General principles
Analyse granulométrique -- Méthodes par diffraction laser -- Partie 1: Principes généraux
Ta slovenski standard je istoveten z: ISO 13320-1:1999
ICS:
19.120 Analiza velikosti delcev. Particle size analysis. Sieving
Sejanje
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 13320-1
First edition
1999-11-01
Particle size analysis — Laser diffraction
methods —
Part 1:
General principles
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1: Principes généraux
A
Reference number
Contents
1 Scope .1
2 Normative reference .1
3 Terms, definitions and symbols.1
3.1 Terms and definitions .1
3.2 Symbols.3
4 Principle.4
5 Laser diffraction instrument .4
6 Operational procedures .6
6.1 Requirements.6
6.2 Sample inspection, preparation, dispersion and concentration.7
6.3 Measurement.9
6.4 Repeatability.11
6.5 Accuracy.11
6.6 Error sources; diagnosis .12
6.7 Resolution; sensitivity .14
7 Reporting of results.14
Annex A (informative) Theoretical background of laser diffraction.16
Annex B (informative) Recommendations for instrument specifications .25
Annex C (informative) Dispersion liquids for the laser diffraction method.28
Annex D (informative) Refractive index for various liquids and solids .29
Bibliography.34
© ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
© ISO
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 13320-1 was prepared by Technical Committee ISO/TC 24, Sieves, sieving and other
sizing methods, Subcommittee SC 4, Sizing by methods other than sieving.
ISO 13320 consists of the following parts, under the general title Particle size analysis — Laser diffraction methods:
Part 1: General principles
Part 2: Validation of inversion procedures
Annexes A to E of this part of ISO 13320 are for information only.
iii
© ISO
Introduction
Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success
of the technique is based on the fact that it can be applied to various kinds of particulate systems, is fast and can be
automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument
and the interpretation of the results require the necessary caution.
Therefore, there is a need for establishing an International Standard for particle size analysis by laser diffraction
methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.
Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and,
thus, has been known by the following names:
Fraunhofer diffraction;
(near-) forward light scattering;
low-angle laser light scattering (LALLS).
However, the technique has been broadened to include light scattering in a wider angular range and application of
the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.
The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an
intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the
particles. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low
intensities, with patterns that extend for smaller particles to wider angles than for larger particles [2-7, 10, 15 in the
bibliography].
Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual
scattering patterns of all particles present. By using an optical model to compute scattering patterns for unit volumes
of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size
distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).
a) b)
Figure 1 — Scattering pattern for two spherical particles: the particle generating pattern a) is twice as large
as the one generating pattern b)
A typical laser diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a
detector for measuring the scattering pattern and a computer for both control of the instrument and calculation of the
particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single
particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the
resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles
is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates
iv
© ISO
and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into
primary particles before measurement.
Historically, instruments only used scattering angles smaller than 14°, which limited the application to a lower size of
about 1 mm. The reason for this limitation is that smaller particles show most of their distinctive scattering at larger
angles (see also annex A). Many recent instruments allow measurement at larger scattering angles, some up to
about 150°, for example through application of a converging beam, more or larger lenses, a second laser beam or
more detectors. Thus, smaller particles down to about 0,1 mm can be sized. Some instruments incorporate
additional information from scattering intensities and intensity differences at various wavelengths and polarization
planes in order to improve the characterization of particle sizes in the submicrometre range.
v
INTERNATIONAL STANDARD © ISO ISO 13320-1:1999(E)
Particle size analysis — Laser diffraction methods —
Part 1:
General principles
1 Scope
This part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase
system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through
analysis of their angular light scattering patterns. It does not address the specific requirements of particle size
measurement of specific products. This part of ISO 13320 is applicable to particle sizes ranging from approximately
0,1 mm to 3 mm.
For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the
assumption of spherical particles in its optical model. The resulting particle size distribution may be different from
those obtained by methods based on other physical principles (e.g. sedimentation, sieving).
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 13320. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 13320 are encouraged to investigate the
possibility of applying the most recent edition of the normative document indicated below. For undated references,
the lates edition of the normative document referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.
ISO 9276-1:1990, Representation of results of particle size analysis — Part 1: Graphical representation.
3 Terms, definitions and symbols
For the purposes of this part of ISO 13320, the following terms, definitions and symbols apply.
3.1 Terms and definitions
3.1.1
absorption
reduction of intensity of a light beam traversing a medium through energy conversion in the medium
3.1.2
coefficient of variation
relative measure (%) for precision: standard deviation divided by mean value of population and multiplied by 100
(for normal distributions of data the median is equal to the mean)
© ISO
3.1.3
complex refractive index
N
p
refractive index of a particle, consisting of a real and an imaginary (absorption) part
N = n - ik
p p p
3.1.4
relative refractive index
m
complex refractive index of a particle, relative to that of the medium
m = N /n
p m
3.1.5
deconvolution
mathematical procedure whereby the size distribution of a particle ensemble is inferred from measurements of their
scattering pattern
3.1.6
diffraction
spreading of light around the contour of a particle beyond the limits of its geometrical shadow with a small deviation
from rectilinear propagation
3.1.7
extinction
attenuation of a light beam traversing a medium through absorption and scattering
3.1.8
model matrix
matrix containing light scattering vectors for unit volumes of different size classes, scaled to the detector’s
geometry, as derived from model computation
3.1.9
multiple scattering
subsequent scattering of light at more than one particle, causing a scattering pattern that is no longer the sum of the
patterns from all individual particles (in contrast to single scattering)
3.1.10
obscuration
optical concentration
percentage or fraction of incident light that is attenuated due to extinction (scattering and/or absorption) by the
particles
3.1.11
optical model
theoretical model used for computing the model matrix for optically homogeneous spheres with, if necessary, a
specified complex refractive index, e.g. Fraunhofer diffraction, anomalous diffraction, Mie scattering
3.1.12
reflection
return of radiation by a surface, without change in wavelength
3.1.13
refraction
change of the direction of propagation of light determined by change in the velocity of propagation in passing from
one medium to another; in accordance with Snell’s law
n sin Q = n sin Q
m m p p
© ISO
3.1.14
scattering
general term describing the change in propagation of light at the interface of two media
3.1.15
scattering pattern
angular or spatial pattern of light intensities [I(q) and I(r) respectively] originating from scattering, or the related
energy values taking into account the sensitivity and the geometry of the detector elements
3.1.16
single scattering
scattering whereby the contribution of a single member of a particle population to the scattering pattern of the entire
population is independent of the other members of the population
3.1.17
width of normal size distribution
standard deviation (absolute value) or coefficient of variation (relative percentage) of the size distribution
NOTE For normal distributions about 95 % of the population falls within ± 2 standard deviations from the mean value and
about 99,7 % within ± 3 standard deviations from the mean value.
3.2 Symbols
c volumetric particulate concentration, %
f focal length of lens, mm
I(q) angular intensity distribution of light scattered by particles (scattering pattern)
I(r) spatial intensity distribution of light scattered by particles on the detector elements (measured scattering
pattern by detector)
i indication for imaginary part of refractive index
i photocurrent of detector element n, mA
n
k wave number: 2p/l
k imaginary (absorption) part of particle’s refractive index
p
l illuminated path length containing particles, mm
L vector of photocurrents (i , i ,., i )
1 2 n
m relative, complex refractive index of particle to medium
n real part of refractive index of medium
m
n real part of refractive index of particle
p
N complex refractive index of a particle
p
r radial distance from focal point in focal plane, mm
n velocity of particles in dry disperser
x particle diameter, mm
x median particle diameter, mm; here used on a volumetric basis, i.e. 50 % by volume of the particles is
smaller than this diameter and 50 % is larger
x particle diameter corresponding to 10 % of the cumulative undersize distribution (here by volume), mm
© ISO
particle diameter corresponding to 90 % of the cumulative undersize distribution (here by volume), mm
x
a dimensionless size parameter: px/l
q scattering angle with respect to forward direction
q angle with respect to perpendicular at boundary for a light beam in medium (as used in Snell's law; see
m
refraction)
q angle with respect to perpendicular at boundary for a light beam in particle (as used in Snell's law; see
p
refraction)
l wavelength of illuminating light source in medium (i.e. liquid or gas/air), nm
w rotational velocity of particles in dry disperser
4 Principle
A representative sample, dispersed at an adequate concentration in a suitable liquid or gas, is passed through the
beam of a monochromatic light source, usually a laser. The light scattered by the particles at various angles is
measured by a multi-element detector and numerical values relating to the scattering pattern are then recorded for
subsequent analysis. These numerical scattering values are then transformed, using an appropriate optical model
and mathematical procedure, to yield the proportion of total volume to a discrete number of size classes forming a
volumetric particle size distribution.
5 Laser diffraction instrument
A typical set-up for a laser diffraction instrument is given in figure 2.
Key
1 Obscuration detector 7 Light source laser
2 Scattered beam 8 Beam processing unit
3 Direct beam 9 Working distance of lens 4
4 Fourier lens 10 Multi-element detector
5 Scattered light not collected by lens 4 11 Focal distance of lens 4
6 Particle ensemble
Figure 2 — Example of the set-up of a laser diffraction instrument
In the conventional set-up, a light source (typically a laser) is used to generate a monochromatic, coherent, parallel
beam. This is followed by a beam processing unit, usually a beam expander with integrated filter, producing an
extended and nearly ideal beam to illuminate the dispersed particles.
© ISO
A representative sample, dispersed at an adequate concentration is passed through the light beam in a measuring
zone by a transporting medium (gas or liquid); this measuring zone should be within the working distance of the lens
used. Sometimes, the particle stream in a process is illuminated directly by the laser beam for measurement, as in
the case of sprays, aerosols and air bubbles in liquids. In other cases (such as emulsions, pastes and powders),
representative samples can be dispersed in suitable liquids (see annex C). Often dispersants (wetting agents;
stabilizers) and/or mechanical forces (agitation; ultrasonication) are applied for deagglomeration of particles and
stabilization of the dispersion. For these liquid dispersions a recirculating system is most commonly used, consisting
of an optical measuring cell, a dispersion bath usually equipped with stirrer and ultrasonic elements, a pump and
tubing.
Dry powders can also be converted into aerosols through application of dry powder dispersers, which apply
mechanical forces for deagglomeration. Here a dosing device feeds the disperser with a constant mass flow of
sample. The disperser uses the energy of a compressed gas or the differential pressure to a vacuum to disperse
the particles. It outputs an aerosol that is blown through the measuring zone, usually into the inlet of a vacuum pipe
that collects the particles.
There are two positions in which the particles can enter the laser beam. In the conventional case the particles enter
the parallel beam before and within the working distance of the collecting lens [see Figure 3 a)]. In the so-called
reversed Fourier optics case the particles are entered behind the collecting lens and, thus, in a converging beam
[see Figure 3 b)].
The advantage of the conventional set-up is that a reasonable path length for the sample is allowed within the
working distance of the lens. The second set-up allows only small path lengths but enables measurement of
scattered light at larger angles, which is useful when submicrometre particles are present.
The interaction of the incident light beam and the ensemble of dispersed particles results in a scattering pattern with
different light intensities at various angles (see annex A for theoretical background of laser diffraction). The total
angular intensity distribution I(q), consisting of both direct and scattered light, is then focused by a positive lens or
an ensemble of lenses onto a multi-element detector. The lens(es) provide(s) for a scattering pattern which, within
limits, is not dependent upon the location of the particles in the light beam. So, the continuous angular intensity
distribution I(q) is converted into a discrete spatial intensity distribution I(r) on a set of detector elements.
It is assumed that the recorded scattering pattern of the particle ensemble is identical to the sum of the patterns
from all individual single scattering particles presented in random relative positions. Note that only a limited angular
range of scattered light is collected by the lens(es) and, thus, by the detector.
The detector generally consists of a number of photodiodes; some instruments apply one photodiode in combination
with moving slits. The photodiodes convert the spatial intensity distribution I(r) into a set of photocurrents i .
n
Subsequent electronics then convert and digitize the photocurrents into a set of intensity or energy vectors L ,
n
representing the scattering pattern. A central element measures the intensity of the non-scattered light and, thus,
with a calculation, provides a measure of optical concentration or obscuration. Some instruments provide special
geometries of the central element in order to automatically re-centre or re-focus the detector by moving the detector
or the lens. It is desirable that the detector elements are positioned so as to prevent the light reflected from the
surface from re-traversing the optical system.
A computer controls the measurement and is used for storage and manipulation of the detected signals, for storage
and/or calculation of a proper form of the optical model (usually as a model matrix containing light scattering vectors
per unit of volume per size class, scaled to the detector's geometry and sensitivity) and calculation of the particle
size distribution (see annex A for theoretical background of laser diffraction). Also it may provide automated
instrument operation.
Several significant differences exist, both in hardware and software, not only between instruments from different
manufacturers but also between different types from one company. The instrument specifications should give
adequate information for proper judgement of these differences. In annex B recommendations are presented for the
specifications of laser diffraction instruments.
© ISO
Key
1 Detector 4 Working distance
2 Fourier lens 5 Focal distance
3 Particle ensemble
a) Conventional set-up: particles are in parallel beam before and within working distance of lens
Key
1 Detector
2 Flow through cuvette
3 Particle
b) Reverse Fourier set-up: particles are in converging beam between lens and detector
Figure 3 — Set-ups of laser diffraction instruments
6 Operational procedures
6.1 Requirements
6.1.1 Instrument location
The instrument should be located in a clean environment that is free from excessive electrical noise, mechanical
vibration, and temperature fluctuations and is out of direct sunlight. The operating area should be well ventilated.
The instrument should either contain a rigid internal optical bench or be installed on a rigid table or bench to avoid
realignment of the optical system at frequent intervals.
WARNING — The radiation of instruments equipped with a low power laser can cause permanent eye
damage. Never look into the direct path of the laser beam or its reflections. Avoid cutting the laser beam
with reflecting surfaces. Observe the local laser radiation safety regulations.
© ISO
6.1.2 Dispersion liquids
Any optically transparent liquid of known refractive index may be used. Thus, a variety of liquids is available for
preparation of liquid dispersions of powders. Annex C provides requirements for the dispersion liquids.
If an organic liquid is used for dispersion, observe the local health and safety regulations. Use a cover for the
ultrasonic bath when using liquids with a high vapour pressure in order to prevent the formation of hazardous
vapour concentrations above the bath and/or the generation of low-temperature zones with fluctuating refractive
indices in the fluid by evaporation.
6.1.3 Dispersion gases
For dry dispersion and spray applications a compressed gas is sometimes used. If used, it is essential that it is free
from oil, water and particles. To achieve this, a dryer with a filter is required. Any vacuum unit should be located
apart from the measurement zone, so that the output of the hot air does not reach the measuring zone. Draught
should be avoided in order to avoid unstable particulate streams.
6.2 Sample inspection, preparation, dispersion and concentration
6.2.1 Sample inspection
Inspect the material to be analysed, visually or with the aid of a microscope, firstly to estimate its size range and
particle shape and later to check whether the particles have been dispersed adequately.
The size distribution measured in a sample is only valid for a batch of material if the sample is representative for
that batch and has been dispersed adequately.
6.2.2 Preparation
For dry powders, prepare a representative sample of suitable volume for the measurement by an adequate sample
splitting technique, for instance a rotating riffler. If very small samples are required, or in the case of wet powders, it
is also possible to take fractional samples out of a well-mixed sample paste. The consistency of the paste then
avoids segregation errors. The pastes are formed by adding dispersant to the sample drop by drop while mixing it
with a spatula. As long as the mixture forms lumps, single drops should be added while continuing the mixing after
each drop. A good consistency for the paste is one like honey or toothpaste. If the paste becomes too fluid by
mistake, it shall not be used, and a new preparation should be initiated.
If the maximum size exceeds the measuring range, remove the material that is too coarse, e.g. by presieving. In this
case determine and report the amount/percentage removed.
Sprays, aerosols and gas bubbles in liquid should be measured directly, provided that their concentration is at an
adequate level (see 6.2.3 and 6.2.4), since sampling or dilution is generally impossible without altering the particle
size distribution.
6.2.3 Dispersion
6.2.3.1 Dry powders can be dispersed either in air or in liquid. The dispersion procedure shall be adjusted to the
purpose of the measurement, e.g. it has to be decided whether agglomerates should be detected or broken down to
the primary particles.
6.2.3.2 An adequate dry disperser should be applied; here, generally compressed air or vacuum is applied for
dispersion by shear stress with the assistance of mechanical de-agglomeration by particle-particle or particle-wall
collisions (see figure 4). For dry dispersion, the complete fractional sample shall be used for the measurement. Note
that the use of large sample quantities can overcome the poor statistical representation of coarse particles in a wide
size distribution. It is necessary to check that comminution of the particles does not occur and conversely that a
good dispersion has been achieved. This is usually done by direct comparison of dry dispersion with a liquid one:
ideally, the results should be the same. Another possibility for checking the degree of dispersion or comminution is
by changing the dispersing energy (e.g. the primary air pressure) and monitoring the change of the size distribution.
Usually upon increasing the dispersing energy the amount of fines is increased at first, due to improved dispersion,
until a plateau is reached, where the size distribution is nearly constant with increasing energy. At still higher
energies the amount of fines may rise again as a result of comminution. On some occasions, agglomeration has
© ISO
been found at high flow rates through a cascade. The centre of the plateau defines the optimum dispersing energy.
Note, however, that a plateau is not always found (for instance for highly aggregated or fragile particles).
a) Velocity gradients caused by shear stress
b) Particle to particle collisions
c) Particle to wall collisions
Figure 4 — Processes involved for dry dispersion of powders
6.2.3.3 For the preparation of liquid dispersions a variety of liquids is available. Annex C presents requirements
and some advice. Generally, pasting, stirring and ultrasonication can be used to facilitate proper dispersion of
particles in the liquid. A preliminary check on the dispersion quality can be made by visual/microscopic inspection of
the suspension. Also, it is possible to perform some measurements of the suspension in the laser diffraction
instrument, with intermediate ultrasonication: the measured size distribution should not change significantly if the
sample is well dispersed and the particles are neither fragile nor soluble.
The minimum volume of sample, required for repeatable measurement, increases as the width of the size
distribution becomes greater in order to allow a sufficient number of large particles to be present. Accordingly, the
volume of the dispersion fluid required to suspend these samples also increases if the limits of optical concentration
are to be observed.
For example, for a sample with particles in the approximate size range of 2 mm to 200 mm, a sample volume of at
least 0,3 ml is needed. This will require at least 500 ml of suspension fluid for its dispersion. Also, the measurement
time or the number of detector readings within one measurement should be sufficient to reach a reasonable
precision. Appropriate measurement conditions should be established experimentally, in relation to the desired
precision.
6.2.4 Concentration
The particle concentration in the dispersion should be above a minimum level, which for many instruments will
correspond to about 5 % obscuration, in order to produce an acceptable signal-to-noise ratio in the detector.
Likewise, it should be below a maximum level, which for many instruments will correspond to about 35 %
obscuration for particles larger than about 20 mm, in order to avoid multiple scattering (where light is scattered
subsequently at more than one particle).
© ISO
For particles smaller than about 20 mm, the obscuration value should be kept below about 15 % for the same
reason. In general, multiple scattering appears at larger scattering angles. Without multiple scattering correction, the
amount of fines calculated will exceed the true value. If work at higher concentrations is required, it should be
possible to correct for multiple scattering or systematic errors will arise. A first estimate for the concentration can be
observed from figure 5.
Key
1 High limit
2 Low limit
Figure 5 — Typical high and low limits for particle concentration for laser diffraction systems as a function
of particle size for narrow size distributions; 2 mm path length (logarithmic abscissa and ordinate)
Figure 5, though only an example, shows that the optimum particulate concentration is nearly proportional to the
particle size: smaller particles require lower concentrations. For instance, particles with a diameter of about 1 mm
require volumetric concentrations during measurement of about 0,002 %, whereas the concentration for 100 mm
particles should be about 0,2 %, in a cell with a 2 mm path length. As a consequence, the width of the particle size
distribution influences the optimum sample concentration for measurement. Moreover, the range of concentrations,
as shown in figure 5, is influenced by the laser beam width, the path length of the measurement zone, the optical
properties of the particles and the sensitivity of the detector elements.
In view of the above, measurements should be performed at different particulate concentrations in order to decide
on the optimum concentration range for any typical sample of material.
6.3 Measurement
6.3.1 Procedure
A typical measurement of a particle size distribution by laser diffraction comprises the following steps:
a) Setting up instrument and blank measurement
After selection of the appropriate particle size range and proper alignment of the optical part of the instrument,
a blank measurement is performed in which a particle-free dispersion medium is used. Detector data are saved
in order to subtract them later from the data obtained with that sample in order to obtain net sample signals.
© ISO
b) Measurement of the scattering pattern of dispersed sample(s)
Generally, a measuring time allowing for a large number of detector scans or sweeps at short time intervals is
used: typically some 2 seconds or 1 000 sweeps. For each detector element an average signal is calculated,
sometimes together with its standard deviation. Data are stored in the computer memory. The magnitude of the
signal from each detector element depends upon the detection area, the light intensity and the quantum
efficiency. The coordinates (size and position) of the detector elements together with the focal distance of the
lens determine the region of scattering angles for each element. Generally all these factors are factory
determined and stored in the computer.
Most instruments also measure the intensity of the central laser beam. The fractional difference between a
dispersed sample and a blank experiment is given as an obscuration value, which is indicative of the total amount
of scattered light and the particle concentration.
c) Selection of an appropriate optical model
Most often either the Fraunhofer or the Mie theory is used.
Sometimes other approximating theories are applied for calculation of the scattering matrix. When using the Mie
theory, the refractive indices of particulate and medium, or their ratio, should be brought into the instrument in
order to allow calculation of the model matrix (see annex D for the refractive indexes of liquids and solids). Often,
small values of the imaginary part of the refractive index (about 0,01 - 0,1i) are applied to cope with the surface
roughness of the particles.
NOTE Small differences in the assumed complex refractive index may cause significant differences in the resulting
particle size distributions.
In order to obtain traceable results it is essential that the refractive index values used are reported
d) Conversion of scattering pattern into particle size distribution
This deconvolution step is the inverse of the calculation of a scattering pattern for a given particle size
distribution. The fact that short measured data always contain some random and systematic errors, may cause
erroneous size distribution results. Several mathematical procedures have been developed for use in the
different instruments available [4, 6, 7, 10, 12, 14]. They contain some weighting of deviations between
measured and calculated scattering patterns (e.g. least squares), some constraints (e.g. non-negativity for
amounts of particles) and/or some smoothing of the size distribution curve. A new procedure [5] uses the
observed fluctuations of the detector signals to introduce proper weighting of these data and to calculate
confidence intervals for the particle size distribution.
6.3.2 Precautions
Before starting, and during any measurement, the instructions given in the instrument manual should be followed.
The following precautions should be taken.
a) Before switching on the power to the instrument make sure that all components of the system are properly
grounded. It is essential that all the particle dispersing and transporting devices, such as the ultrasonic bath,
the dry disperser, the vacuum inlets and vacuum hoses, are earthed to prevent ignition of organic solvents or
dust explosions caused by electrostatic discharges.
b) After switching the power on, allow sufficient time for the instrument to stabilize. Gas lasers such as the HeNe
laser usually have a warm-up time of more than half an hour.
c) Check the instrument status and, if necessary, set up the required measuring range and lens. Ensure, by
watching the intensities on the detector, that the detector is properly centred and positioned in the focal plane of
the lens. Without particles, the background signal should be below the specified thresholds for that instrument
set-up and dispersing device. If this is not the case, inspect and, if necessary, clean the optical components to
ensure proper performance.
d) Make sure that the particles are only introduced into the laser beam within the specified working distance of the
lens, so that all relevant scattering radiation leaving the particles strikes within the clear aperture of the lens
that focusses it on the detector (and thus, vignetting is avoided).
© ISO
e) Validate the instrument operation with respect to both precision and accuracy at regular time intervals by
measuring a control sample of known size distribution (see 6.4 and 6.5.2).
f) In the case of wet dispersion, check that air bubbles are absent in the dispersion liquid. Foaming detergents
should be avoided.
g) In the case of dry dispersion, check, visually or by inspection of subsequent obscuration values, that the dosing
unit for the disperser generates a steady mass flow.
h) For aerosols and sprays: make sure that no bright daylight is allowed, either directly or via scattering by
particles, into the detector and that the flow of particles/droplets is even.
i) Investigate, if possible, the influence of the optical model (relative refractive index) on the resulting particle size
distribution, especially if a significant fraction of the particles is smaller than about 10 mm.
NOTE Occasionally a strong dependency of the results on the refractive index has been found whereby even slightly
different values resulted in major systematic errors (see further annexes A and D).
6.4 Repeatability
For samples where the coefficient of variation of the particle size distribution is equal to or less than about 50 % (or
ratio of diameter of largest to smallest particle about 10:1) and for measurements performed on at least five different
samples from the same batch in the mid-range of any instrument setting, the repeatability of characteristic particle
sizes in size distributions should be as follows: for any chosen central value of the distribution, e.g. the median size
(x ), the coefficient of variation should be smaller than 3 %. Values at the sides of the distribution, e.g. x and x ,
50 10 90
should have a coefficient of variation not exceeding 5 %. Below 10 mm, these maximum values should be doubled.
6.5 Accuracy
6.5.1 Calibration
Laser diffraction systems are based on first principles, though with idealized properties of the particles (cf. annex A).
Thus, calibration in the strict sense is not required. However, it is still necessary and desirable to confirm the correct
operation of the instrument by a validation procedure (see 6.5.2).
6.5.2 Validation
6.5.2.1 Primary validation can be made with any certified or standard reference material, acceptable to the practice
of the end-users' industries. Here, the total measurement procedure is being examined, including sampling, sample
dispersion, sample transport through the measuring zone, measurement and deconvolution procedure [13]. It is
essential that the total operational procedure is adequately described in full detail.
Certified or standard reference materials consisting of a known distribution having a range of spherical particles
over one decade of size are preferred. They should be certified to mass percentage by an absolute technique, if
available, and used in conjunction with an agreed, detailed operation procedure. It is essential that the real and
imaginary part of the complex refractive index are precisely specified for the material if the Mie theory is applied in
data analysis.
The response of a laser diffraction instrument is considered to meet this standard if the mean value of the x
coming from at least three independent measurements deviates less than 3 % from the certified range of values of
the Certified or Standard Reference Material, i.e. the mean value together with its standard deviation; the mean
values for the x and x should deviate less than 5 % from the certified range of values.
10 90
Although use of spherical reference materials is preferable, non-spherical ones may also be used. Preferably, these
should have certified or typical values coming from laser diffraction analyses according to an agreed, detailed
operational procedure. If the reference values come from other methods than laser diffraction, a significant bias may
result. The reason for this bias is that the different principles applied in the various methods may lead to different
sensitivity to the properties of the particles and, thus, to different equivalent-sphere diameters for the same non-
spherical particle.
In addition to the certified reference materials mentioned above, product samples of typical composition and particle
size distribution for a specified class of products can also be applied for validation of instrument behaviour and
© ISO
operational procedures, provided that their particle size distribution has been proven to be stable over time. Here,
the results should comply with previously determined data with the same precision and bias as those for the
certified reference materials.
Mixtures in ratios of volume of two or more reference materials having the same properties can be applied to test
the accuracy of the reported fractional quantities, the size resolution and the sensitivity to fines or coarse material.
Representative sampling from the various materials is here, however, even more important than in the normal case,
since the fractional quantities can be very small.
6.5.2.2 For secondary validation of a laser diffraction instrument a suitable reference reticle [1, 8, 9] can be used.
Thus, only the quality of instrument optics and software is being examined, leaving out the effects of sample
dispersion and handling. For instruments with a focal length above 300 mm, the application of reticles is not reliable
due to speckle effects. Of course, the proper use of a reticle includes the requirement that the illuminating beam
diameter allows measurement of the full circular area of the dots deposited. Note that some reverse Fourier
applications, where the reticle must be placed close to the detector, may fall within this restriction. The response of
a laser diffraction instrument is considered to meet the requirements of this part of ISO 13320 if the mean value for
the x coming from at least three measurements deviates less than 2 % from the quoted value and for x and x
50 10 90
less than 3 %.
6.6 Error sources; diagnosis
6.6.1 Systematic measurement errors (bias) may arise from improper sample preparation, departure from the
theoretical assumptions for the particulate material and/or improper operation or fun
...
INTERNATIONAL ISO
STANDARD 13320-1
First edition
1999-11-01
Particle size analysis — Laser diffraction
methods —
Part 1:
General principles
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1: Principes généraux
A
Reference number
Contents
1 Scope .1
2 Normative reference .1
3 Terms, definitions and symbols.1
3.1 Terms and definitions .1
3.2 Symbols.3
4 Principle.4
5 Laser diffraction instrument .4
6 Operational procedures .6
6.1 Requirements.6
6.2 Sample inspection, preparation, dispersion and concentration.7
6.3 Measurement.9
6.4 Repeatability.11
6.5 Accuracy.11
6.6 Error sources; diagnosis .12
6.7 Resolution; sensitivity .14
7 Reporting of results.14
Annex A (informative) Theoretical background of laser diffraction.16
Annex B (informative) Recommendations for instrument specifications .25
Annex C (informative) Dispersion liquids for the laser diffraction method.28
Annex D (informative) Refractive index for various liquids and solids .29
Bibliography.34
© ISO 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from the publisher.
International Organization for Standardization
Case postale 56 • CH-1211 Genève 20 • Switzerland
Internet iso@iso.ch
Printed in Switzerland
ii
© ISO
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, governmental and non-governmental, in
liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
Draft International Standards adopted by the technical committees are circulated to the member bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.
International Standard ISO 13320-1 was prepared by Technical Committee ISO/TC 24, Sieves, sieving and other
sizing methods, Subcommittee SC 4, Sizing by methods other than sieving.
ISO 13320 consists of the following parts, under the general title Particle size analysis — Laser diffraction methods:
Part 1: General principles
Part 2: Validation of inversion procedures
Annexes A to E of this part of ISO 13320 are for information only.
iii
© ISO
Introduction
Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success
of the technique is based on the fact that it can be applied to various kinds of particulate systems, is fast and can be
automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument
and the interpretation of the results require the necessary caution.
Therefore, there is a need for establishing an International Standard for particle size analysis by laser diffraction
methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis.
Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and,
thus, has been known by the following names:
Fraunhofer diffraction;
(near-) forward light scattering;
low-angle laser light scattering (LALLS).
However, the technique has been broadened to include light scattering in a wider angular range and application of
the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction.
The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an
intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the
particles. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low
intensities, with patterns that extend for smaller particles to wider angles than for larger particles [2-7, 10, 15 in the
bibliography].
Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual
scattering patterns of all particles present. By using an optical model to compute scattering patterns for unit volumes
of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size
distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).
a) b)
Figure 1 — Scattering pattern for two spherical particles: the particle generating pattern a) is twice as large
as the one generating pattern b)
A typical laser diffraction instrument consists of a light beam (usually a laser), a particulate dispersing device, a
detector for measuring the scattering pattern and a computer for both control of the instrument and calculation of the
particle size distribution. Note that the laser diffraction technique cannot distinguish between scattering by single
particles and scattering by clusters of primary particles forming an agglomerate or an aggregate. Usually, the
resulting particle size for agglomerates is related to the cluster size, but sometimes the size of the primary particles
is reflected in the particle size distribution as well. As most particulate samples contain agglomerates or aggregates
iv
© ISO
and one is generally interested in the size distribution of the primary particles, the clusters are usually dispersed into
primary particles before measurement.
Historically, instruments only used scattering angles smaller than 14°, which limited the application to a lower size of
about 1 mm. The reason for this limitation is that smaller particles show most of their distinctive scattering at larger
angles (see also annex A). Many recent instruments allow measurement at larger scattering angles, some up to
about 150°, for example through application of a converging beam, more or larger lenses, a second laser beam or
more detectors. Thus, smaller particles down to about 0,1 mm can be sized. Some instruments incorporate
additional information from scattering intensities and intensity differences at various wavelengths and polarization
planes in order to improve the characterization of particle sizes in the submicrometre range.
v
INTERNATIONAL STANDARD © ISO ISO 13320-1:1999(E)
Particle size analysis — Laser diffraction methods —
Part 1:
General principles
1 Scope
This part of ISO 13320 provides guidance on the measurement of size distributions of particles in any two-phase
system, for example powders, sprays, aerosols, suspensions, emulsions and gas bubbles in liquids, through
analysis of their angular light scattering patterns. It does not address the specific requirements of particle size
measurement of specific products. This part of ISO 13320 is applicable to particle sizes ranging from approximately
0,1 mm to 3 mm.
For non-spherical particles, an equivalent-sphere size distribution is obtained because the technique uses the
assumption of spherical particles in its optical model. The resulting particle size distribution may be different from
those obtained by methods based on other physical principles (e.g. sedimentation, sieving).
2 Normative reference
The following normative document contains provisions which, through reference in this text, constitute provisions of
this part of ISO 13320. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO 13320 are encouraged to investigate the
possibility of applying the most recent edition of the normative document indicated below. For undated references,
the lates edition of the normative document referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.
ISO 9276-1:1990, Representation of results of particle size analysis — Part 1: Graphical representation.
3 Terms, definitions and symbols
For the purposes of this part of ISO 13320, the following terms, definitions and symbols apply.
3.1 Terms and definitions
3.1.1
absorption
reduction of intensity of a light beam traversing a medium through energy conversion in the medium
3.1.2
coefficient of variation
relative measure (%) for precision: standard deviation divided by mean value of population and multiplied by 100
(for normal distributions of data the median is equal to the mean)
© ISO
3.1.3
complex refractive index
N
p
refractive index of a particle, consisting of a real and an imaginary (absorption) part
N = n - ik
p p p
3.1.4
relative refractive index
m
complex refractive index of a particle, relative to that of the medium
m = N /n
p m
3.1.5
deconvolution
mathematical procedure whereby the size distribution of a particle ensemble is inferred from measurements of their
scattering pattern
3.1.6
diffraction
spreading of light around the contour of a particle beyond the limits of its geometrical shadow with a small deviation
from rectilinear propagation
3.1.7
extinction
attenuation of a light beam traversing a medium through absorption and scattering
3.1.8
model matrix
matrix containing light scattering vectors for unit volumes of different size classes, scaled to the detector’s
geometry, as derived from model computation
3.1.9
multiple scattering
subsequent scattering of light at more than one particle, causing a scattering pattern that is no longer the sum of the
patterns from all individual particles (in contrast to single scattering)
3.1.10
obscuration
optical concentration
percentage or fraction of incident light that is attenuated due to extinction (scattering and/or absorption) by the
particles
3.1.11
optical model
theoretical model used for computing the model matrix for optically homogeneous spheres with, if necessary, a
specified complex refractive index, e.g. Fraunhofer diffraction, anomalous diffraction, Mie scattering
3.1.12
reflection
return of radiation by a surface, without change in wavelength
3.1.13
refraction
change of the direction of propagation of light determined by change in the velocity of propagation in passing from
one medium to another; in accordance with Snell’s law
n sin Q = n sin Q
m m p p
© ISO
3.1.14
scattering
general term describing the change in propagation of light at the interface of two media
3.1.15
scattering pattern
angular or spatial pattern of light intensities [I(q) and I(r) respectively] originating from scattering, or the related
energy values taking into account the sensitivity and the geometry of the detector elements
3.1.16
single scattering
scattering whereby the contribution of a single member of a particle population to the scattering pattern of the entire
population is independent of the other members of the population
3.1.17
width of normal size distribution
standard deviation (absolute value) or coefficient of variation (relative percentage) of the size distribution
NOTE For normal distributions about 95 % of the population falls within ± 2 standard deviations from the mean value and
about 99,7 % within ± 3 standard deviations from the mean value.
3.2 Symbols
c volumetric particulate concentration, %
f focal length of lens, mm
I(q) angular intensity distribution of light scattered by particles (scattering pattern)
I(r) spatial intensity distribution of light scattered by particles on the detector elements (measured scattering
pattern by detector)
i indication for imaginary part of refractive index
i photocurrent of detector element n, mA
n
k wave number: 2p/l
k imaginary (absorption) part of particle’s refractive index
p
l illuminated path length containing particles, mm
L vector of photocurrents (i , i ,., i )
1 2 n
m relative, complex refractive index of particle to medium
n real part of refractive index of medium
m
n real part of refractive index of particle
p
N complex refractive index of a particle
p
r radial distance from focal point in focal plane, mm
n velocity of particles in dry disperser
x particle diameter, mm
x median particle diameter, mm; here used on a volumetric basis, i.e. 50 % by volume of the particles is
smaller than this diameter and 50 % is larger
x particle diameter corresponding to 10 % of the cumulative undersize distribution (here by volume), mm
© ISO
particle diameter corresponding to 90 % of the cumulative undersize distribution (here by volume), mm
x
a dimensionless size parameter: px/l
q scattering angle with respect to forward direction
q angle with respect to perpendicular at boundary for a light beam in medium (as used in Snell's law; see
m
refraction)
q angle with respect to perpendicular at boundary for a light beam in particle (as used in Snell's law; see
p
refraction)
l wavelength of illuminating light source in medium (i.e. liquid or gas/air), nm
w rotational velocity of particles in dry disperser
4 Principle
A representative sample, dispersed at an adequate concentration in a suitable liquid or gas, is passed through the
beam of a monochromatic light source, usually a laser. The light scattered by the particles at various angles is
measured by a multi-element detector and numerical values relating to the scattering pattern are then recorded for
subsequent analysis. These numerical scattering values are then transformed, using an appropriate optical model
and mathematical procedure, to yield the proportion of total volume to a discrete number of size classes forming a
volumetric particle size distribution.
5 Laser diffraction instrument
A typical set-up for a laser diffraction instrument is given in figure 2.
Key
1 Obscuration detector 7 Light source laser
2 Scattered beam 8 Beam processing unit
3 Direct beam 9 Working distance of lens 4
4 Fourier lens 10 Multi-element detector
5 Scattered light not collected by lens 4 11 Focal distance of lens 4
6 Particle ensemble
Figure 2 — Example of the set-up of a laser diffraction instrument
In the conventional set-up, a light source (typically a laser) is used to generate a monochromatic, coherent, parallel
beam. This is followed by a beam processing unit, usually a beam expander with integrated filter, producing an
extended and nearly ideal beam to illuminate the dispersed particles.
© ISO
A representative sample, dispersed at an adequate concentration is passed through the light beam in a measuring
zone by a transporting medium (gas or liquid); this measuring zone should be within the working distance of the lens
used. Sometimes, the particle stream in a process is illuminated directly by the laser beam for measurement, as in
the case of sprays, aerosols and air bubbles in liquids. In other cases (such as emulsions, pastes and powders),
representative samples can be dispersed in suitable liquids (see annex C). Often dispersants (wetting agents;
stabilizers) and/or mechanical forces (agitation; ultrasonication) are applied for deagglomeration of particles and
stabilization of the dispersion. For these liquid dispersions a recirculating system is most commonly used, consisting
of an optical measuring cell, a dispersion bath usually equipped with stirrer and ultrasonic elements, a pump and
tubing.
Dry powders can also be converted into aerosols through application of dry powder dispersers, which apply
mechanical forces for deagglomeration. Here a dosing device feeds the disperser with a constant mass flow of
sample. The disperser uses the energy of a compressed gas or the differential pressure to a vacuum to disperse
the particles. It outputs an aerosol that is blown through the measuring zone, usually into the inlet of a vacuum pipe
that collects the particles.
There are two positions in which the particles can enter the laser beam. In the conventional case the particles enter
the parallel beam before and within the working distance of the collecting lens [see Figure 3 a)]. In the so-called
reversed Fourier optics case the particles are entered behind the collecting lens and, thus, in a converging beam
[see Figure 3 b)].
The advantage of the conventional set-up is that a reasonable path length for the sample is allowed within the
working distance of the lens. The second set-up allows only small path lengths but enables measurement of
scattered light at larger angles, which is useful when submicrometre particles are present.
The interaction of the incident light beam and the ensemble of dispersed particles results in a scattering pattern with
different light intensities at various angles (see annex A for theoretical background of laser diffraction). The total
angular intensity distribution I(q), consisting of both direct and scattered light, is then focused by a positive lens or
an ensemble of lenses onto a multi-element detector. The lens(es) provide(s) for a scattering pattern which, within
limits, is not dependent upon the location of the particles in the light beam. So, the continuous angular intensity
distribution I(q) is converted into a discrete spatial intensity distribution I(r) on a set of detector elements.
It is assumed that the recorded scattering pattern of the particle ensemble is identical to the sum of the patterns
from all individual single scattering particles presented in random relative positions. Note that only a limited angular
range of scattered light is collected by the lens(es) and, thus, by the detector.
The detector generally consists of a number of photodiodes; some instruments apply one photodiode in combination
with moving slits. The photodiodes convert the spatial intensity distribution I(r) into a set of photocurrents i .
n
Subsequent electronics then convert and digitize the photocurrents into a set of intensity or energy vectors L ,
n
representing the scattering pattern. A central element measures the intensity of the non-scattered light and, thus,
with a calculation, provides a measure of optical concentration or obscuration. Some instruments provide special
geometries of the central element in order to automatically re-centre or re-focus the detector by moving the detector
or the lens. It is desirable that the detector elements are positioned so as to prevent the light reflected from the
surface from re-traversing the optical system.
A computer controls the measurement and is used for storage and manipulation of the detected signals, for storage
and/or calculation of a proper form of the optical model (usually as a model matrix containing light scattering vectors
per unit of volume per size class, scaled to the detector's geometry and sensitivity) and calculation of the particle
size distribution (see annex A for theoretical background of laser diffraction). Also it may provide automated
instrument operation.
Several significant differences exist, both in hardware and software, not only between instruments from different
manufacturers but also between different types from one company. The instrument specifications should give
adequate information for proper judgement of these differences. In annex B recommendations are presented for the
specifications of laser diffraction instruments.
© ISO
Key
1 Detector 4 Working distance
2 Fourier lens 5 Focal distance
3 Particle ensemble
a) Conventional set-up: particles are in parallel beam before and within working distance of lens
Key
1 Detector
2 Flow through cuvette
3 Particle
b) Reverse Fourier set-up: particles are in converging beam between lens and detector
Figure 3 — Set-ups of laser diffraction instruments
6 Operational procedures
6.1 Requirements
6.1.1 Instrument location
The instrument should be located in a clean environment that is free from excessive electrical noise, mechanical
vibration, and temperature fluctuations and is out of direct sunlight. The operating area should be well ventilated.
The instrument should either contain a rigid internal optical bench or be installed on a rigid table or bench to avoid
realignment of the optical system at frequent intervals.
WARNING — The radiation of instruments equipped with a low power laser can cause permanent eye
damage. Never look into the direct path of the laser beam or its reflections. Avoid cutting the laser beam
with reflecting surfaces. Observe the local laser radiation safety regulations.
© ISO
6.1.2 Dispersion liquids
Any optically transparent liquid of known refractive index may be used. Thus, a variety of liquids is available for
preparation of liquid dispersions of powders. Annex C provides requirements for the dispersion liquids.
If an organic liquid is used for dispersion, observe the local health and safety regulations. Use a cover for the
ultrasonic bath when using liquids with a high vapour pressure in order to prevent the formation of hazardous
vapour concentrations above the bath and/or the generation of low-temperature zones with fluctuating refractive
indices in the fluid by evaporation.
6.1.3 Dispersion gases
For dry dispersion and spray applications a compressed gas is sometimes used. If used, it is essential that it is free
from oil, water and particles. To achieve this, a dryer with a filter is required. Any vacuum unit should be located
apart from the measurement zone, so that the output of the hot air does not reach the measuring zone. Draught
should be avoided in order to avoid unstable particulate streams.
6.2 Sample inspection, preparation, dispersion and concentration
6.2.1 Sample inspection
Inspect the material to be analysed, visually or with the aid of a microscope, firstly to estimate its size range and
particle shape and later to check whether the particles have been dispersed adequately.
The size distribution measured in a sample is only valid for a batch of material if the sample is representative for
that batch and has been dispersed adequately.
6.2.2 Preparation
For dry powders, prepare a representative sample of suitable volume for the measurement by an adequate sample
splitting technique, for instance a rotating riffler. If very small samples are required, or in the case of wet powders, it
is also possible to take fractional samples out of a well-mixed sample paste. The consistency of the paste then
avoids segregation errors. The pastes are formed by adding dispersant to the sample drop by drop while mixing it
with a spatula. As long as the mixture forms lumps, single drops should be added while continuing the mixing after
each drop. A good consistency for the paste is one like honey or toothpaste. If the paste becomes too fluid by
mistake, it shall not be used, and a new preparation should be initiated.
If the maximum size exceeds the measuring range, remove the material that is too coarse, e.g. by presieving. In this
case determine and report the amount/percentage removed.
Sprays, aerosols and gas bubbles in liquid should be measured directly, provided that their concentration is at an
adequate level (see 6.2.3 and 6.2.4), since sampling or dilution is generally impossible without altering the particle
size distribution.
6.2.3 Dispersion
6.2.3.1 Dry powders can be dispersed either in air or in liquid. The dispersion procedure shall be adjusted to the
purpose of the measurement, e.g. it has to be decided whether agglomerates should be detected or broken down to
the primary particles.
6.2.3.2 An adequate dry disperser should be applied; here, generally compressed air or vacuum is applied for
dispersion by shear stress with the assistance of mechanical de-agglomeration by particle-particle or particle-wall
collisions (see figure 4). For dry dispersion, the complete fractional sample shall be used for the measurement. Note
that the use of large sample quantities can overcome the poor statistical representation of coarse particles in a wide
size distribution. It is necessary to check that comminution of the particles does not occur and conversely that a
good dispersion has been achieved. This is usually done by direct comparison of dry dispersion with a liquid one:
ideally, the results should be the same. Another possibility for checking the degree of dispersion or comminution is
by changing the dispersing energy (e.g. the primary air pressure) and monitoring the change of the size distribution.
Usually upon increasing the dispersing energy the amount of fines is increased at first, due to improved dispersion,
until a plateau is reached, where the size distribution is nearly constant with increasing energy. At still higher
energies the amount of fines may rise again as a result of comminution. On some occasions, agglomeration has
© ISO
been found at high flow rates through a cascade. The centre of the plateau defines the optimum dispersing energy.
Note, however, that a plateau is not always found (for instance for highly aggregated or fragile particles).
a) Velocity gradients caused by shear stress
b) Particle to particle collisions
c) Particle to wall collisions
Figure 4 — Processes involved for dry dispersion of powders
6.2.3.3 For the preparation of liquid dispersions a variety of liquids is available. Annex C presents requirements
and some advice. Generally, pasting, stirring and ultrasonication can be used to facilitate proper dispersion of
particles in the liquid. A preliminary check on the dispersion quality can be made by visual/microscopic inspection of
the suspension. Also, it is possible to perform some measurements of the suspension in the laser diffraction
instrument, with intermediate ultrasonication: the measured size distribution should not change significantly if the
sample is well dispersed and the particles are neither fragile nor soluble.
The minimum volume of sample, required for repeatable measurement, increases as the width of the size
distribution becomes greater in order to allow a sufficient number of large particles to be present. Accordingly, the
volume of the dispersion fluid required to suspend these samples also increases if the limits of optical concentration
are to be observed.
For example, for a sample with particles in the approximate size range of 2 mm to 200 mm, a sample volume of at
least 0,3 ml is needed. This will require at least 500 ml of suspension fluid for its dispersion. Also, the measurement
time or the number of detector readings within one measurement should be sufficient to reach a reasonable
precision. Appropriate measurement conditions should be established experimentally, in relation to the desired
precision.
6.2.4 Concentration
The particle concentration in the dispersion should be above a minimum level, which for many instruments will
correspond to about 5 % obscuration, in order to produce an acceptable signal-to-noise ratio in the detector.
Likewise, it should be below a maximum level, which for many instruments will correspond to about 35 %
obscuration for particles larger than about 20 mm, in order to avoid multiple scattering (where light is scattered
subsequently at more than one particle).
© ISO
For particles smaller than about 20 mm, the obscuration value should be kept below about 15 % for the same
reason. In general, multiple scattering appears at larger scattering angles. Without multiple scattering correction, the
amount of fines calculated will exceed the true value. If work at higher concentrations is required, it should be
possible to correct for multiple scattering or systematic errors will arise. A first estimate for the concentration can be
observed from figure 5.
Key
1 High limit
2 Low limit
Figure 5 — Typical high and low limits for particle concentration for laser diffraction systems as a function
of particle size for narrow size distributions; 2 mm path length (logarithmic abscissa and ordinate)
Figure 5, though only an example, shows that the optimum particulate concentration is nearly proportional to the
particle size: smaller particles require lower concentrations. For instance, particles with a diameter of about 1 mm
require volumetric concentrations during measurement of about 0,002 %, whereas the concentration for 100 mm
particles should be about 0,2 %, in a cell with a 2 mm path length. As a consequence, the width of the particle size
distribution influences the optimum sample concentration for measurement. Moreover, the range of concentrations,
as shown in figure 5, is influenced by the laser beam width, the path length of the measurement zone, the optical
properties of the particles and the sensitivity of the detector elements.
In view of the above, measurements should be performed at different particulate concentrations in order to decide
on the optimum concentration range for any typical sample of material.
6.3 Measurement
6.3.1 Procedure
A typical measurement of a particle size distribution by laser diffraction comprises the following steps:
a) Setting up instrument and blank measurement
After selection of the appropriate particle size range and proper alignment of the optical part of the instrument,
a blank measurement is performed in which a particle-free dispersion medium is used. Detector data are saved
in order to subtract them later from the data obtained with that sample in order to obtain net sample signals.
© ISO
b) Measurement of the scattering pattern of dispersed sample(s)
Generally, a measuring time allowing for a large number of detector scans or sweeps at short time intervals is
used: typically some 2 seconds or 1 000 sweeps. For each detector element an average signal is calculated,
sometimes together with its standard deviation. Data are stored in the computer memory. The magnitude of the
signal from each detector element depends upon the detection area, the light intensity and the quantum
efficiency. The coordinates (size and position) of the detector elements together with the focal distance of the
lens determine the region of scattering angles for each element. Generally all these factors are factory
determined and stored in the computer.
Most instruments also measure the intensity of the central laser beam. The fractional difference between a
dispersed sample and a blank experiment is given as an obscuration value, which is indicative of the total amount
of scattered light and the particle concentration.
c) Selection of an appropriate optical model
Most often either the Fraunhofer or the Mie theory is used.
Sometimes other approximating theories are applied for calculation of the scattering matrix. When using the Mie
theory, the refractive indices of particulate and medium, or their ratio, should be brought into the instrument in
order to allow calculation of the model matrix (see annex D for the refractive indexes of liquids and solids). Often,
small values of the imaginary part of the refractive index (about 0,01 - 0,1i) are applied to cope with the surface
roughness of the particles.
NOTE Small differences in the assumed complex refractive index may cause significant differences in the resulting
particle size distributions.
In order to obtain traceable results it is essential that the refractive index values used are reported
d) Conversion of scattering pattern into particle size distribution
This deconvolution step is the inverse of the calculation of a scattering pattern for a given particle size
distribution. The fact that short measured data always contain some random and systematic errors, may cause
erroneous size distribution results. Several mathematical procedures have been developed for use in the
different instruments available [4, 6, 7, 10, 12, 14]. They contain some weighting of deviations between
measured and calculated scattering patterns (e.g. least squares), some constraints (e.g. non-negativity for
amounts of particles) and/or some smoothing of the size distribution curve. A new procedure [5] uses the
observed fluctuations of the detector signals to introduce proper weighting of these data and to calculate
confidence intervals for the particle size distribution.
6.3.2 Precautions
Before starting, and during any measurement, the instructions given in the instrument manual should be followed.
The following precautions should be taken.
a) Before switching on the power to the instrument make sure that all components of the system are properly
grounded. It is essential that all the particle dispersing and transporting devices, such as the ultrasonic bath,
the dry disperser, the vacuum inlets and vacuum hoses, are earthed to prevent ignition of organic solvents or
dust explosions caused by electrostatic discharges.
b) After switching the power on, allow sufficient time for the instrument to stabilize. Gas lasers such as the HeNe
laser usually have a warm-up time of more than half an hour.
c) Check the instrument status and, if necessary, set up the required measuring range and lens. Ensure, by
watching the intensities on the detector, that the detector is properly centred and positioned in the focal plane of
the lens. Without particles, the background signal should be below the specified thresholds for that instrument
set-up and dispersing device. If this is not the case, inspect and, if necessary, clean the optical components to
ensure proper performance.
d) Make sure that the particles are only introduced into the laser beam within the specified working distance of the
lens, so that all relevant scattering radiation leaving the particles strikes within the clear aperture of the lens
that focusses it on the detector (and thus, vignetting is avoided).
© ISO
e) Validate the instrument operation with respect to both precision and accuracy at regular time intervals by
measuring a control sample of known size distribution (see 6.4 and 6.5.2).
f) In the case of wet dispersion, check that air bubbles are absent in the dispersion liquid. Foaming detergents
should be avoided.
g) In the case of dry dispersion, check, visually or by inspection of subsequent obscuration values, that the dosing
unit for the disperser generates a steady mass flow.
h) For aerosols and sprays: make sure that no bright daylight is allowed, either directly or via scattering by
particles, into the detector and that the flow of particles/droplets is even.
i) Investigate, if possible, the influence of the optical model (relative refractive index) on the resulting particle size
distribution, especially if a significant fraction of the particles is smaller than about 10 mm.
NOTE Occasionally a strong dependency of the results on the refractive index has been found whereby even slightly
different values resulted in major systematic errors (see further annexes A and D).
6.4 Repeatability
For samples where the coefficient of variation of the particle size distribution is equal to or less than about 50 % (or
ratio of diameter of largest to smallest particle about 10:1) and for measurements performed on at least five different
samples from the same batch in the mid-range of any instrument setting, the repeatability of characteristic particle
sizes in size distributions should be as follows: for any chosen central value of the distribution, e.g. the median size
(x ), the coefficient of variation should be smaller than 3 %. Values at the sides of the distribution, e.g. x and x ,
50 10 90
should have a coefficient of variation not exceeding 5 %. Below 10 mm, these maximum values should be doubled.
6.5 Accuracy
6.5.1 Calibration
Laser diffraction systems are based on first principles, though with idealized properties of the particles (cf. annex A).
Thus, calibration in the strict sense is not required. However, it is still necessary and desirable to confirm the correct
operation of the instrument by a validation procedure (see 6.5.2).
6.5.2 Validation
6.5.2.1 Primary validation can be made with any certified or standard reference material, acceptable to the practice
of the end-users' industries. Here, the total measurement procedure is being examined, including sampling, sample
dispersion, sample transport through the measuring zone, measurement and deconvolution procedure [13]. It is
essential that the total operational procedure is adequately described in full detail.
Certified or standard reference materials consisting of a known distribution having a range of spherical particles
over one decade of size are preferred. They should be certified to mass percentage by an absolute technique, if
available, and used in conjunction with an agreed, detailed operation procedure. It is essential that the real and
imaginary part of the complex refractive index are precisely specified for the material if the Mie theory is applied in
data analysis.
The response of a laser diffraction instrument is considered to meet this standard if the mean value of the x
coming from at least three independent measurements deviates less than 3 % from the certified range of values of
the Certified or Standard Reference Material, i.e. the mean value together with its standard deviation; the mean
values for the x and x should deviate less than 5 % from the certified range of values.
10 90
Although use of spherical reference materials is preferable, non-spherical ones may also be used. Preferably, these
should have certified or typical values coming from laser diffraction analyses according to an agreed, detailed
operational procedure. If the reference values come from other methods than laser diffraction, a significant bias may
result. The reason for this bias is that the different principles applied in the various methods may lead to different
sensitivity to the properties of the particles and, thus, to different equivalent-sphere diameters for the same non-
spherical particle.
In addition to the certified reference materials mentioned above, product samples of typical composition and particle
size distribution for a specified class of products can also be applied for validation of instrument behaviour and
© ISO
operational procedures, provided that their particle size distribution has been proven to be stable over time. Here,
the results should comply with previously determined data with the same precision and bias as those for the
certified reference materials.
Mixtures in ratios of volume of two or more reference materials having the same properties can be applied to test
the accuracy of the reported fractional quantities, the size resolution and the sensitivity to fines or coarse material.
Representative sampling from the various materials is here, however, even more important than in the normal case,
since the fractional quantities can be very small.
6.5.2.2 For secondary validation of a laser diffraction instrument a suitable reference reticle [1, 8, 9] can be used.
Thus, only the quality of instrument optics and software is being examined, leaving out the effects of sample
dispersion and handling. For instruments with a focal length above 300 mm, the application of reticles is not reliable
due to speckle effects. Of course, the proper use of a reticle includes the requirement that the illuminating beam
diameter allows measurement of the full circular area of the dots deposited. Note that some reverse Fourier
applications, where the reticle must be placed close to the detector, may fall within this restriction. The response of
a laser diffraction instrument is considered to meet the requirements of this part of ISO 13320 if the mean value for
the x coming from at least three measurements deviates less than 2 % from the quoted value and for x and x
50 10 90
less than 3 %.
6.6 Error sources; diagnosis
6.6.1 Systematic measurement errors (bias) may arise from improper sample preparation, departure from the
theoretical assumptions for the particulate material and/or improper operation or functioning of the instrument.
6.6.2 Errors made in sample preparation are often a main part of the total error. They can be attributed to the
following causes:
improper sampling technique, leading to a non-representative sample in the measurement zone; this type of
error is especially significant when using an inadequate sample splitting technique in the case of a large batch
of free flowing material having a wide size distribution, but errors can also be due to selective transport within
the instrument, for example, application of too low a pumping speed may lead to sedimentation of the larger
particles in the pumping circuit;
incomplete deagglomeration of particles, due to an improper dispersion procedure (liquid; dispersant;
ultrasonication);
comminution of particles by mechanical forces during dispersion (e.g. ultrasonication);
swelling, re-agglomeration, dissolution or evaporation of particles/droplets before or during measurement;
inclusion of air bubbles due to foaming dispersants and/or vigorous stirring;
scattering from differences in refractive index in the dispersing liquid or gas due to temperature fluctuations
generated by, for example, evaporation of the
...
NORME ISO
INTERNATIONALE 13320-1
Première édition
1999-11-01
Analyse granulométrique — Méthodes par
diffraction laser —
Partie 1:
Principes généraux
Particle size analysis — Laser diffraction methods —
Part 1: General principles
A
Numéro de référence
Sommaire
1 Domaine d’application .1
2 Référence normative .1
3 Termes, définitions et symboles .1
3.1 Termes et définitions.1
3.2 Symboles.3
4 Principe.4
5 Instrument de diffraction laser .4
6 Modes opératoires de fonctionnement.6
6.1 Prescriptions.7
6.2 Contrôle, préparation, dispersion et concentration de l'échantillon.7
6.3 Mesurage .10
6.4 Répétabilité.12
6.5 Exactitude.12
6.6 Sources d'erreurs; diagnostics .13
6.7 Résolution; sensibilité .15
7 Rapport des résultats.15
Annexe A (informative) Arrière-plan théorique de la diffraction laser .17
Annexe B (informative) Recommandations pour les spécifications des instruments.27
Annexe C (informative) Liquides de dispersion utilisés pour la méthode de diffraction laser .30
Annexe D (informative) Indice de réfraction de divers liquides et solides.31
Bibliographie.36
© ISO 1999
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque
forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.
Organisation internationale de normalisation
Case postale 56 • CH-1211 Genève 20 • Suisse
Internet iso@iso.ch
Imprimé en Suisse
ii
© ISO
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux
comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité
technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission
électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI, Partie 3.
Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour
vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des comités
membres votants.
La Norme internationale ISO 13320 a été élaborée par le comité technique ISO /TC 24, Tamis, tamisage, et autres
méthodes de séparation granulométrique, sous-comité SC 4, Granulométrie par procédés autres que tamisage.
L'ISO 13320 comprend les parties suivantes, présentées sous le titre général Analyse granulométrique —
Méthodes par diffraction laser:
Partie 1: Principes généraux
Partie 2: Validation de procédures d'inversion
Les annexes A à D de la présente partie de l'ISO 13320 sont données uniquement à titre d'information.
iii
© ISO
Introduction
Aujourd'hui, les méthodes par diffraction laser sont largement utilisées pour différentes applications granulo-
métriques. Le succès de cette technique est fondé sur le fait qu'elle peut être appliquée à de nombreux types de
systèmes particulaires, qu'elle est rapide et peut être automatisée, et qu'en outre, de nombreux instruments sont
commercialisés. Néanmoins, il convient de prendre toutes les précautions nécessaires lors de l'utilisation de
l'instrument et de l'interprétation des résultats.
Il y a donc lieu d'établir une Norme internationale sur l'analyse granulométrique par des méthodes de diffraction
laser. L'objectif de cette norme est de fournir une méthodologie relative au contrôle qualité des analyses
granulométriques.
À l'origine, la technique de diffraction laser consistait à ne prendre en considération que la diffusion de la lumière à
petits angles. Cette technique a ainsi pris les noms suivants:
la diffraction de Fraunhofer;
la diffusion de la lumière vers l'avant;
la diffusion de la lumière laser à angle plat.
Toutefois, la technique s'est beaucoup développée en intégrant maintenant la diffusion de la lumière à des angles
plus grands, ainsi que l'application de la théorie de Mie, qui vient s'ajouter aux théories plus approximatives telles
que la diffraction de Fraunhofer ou la diffraction anormale.
La technique de diffraction laser est fondée sur le phénomène selon lequel les particules diffusent de la lumière
dans toutes les directions, le type d'intensité dépendant de la dimension des particules. Tous les instruments
actuellement disponibles partent du principe que les particules sont sphériques. La Figure 1 illustre les
caractéristiques des motifs de diffusion d'une particule unique: alternance d'intensités faibles et élevées, les
particules plus petites s'étendant selon des angles plus grands que les particules plus grandes [2-7, 10, 15 dans la
Bibliographie].
Dans certaines limites, le motif de diffusion d'un ensemble de particules est identique à la somme des motifs de
diffusion de toutes les particules présentes. On calcule la distribution granulométrique volumétrique en utilisant un
modèle optique pour calculer les motifs de diffusion pour les volumes d'unité de particules de catégories de tailles
sélectionnées et une procédure de déconvolution mathématique; le motif de diffusion de cette distribution est le plus
proche du modèle mesuré (voir aussi l'annexe A).
a) b)
Figure 1 — Motif de diffusion de deux particules sphériques: la particule qui génère le modèle (a) est deux
fois plus grande que celle qui génère le modèle (b)
Un instrument de diffraction laser type est constitué de différents éléments: un faisceau lumineux (généralement un
laser), un dispositif de dispersion particulaire, un détecteur permettant de mesurer le motif de diffusion et un
ordinateur pour, d'une part, commander l'instrument, et d'autre part calculer la distribution granulométrique. À noter
iv
© ISO
que la technique de diffraction laser ne distingue pas la diffusion par particules uniques et la diffusion par groupes
de particules primaires formant un agglomérat ou un agrégat. Généralement, le résultat de la taille des particules
d'un agglomérat correspond à la taille des particules regroupées, mais dans certains cas, la distribution
granulométrique indique également la taille des particules primaires. Étant donné que la plupart des échantillons
contiennent des agglomérats ou des agrégats et que l'étude concerne généralement la distribution granulométrique
des particules primaires, les groupes sont généralement répartis en particules primaires avant d'être mesurés.
À l'origine, les instruments prenaient uniquement en compte les angles de diffusion inférieurs à 14°, ce qui limitait
l'application à des particules supérieures à environ 1 mm, les particules plus petites développant la plus grande
partie de leur diffusion distinctive à des angles plus grands (voir aussi l'annexe A). Les instruments plus récents
permettent, pour beaucoup, d'effectuer des mesurages à des angles de diffusion plus grands, certains allant jusqu'à
des angles d'environ 150°; c'est le cas notamment lors de l'utilisation d'un faisceau convergent, d'un plus grand
nombre d'objectifs ou d'objectifs plus grands, d'un second faisceau laser ou d'un plus grand nombre de détecteurs.
Ainsi, les particules plus petites (pouvant descendre jusqu'à environ 0,1 mm) peuvent être mesurées. Certains
instruments contiennent des informations supplémentaires données par les intensités de diffusion et les différences
d'intensité à différentes longueurs d'onde et différents plans de polarisation, afin d'améliorer la caractérisation
granulométrique des particules dans la plage sous-micrométrique.
v
NORME INTERNATIONALE © ISO ISO 13320-1:1999(F)
Analyse granulométrique — Méthodes par diffraction laser —
Partie 1:
Principes généraux
1 Domaine d’application
La présente partie de l'ISO 13320 fournit des directives sur le mesurage des distributions granulométriques effectué
dans tout système bi-phase, par exemple poudres, pulvérisateurs, aérosols, matières en suspension, émulsions,
bulles de gaz dans des liquides, par l'analyse de leurs motifs de diffusion de la lumière angulaire. Elle ne traite pas
des prescriptions spécifiques relatives au mesurage granulométrique de produits particuliers. La présente partie de
l'ISO 13320 s'applique aux particules dont la taille est comprise dans une plage approximative de 0,1 mm à 3 mm.
Pour les particules non sphériques, le modèle optique de cette technique suppose que les particules sont
sphériques; on obtient ainsi une distribution granulométrique équivalente à celle des particules sphériques. La
distribution granulométrique obtenue peut être différente de celles obtenues avec les méthodes fondées sur
d’autres principes physiques (par exemple sédimentation, tamisage).
2 Référence normative
Le document normatif suivant contient des dispositions qui, par suite de la référence qui y est faite, constituent des
dispositions valables pour la présente partie de l’ISO 13320. Pour les références datées, les amendements
ultérieurs ou les révisions de ces publications ne s’appliquent pas. Toutefois, les parties prenantes aux accords
fondés sur la présente partie de l’ISO 13320 sont invitées à rechercher la possibilité d'appliquer l'édition la plus
récente du document normatif indiqué ci-après. Pour les références non datées, la dernière édition du document
normatif en référence s’applique. Les membres de l'ISO et de la CEI possèdent le registre des Normes
internationales en vigueur.
ISO 9276-1:1990, Représentation de données obtenues par analyse granulométrique — Partie 1: Représentation
graphique.
3 Termes, définitions et symboles
Pour les besoins de la présente partie de l'ISO 13320, les termes, définitions et symboles suivants s'appliquent.
3.1 Termes et définitions
3.1.1
absorption
diminution de l'intensité d'un faisceau lumineux traversant un milieu par conversion de l'énergie dans le milieu
3.1.2
coefficient de variation
mesure relative (%) de la précision: écart-type divisé par la valeur moyenne de la population et multiplié par 100
(pour les distributions normales de données, la médiane est égale à la moyenne)
© ISO
3.1.3
indice de réfraction complexe
N
p
indice de réfraction d'une particule, constitué d'une partie réelle et d'une partie imaginaire (absorption):
N = n - ik
p p p
3.1.4
indice de réfraction relatif
m
indice de réfraction complexe d’une particule, rapporté à celui du milieu:
m = N /n
p m
3.1.5
déconvolution
procédure mathématique selon laquelle la distribution granulométrique d'un ensemble de particules est déduite des
mesurages du motif de diffusion
3.1.6
diffraction
étalement de la lumière sur les contours d'une particule, en deçà de son ombre géométrique, avec un faible écart
par rapport à la propagation rectiligne
3.1.7
extinction
atténuation du faisceau lumineux traversant un milieu par absorption et diffusion
3.1.8
matrice de motif
matrice contenant les vecteurs de diffusion de lumière pour des volumes d'unité de différentes classes de tailles,
mis à l'échelle par rapport à la géométrie du détecteur, telle qu'elle est dérivée du calcul du motif
3.1.9
diffusion multiple
diffusion ultérieure de la lumière sur plusieurs particules, entraînant la formation d'un motif de diffusion qui ne
correspond plus à la somme des motifs de toutes les particules individuelles (par opposition à la diffusion unique)
3.1.10
obscurcissement
concentration optique
pourcentage ou fraction de la lumière incidente atténuée en raison de l'extinction (diffusion et/ou absorption) par les
particules
3.1.11
modèle optique
modèle théorique utilisé pour calculer la matrice du modèle pour des sphères optiquement homogènes avec, si
nécessaire, un indice de réfraction complexe spécifié: par exemple la diffraction de Fraunhofer, la diffraction
anormale, la diffusion de Mie
3.1.12
réflexion
renvoi d’une radiation par une surface, sans modification de la longueur d'onde
3.1.13
réfraction
changement de direction de propagation de la lumière, déterminée par le changement de vitesse de propagation en
passant d'un milieu à un autre, conformément à la loi de Snell:
nnsinQQ= sin
m mp p
© ISO
3.1.14
diffusion
terme général décrivant le changement de propagation de lumière à l'interface de deux milieux
3.1.15
motif de diffusion
motif angulaire ou spatial des intensités lumineuses [I(q) et I(r) respectivement] dont l'origine est la diffusion, ou
valeur de l'énergie liée, en tenant compte de la sensibilité et de la géométrie des éléments du détecteur
3.1.16
diffusion unique
diffusion par laquelle la contribution d'un membre unique de la population de particules au motif de diffusion de la
population entière est indépendante des autres membres de la population
3.1.17
amplitude de la distribution granulométrique normale
écart-type (valeur absolue) ou coefficient de variation (pourcentage relatif) de la distribution granulométrique
NOTE Dans le cas des distributions normales, environ 95 % de la population tombe dans l’intervalle de – 2 écarts-types
par rapport à la valeur moyenne, et environ 99,7 % de – 3 écarts-types de la valeur moyenne
3.2 Symboles
c Concentration particulaire volumétrique, en pour-cent
f Distance focale de l'objectif, en millimètres
I(q) Distribution de l'intensité angulaire de la lumière diffusée par des particules (motif de diffusion)
I(r) Distribution de l'intensité spatiale de la lumière diffusée par des particules sur les éléments du détecteur
(motif de diffusion mesuré par le détecteur)
i Indication de la partie imaginaire de l'indice de réfraction
i Courant photoélectrique de l'élément du détecteur n, en microampères
n
k Répétence, égale à 2 p/l
k Partie imaginaire (absorption) de l'indice de réfraction des particules
p
l Longueur de chemin illuminé contenant les particules, en millimètres
L Vecteur de courants photoélectriques (i , i , ., i )
1 2 n
m Indice de réfraction complexe relatif d'une particule au milieu
n Partie réelle de l'indice de réfraction du milieu
m
n Partie réelle de l'indice de réfraction des particules
p
N Indice de réfraction complexe d’une particule
p
r Distance radiale du point focal dans le plan focal, en micromètres
n Vitesse des particules dans un dispositif de dispersion à sec
x Diamètre de la particule, en micromètres
x Diamètre de la particule médiane, en micromètres, utilisée ici sur une base volumétrique, c'est-à-dire
que, par volume, 50 % des particules sont inférieures au diamètre, et 50 % sont supérieures
© ISO
Diamètre de la particule correspondant à 10 % de la distribution cumulative des tamisats (ici, par
x
volume), en micromètres
x Diamètre de la particule correspondant à 90 % de la distribution cumulative des tamisats (ici, par
volume), en micromètres
aParamètre de taille sans dimension, égal à px/l
qAngle de diffusion par rapport à la direction vers l'avant, en degrés
qAngle limité, par rapport à la perpendiculaire, du faisceau lumineux dans le milieu (tel qu'il est utilisé dans
m
la loi de Snell; voir réfraction), en degrés
qAngle limité, par rapport à la perpendiculaire, du faisceau lumineux de la particule (tel qu'il est utilisé dans
p
la loi de Snell; voir réfraction), en degrés
lLongueur d'onde de la source lumineuse d'éclairage dans le milieu (c'est-à-dire liquide ou gaz/air), en
nanomètres
wVitesse de rotation des particules dans le dispositif de dispersion à sec
4 Principe
Un échantillon représentatif, dispersé à une concentration adéquate dans un liquide ou un gaz adapté, passe à
travers le faisceau d'une source lumineuse monochromatique, généralement un laser. La lumière diffusée par les
particules à divers angles est mesurée par un détecteur multi canaux, et les valeurs numériques liées au motif de
diffusion sont alors enregistrées pour être ensuite analysées. Ces valeurs numériques de diffusion sont ensuite
transformées à l'aide d'un modèle optique approprié et suivant une procédure mathématique, de façon à répartir la
proportion du volume total dans un nombre discret de catégories de tailles formant une distribution granulométrique
volumétrique.
5 Instrument de diffraction laser
La Figure 2 présente le schéma de montage d'un instrument de diffraction laser type.
Légende
1 Détecteur d'obscurcissement 7 Laser de source lumineuse
2 Faisceau diffusé 8 Unité de traitement du faisceau
3 Faisceau direct 9 Distance de travail de l'objectif 4
4 Objectif de Fourier 10 Détecteur multi-éléments
5 Lumière diffusée non collectée par l'objectif 4 11 Distance focale de l'objectif 4
6 Ensemble de particules
Figure 2 — Exemple de montage d'un instrument de diffraction laser
© ISO
Dans le cas d'un montage conventionnel, une source lumineuse (généralement un laser) est utilisée pour générer
un faisceau monochromatique, cohérent et parallèle. Cette source lumineuse est suivie d'une unité de traitement du
faisceau, généralement un dispositif d'expansion de faisceau à filtre intégré, qui produit un faisceau étalé et presque
idéal pour illuminer les particules dispersées.
Un échantillon représentatif, dispersé selon une concentration adéquate, est transporté par le biais d'un moyen de
transport (gaz ou liquide) à travers le faisceau lumineux, dans une zone de mesure; il convient que la zone de
mesure soit située dans la distance de travail de l'objectif utilisé. Dans certains cas, le flux de particules en
traitement est illuminé directement par le faisceau laser pour être mesuré; c'est le cas notamment des
pulvérisateurs, aérosols ou des bulles d'air dans les liquides. Dans d'autres cas (émulsions, pâtes, poudres, etc.),
les échantillons représentatifs peuvent être dispersés dans des liquides appropriés (voir l'annexe C). Souvent, des
agents dispersants (agents humidifiants, stabilisateurs) et/ou des forces mécaniques (agitation, ultrasons) sont
appliqués pour désagglomération des particules et stabilisation de la dispersion. Un système de recirculation est
généralement utilisé dans le cas de la dispersion par un liquide. Ce système est constitué d'une cellule de mesure
optique, d'un bain de dispersion généralement muni d'un agitateur et d'éléments à ultrasons, d'une pompe et de
tubes.
Les poudres sèches peuvent également être transformées en aérosols grâce à l'application de dispositifs de
dispersion des poudres sèches, qui appliquent des forces mécaniques permettant la désagglomération. Le principe
est le suivant: un dispositif de dosage alimente le dispositif de dispersion selon un flux constant d'échantillon. Le
dispositif de dispersion utilise l'énergie d'un gaz comprimé ou la différence de pression par rapport au vide pour
disperser les particules. Cette opération conduit à la formation d'un aérosol qui est soufflé à travers la zone de
mesure, généralement à l'entrée du vide qui récupère les particules.
Les particules peuvent traverser le faisceau laser de deux façons. Dans le cas conventionnel, les particules entrent
dans le faisceau lumineux avant, et se maintiennent dans la distance de travail de l'objectif [voir Figure 3 a)]. Dans
le cas de l'analyse de Fourier inverse, les particules entrent derrière l'objectif et, par conséquent, dans un faisceau
convergent [voir Figure 3 b)].
L'avantage du montage conventionnel est qu'une longueur raisonnable de chemin est autorisée pour l'échantillon, à
l'intérieur de la distance de travail de l'objectif. Le second montage autorise uniquement les petits parcours
optiques, mais permet de mesurer la lumière dispersée à de grands angles, ce qui est très utile dans le cas de la
présence de particules submicrométriques.
L'interaction du faisceau lumineux incident et de l'ensemble des particules dispersées forme un motif de dispersion
avec différentes intensités lumineuses, à divers angles (voir l'annexe A pour obtenir les arrière-plans théoriques de
la diffraction laser). La distribution totale de l'intensité angulaire I(q), constituée d'une lumière directe et d'une
lumière diffusée, subit ensuite une mise au point par un objectif positif ou un ensemble d'objectifs d'un détecteur
multi-éléments. Le ou les objectifs fournissent un motif de dispersion qui, jusqu'à une certaine limite, ne dépend pas
de l'emplacement des particules dans le faisceau lumineux. La distribution continue de l'intensité angulaire I(q) est
donc convertie en une distribution discrète de l'intensité spatiale I(r) sur un ensemble d'éléments du détecteur.
On suppose que le motif de diffusion enregistré de l'ensemble de particules est identique à la somme des motifs de
toutes les particules individuelles de diffusion présentées dans des positions relatives aléatoires. Il est à noter que
le ou les objectifs (donc le détecteur) ne rassemblent qu'une plage angulaire limitée de lumière diffusée.
Généralement, le détecteur est constitué de plusieurs photodiodes. Certains instruments associent une photodiode
à des fentes mobiles. Les photodiodes transforment ensuite la distribution spatiale de l'intensité I(r) en un ensemble
de courants photoélectriques i . Le dispositif électronique qui en résulte transforme et numérise ensuite les
n
courants photoélectriques en un ensemble de vecteurs d'intensité ou d'énergie L , qui représentent le motif de
n
diffusion. Un élément central mesure l'intensité de la lumière non diffusée et fournit ainsi, grâce à un calcul, la
mesure de la concentration ou de l'obscurcissement optique. Certains instruments fournissent des géométries
spéciales de l'instrument central pour recentrer ou régler le détecteur ou l'objectif. Il est préférable que les éléments
du détecteur soient positionnés de façon à empêcher la lumière reflétée de la surface de retraverser le système
optique.
Un ordinateur commande le mesurage; cet ordinateur permet de stocker et de manipuler les signaux détectés pour
stocker et/ou calculer la forme correcte du modèle optique (généralement sous la forme d'une matrice de modèle
contenant des vecteurs de diffusion lumineuse par unité de volume par catégorie de taille, mis à l'échelle par
rapport à la géométrie et à la sensibilité du détecteur). L'ordinateur est également utilisé pour calculer la distribution
© ISO
granulométrique (voir l'annexe A pour les arrière-plans théoriques de la diffraction laser). Il peut également
automatiser le fonctionnement de l'instrument.
Les instruments des différents fabricants, mais également les différents types de produits conçus par une même
société présentent des différences significatives tant au niveau matériel que logiciel. Il convient que les
spécifications portées sur l'instrument permettent de juger correctement ces différences. L'annexe B donne les
recommandations relatives aux spécifications des instruments de diffraction laser.
Légende
1 Détecteur 4 Distance de travail
2 Objectif de Fourier 5 Distance focale
3 Ensemble de particules
a) Montage conventionnel: les particules entrent au préalable dans le faisceau parallèle et restent dans la distance
de travail de l'objectif
Légende
1 Détecteur
2 Flux au travers d'une cuvette
3 Particule
b) Montage de Fourier inverse: les particules se trouvent dans un faisceau convergent entre l'objectif et le détecteur
Figure 3 — Montage d'un instrument de diffraction laser
© ISO
6 Modes opératoires de fonctionnement
6.1 Prescriptions
6.1.1 Emplacement de l'instrument
Il est recommandé d'installer l'instrument dans un endroit propre, exempt de tout bruit électrique excessif, vibration
mécanique, fluctuation de température, et dans un endroit non exposé à la lumière directe du soleil. Il convient de
bien aérer la zone de fonctionnement. Il est recommandé d'utiliser un instrument muni d'un banc optique interne, ou
d'installer l'instrument sur une table ou un banc rigide, pour éviter le réalignement fréquent du système optique.
AVERTISSEMENT — La radiation des instruments équipés d'un laser à faible puissance peut provoquer
des dommages visuels irréversibles. Ne jamais regarder directement dans le champ d'un faisceau laser ou
de ses réflexions. Eviter de couper le faisceau laser avec des surfaces réfléchissantes. Observer les règles
de sécurité locales en matière de radiation laser.
6.1.2 Liquides de dispersion
Tout liquide optique transparent d'indice de réfraction connu peut être utilisé. De nombreux liquides permettent donc
de disperser une poudre. L'annexe C fournit des informations relatives aux exigences des liquides de dispersion.
Dans le cas de l'utilisation d'un liquide organique, observer les règles de santé et de sécurité locales. Dans le cas
de l'utilisation de liquides ayant une pression de vapeur élevée, utiliser un couvercle pour bain d'ultrasons, afin
d'éviter la formation de concentrations de vapeur dangereuses au-dessus du bain et/ou la génération de zones à
basse température avec indices de réfraction fluctuant dans le liquide par évaporation.
6.1.3 Gaz de dispersion
Un gaz comprimé est parfois utilisé dans le cas d'un pulvérisateur ou d'une dispersion à sec. Si un tel gaz est
utilisé, il est essentiel qu'il soit exempt d'huile, d'eau et de particules, cette propreté devant être atteinte grâce à
l'utilisation d'un séchoir muni d'un filtre. Il convient de placer tout vide à l'extérieur de la zone de mesurage, de façon
que la sortie d'air chaud n'atteigne pas la zone de mesure. Il convient d'éviter tout courant d'air pour éviter la
formation de faisceaux particulaires instables.
6.2 Contrôle, préparation, dispersion et concentration de l'échantillon
6.2.1 Contrôle de l’échantillon
Effectuer un contrôle, visuel ou à l'aide d'un microscope, du matériel à analyser, pour d'une part évaluer la plage de
tailles et la forme des particules, et d'autre part pour vérifier que les particules ont été correctement dispersées.
La distribution granulométrique mesurée sur un échantillon ne peut être valide pour un lot de matériau que si
l'échantillon est représentatif de ce lot et qu'il a été correctement dispersé.
6.2.2 Préparation
Dans le cas de poudres sèches, préparer un volume suffisant d'échantillon représentatif pour pouvoir être mesuré
en utilisant une technique de fractionnement adéquate de l'échantillon, par exemple un sablier rotatif. Dans le cas
de l'utilisation d'échantillons très petits ou de poudre humide, il est également possible de prélever des fractions
d'échantillons d'une pâte bien mélangée. La consistance de la pâte évite ainsi les erreurs de séparation. La
formation d'une pâte s'effectue en ajoutant goutte à goutte des agents dispersants à l'échantillon et en mélangeant
à l'aide d'une spatule. Il convient d'ajouter des gouttes, à raison d'une à la fois, tant que le mélange forme des
grumeaux, et de mélanger après chaque goutte. La pâte doit prendre la consistance de miel ou de dentifrice. Si, par
erreur, la pâte devient trop liquide, elle ne doit pas être utilisée, et il convient de préparer un nouveau mélange.
Si la taille maximale dépasse la plage de mesure, retirer le matériau trop gros, par exemple à l'aide d'un tamis.
Dans ce cas, déterminer la quantité et le pourcentage de produit retiré et rédiger un compte rendu.
Il convient de mesurer directement les pulvérisateurs, les aérosols ou bulles de gaz dans un liquide, à condition
qu'ils présentent un niveau de concentration adéquat (voir 6.2.3 et 6.2.4). En effet, l'échantillonnage ou la dilution ne
peuvent généralement être réalisés sans modifier la distribution granulométrique.
© ISO
6.2.3 Dispersion
6.2.3.1 Les poudres sèches peuvent être dispersées soit dans l'air, soit dans un liquide. La méthode de dispersion
doit être adaptée au mesurage, par exemple il convient de déterminer si les agglomérats doivent être détectés ou
fractionnés en particules primaires.
6.2.3.2 Il convient d'appliquer un dispositif de dispersion à sec. Il s'agit généralement d'air comprimé ou d'un vide
appliqué pour effectuer une dispersion par cisaillement, avec désagglomération mécanique par collision de particule
sur particule ou particule sur paroi (voir la Figure 4). Dans le cas de la dispersion à sec, l'ensemble de l'échantillon
fractionné doit être utilisé pour le mesurage. Il est à noter que, grâce à l'utilisation de grandes quantités
d'échantillons, il est possible de maîtriser la mauvaise représentation statistique créée par de grosses particules
dans une distribution granulométrique étendue. Il est nécessaire de vérifier que les particules ne sont pas
fragmentées, et, inversement, qu'elles ont été dispersées correctement. Cette vérification est généralement
effectuée par comparaison directe de la dispersion à sec avec une dispersion dans un liquide: dans l'idéal, il
convient que les résultats soient identiques. Il existe une autre méthode permettant de vérifier le degré de
dispersion ou de fragmentation, qui consiste à changer l'énergie de dispersion (par exemple la pression d'air
principale) et à surveiller le changement de distribution granulométrique. Généralement, lorsque l'on augmente
l'énergie de dispersion, la quantité de particules fines augmente au début, en raison de l'amélioration de la
dispersion, et atteint un plateau, auquel la distribution granulométrique reste à peu près constante lorsque l'énergie
augmente. Lorsque l'énergie augmente encore, la quantité de particules fines peut encore augmenter, résultat de la
fragmentation. Dans certaines occasions, on a constaté une agglomération à un débit élevé, en cascade. Le centre
du plateau définit l'énergie de dispersion optimale. Il est à noter, cependant, qu'il n'est pas toujours possible de
trouver un plateau (par exemple pour les particules fortement assemblées ou fragiles).
6.2.3.3 Un grand nombre de liquides peuvent être utilisés pour disperser les poudres. L'annexe C indique les
prescriptions et donne quelques conseils. Généralement, la mise en pâte, l'agitation ou l'utilisation d'ultrasons
peuvent faciliter la bonne dispersion des particules dans le liquide. Une première vérification de la qualité de la
dispersion peut être effectuée par contrôle visuel/microscopique de la suspension. Il est également possible de
mesurer la suspension dans l'instrument de diffraction laser, en utilisant des ultrasons de façon intermédiaire. Il
convient que la distribution granulométrique mesurée ne change pas de façon significative si l'échantillon est bien
dispersé et que les particules ne sont ni fragiles, ni solubles.
Plus la distribution granulométrique s'élargit, plus le volume minimal d'échantillons nécessaire à la répétabilité du
mesurage augmente, afin qu'un nombre suffisant de grandes particules puisse être présent. En conséquence, le
volume de liquide de dispersion requis pour la mise en suspension de ces échantillons augmente également si les
limites de concentration optique sont à observer.
Par exemple, pour un échantillon dont la taille des particules se situe approximativement dans une plage comprise
entre 2 mm et 200 mm, l’utilisation d’un volume minimal de 0,3 ml s’avère nécessaire, c’est-à-dire qu’il faut utiliser au
moins 500 ml de liquide de suspension pour sa dispersion. En outre, il convient que le temps de mesurage ou qu'un
nombre suffisant de lectures soit effectué pour un même mesurage, sur le détecteur, pour qu'un niveau de précision
raisonnable puisse être atteint. Il convient que les conditions de mesurage appropriées soient établies de façon
expérimentale par rapport à la précision souhaitée.
© ISO
a) Gradients de vitesse provoqués par le cisaillement
b) Collisions de particule à particule
c) Collision de particule à paroi
Figure 4 — Processus de dispersion à sec des poudres
6.2.4 Concentration
Il convient que la concentration en particules de la dispersion soit supérieure au niveau minimal qui, pour de
nombreux instruments, correspond à un obscurcissement d'environ 5 %, afin de produire un rapport signal/bruit
acceptable dans le détecteur. De même, il convient que cette même concentration soit au-dessous d'un niveau
maximal, qui, pour de nombreux instruments, correspond à un obscurcissement d'environ 35 % pour les particules
supérieures à environ 20 mm, afin d'éviter les diffusions multiples (la lumière est ensuite diffusée à plusieurs
particules).
Pour les particules inférieures à environ 20 mm, il convient de conserver la valeur d'obscurcissement au-dessous
d’environ 15 % pour la même raison. En général, des diffusions multiples apparaissent lorsque les angles de
diffusion sont plus larges. Sans correction des diffusions multiples, la quantité de particules fines calculée dépasse
la vraie valeur. Si le travail doit être réalisé avec des concentrations plus élevées, il est recommandé de pouvoir
empêcher la création de dispersions multiples, qui conduirait à la formation d'erreurs systématiques. Une première
évaluation de la concentration peut être observée à la Figure 5.
Bien qu'il ne s'agisse que d'un exemple, la Figure 5 montre que la concentration particulaire optimale est plus ou
moins proportionnelle à la taille des particules: les particules plus petites nécessitent des concentrations plus
faibles. Par exemple, les particules ayant un diamètre d'environ 1 mm nécessitent des concentrations volumétriques
d’environ 0,002 % au cours du mesurage; par contre, il convient que la concentration des particules de 100 mm soit
d'environ 0,2 % dans une cellule de 2 mm de parcours optique. En conséquence, la largeur de la distribution
granulométrique influence la concentration optimale de l'échantillon à mesurer. En outre, la plage de concen-
trations, présentée à la Figure 5, est influencée par la largeur du rayon laser, le parcours optique de la zone de
mesurage, les propriétés optiques des particules et la sensibilité des éléments du détecteur.
Compte tenu des éléments précédents, il convient d'effectuer les mesurages à différentes concentrations
particulaires, afin de déterminer la plage optimale de concentrations pour tout échantillon type de matériau.
© ISO
Légende
1 Limite supérieur
2 Limite inférieure
Figure 5 — Limites supérieure et inférieure types de la concentration particulaire des systèmes de
diffraction laser par rapport à la taille des particules de distributions granulométriques étroites; le parcours
optique est de 2 mm (abscisse et ordonnée logarithmiques)
6.3 Mesurage
6.3.1 Mode opératoire
Les étapes de mesurage d'une distribution granulométrique par diffraction laser sont les suivantes.
a) Choix de l'instrument et mesurage à blanc
Une fois la plage granulométrique appropriée sélectionnée et la partie optique de l'instrument correctement
alignée, un mesurage à blanc est effectué. Celui-ci consiste à utiliser un milieu de dispersion des particules
libres. Les données du détecteur sont enregistrées pour pouvoir être ensuite soustraites des données
obtenues avec l'échantillon, afin d'obtenir des signaux d'échantillon nets.
b) Mesurage du motif de diffusion du ou des échantillons dispersés
On utilise généralement un temps de mesure qui permet au détecteur d'effectuer de nombreux balayages à
des intervalles réduits, généralement d'environ 2 secondes ou 1 000 balayages. Un signal moyen est calculé
pour chaque élément du détecteur, parfois avec son écart-type. Les données sont stockées dans la mémoire
de l'ordinateur. L’importance du signal émis par chaque élément du détecteur dépend de la zone de détection,
de l’intensité lumineuse ainsi que du rendement quantique. Les coordonnées (taille et position) des éléments
du détecteur et la distance focale de l'objectif déterminent la zone dans laquelle se trouvent les angles de
diffusion de chaque élément. Généralement, tous ces facteurs sont déterminés en usine et enregistrés dans
l'ordinateur.
La plupart des instruments mesurent également l'intensité du rayon laser central. La différence de fraction
entre un échantillon dispersé et un essai à blanc est donnée sous la forme d'une valeur d'obscurcissement, qui
indique la quantité totale de lumière diffusée et la concentration particulaire.
© ISO
c) Choix d'un modèle optique approprié
La théorie de Fraunhofer ou la théorie de Mie sont le plus fréquemment utilisées.
D'autres théories approximatives sont parfois utilisées pour calculer la matrice de diffusion. Dans le cas de
l'utilisation de la théorie de Mie, il convient d'introduire dans l'instrument les indices de réfraction de la matière
particulaire et du milieu, ou leur rapport, afin de pouvoir calculer la matrice de modèle (voir l'annexe D pour
obtenir les indices de réfraction des liquides et des solides). On applique souvent de petites valeurs de la partie
imaginaire de l'indice de réfraction (environ 0,01 - 0,1i) pour compenser la rugosité de la surface des
particules.
NOTE Même si l'indice de réfraction complexe supposé ne présente que de petites différences, ceci peut entraîner
des différences significatives dans les distributions granulométriques qui en résultent.
Pour obtenir des résultats traçables, il est essentiel que les valeurs de l'indice de réfraction soient rapportées.
d) Transformation du motif de diffusion en distribution granulométrique
Cette étape de déconvolution correspond à l'étape inverse du calcul d'un motif de diffusion pour une
distribution granulométrique donnée. Le fait que les données mesurées contiennent toujours quelques erreurs
aléatoires et systématiques peut conduire à des résultats de distribution granulométrique erronés. Plusieurs
procédures mathématiques ont été développées et peuvent être adaptées aux différents instruments
disponibles [4, 6, 7, 10, 12, 14]. Ces procédures contiennent un certain poids d'écarts entre les motifs de
diffusion mesurés et calculés (par exemple les plus petits carrés), certaines contraintes (par exemple, la non-
négativité des quantités de particules) et/ou un certain lissage de la courbe de distribution granulométrique.
Une nouvelle procédure [5] utilise les fluctuations observées des signaux du détecteur pour introduire le poids
correct de ces données et pour calculer les intervalles de confiance de la distribution granulométrique.
6.3.2 Précautions
Avant de commencer, et pendant toute la durée du mesurage, il convient de suivre les instructions du manuel
d'utilisation de l'instrument. Il est recommandé de prendre les précautions suivantes:
a) Avant de mettre l'instrument sous tension, s'assurer que tous les composants du système sont correctement
reliés à la terre. Tous les dispositifs de dispersion et de transport des particules, bain d'ultrasons, dispositif de
dispersion à sec, entrées et ouvertures du vide, etc., doivent être reliés à la terre pour éviter toute inflammation
de solvants organiques ou toute explosion de poussières causées par des décharges électrostatiques.
b) Une fois sous tension, laisser l'instrument se stabiliser pendant quelques instants. Les lasers à gaz tels que le
laser HeNe ont généralement un temps de préchauffage de plus d'une demi-heure.
c) Vérifier l'état de l'instrument et, le cas échéant, régler la plage de mesure et l'objectif requis. En regardant les
intensités sur le détecteur, vérifier que celui-ci est correctement centré et positionné dans le plan focal de
l'objectif. En l'absence de particules, il convient que le signal d'arrière-plan soit inférieur aux seuils spécifiés
pour le réglage de cet instrument et pour le dispositif de dispersion. Si ce n'est pas le cas, contrôler, et si
nécessaire nettoyer les composants optiques pour s'assurer qu'ils fonctionnent correctement.
d) S'assurer que les particules sont introduites dans le rayon laser uniquement dans la distance de travail
spécifiée de l'objectif, de telle sorte que toute radiation de diffusion appropriée qui libère des particules se
trouve dans l'ouverture de l'objectif qui le met au point sur le détecteur (le vignettage est ainsi évité).
e) Vérifier le fonctionnement de l'instrument (précision et exactitude) à intervalles réguliers, en mesurant un
échantillon de contrôle de distribution granulométrique connue (voir 6.4 et 6.5.2).
f) Dans le cas d'une dispersion humide, vérifier que le liquide de dispersion est exempt de bulles d'air. Il convient
d'éviter l'utilisation de détergents mousseux.
g) Dans le cas d'une dispersion à sec, effectuer un contrôle visuel ou une inspection des valeurs
d'obscurcissement, pour s'assurer que l'unité de dosage du dispositif de dispersion génère un flux constant.
© ISO
h) Pour les aérosols et les pulvérisateurs, s'assurer que la lumière vive du jour ne pénètre pas directement dans
le détecteur ni qu'elle est diffusée par les particules. Vérifier également que le flux de particules/gouttelettes est
régulier.
i) Etudier, si possible, l'influence du modèle optique (indice de réfraction relatif) sur la distribution granulométrique
résultante, particulièrement si une partie significative des particules est inférieure à environ 10 mm.
NOTE Une forte dépendance des résultats sur l'indice de réfraction a de temps en temps été trouvée. En raison de cette
dépendance, même des valeurs très légèrement différentes ont conduit à des erreurs systématiques majeures (voir annexes A
et D).
6.4 Répétabilité
Pour les échantillons dont le coefficient de variation de la distribution granulométrique est inférieur ou égal à environ
50 % (ou le rapport entre le diamètre de la pl
...


















Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...