IEC TS 62271-318:2024
(Main)High-voltage switchgear and controlgear - Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages including and above 100 kV
High-voltage switchgear and controlgear - Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages including and above 100 kV
IEC TS 62271-318:2024 specifies requirements for gas-insulated metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas or gas mixture other than air at atmospheric pressure, for direct current of rated voltages including and above 100 kV, for indoor and outdoor installation. This document includes rules for service conditions, ratings, design, and construction requirements. Test requirements and criteria for proof for passing type and routine tests are defined in this document for development and manufacturing of DC switchgear. For the purpose of this document, the terms "DC GIS" and "DC switchgear" are used for "DC gas-insulated metal-enclosed switchgear". This specification is applicable for both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) for HVDC systems. The DC gas-insulated metal-enclosed switchgear covered by this document consists of individual components intended to be directly connected together and able to operate only in this manner. This document completes and amends, if applicable, the various relevant documents applying to the individual components constituting DC gas-insulated metal-enclosed switchgear.
Appareillage à haute tension - Partie 318: Ensembles d'appareillage à courant continu isolés au gaz
General Information
Overview
IEC TS 62271-318:2024 defines requirements for DC gas‑insulated metal‑enclosed switchgear (DC GIS) for rated direct voltages including and above 100 kV, for both indoor and outdoor installations. The Technical Specification covers DC switchgear where insulation is provided, at least partly, by an insulating gas or gas mixture (other than air at atmospheric pressure). It applies to HVDC systems using both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) technologies and completes or amends the relevant documents for individual components that make up DC gas‑insulated switchgear.
Key topics and requirements
- Scope and terms: Definitions for DC GIS assemblies, parts, switching devices and operational characteristics tailored to high‑voltage DC.
- Normal and special service conditions: Environmental, altitude, pollution, temperature, humidity and mechanical stress considerations.
- Ratings: Rated direct voltage, insulation levels, rated continuous current, short‑time and peak withstand currents, and auxiliary supply ratings.
- Design & construction: Requirements for materials, gas handling, earthing, enclosures, partitions, creepage distances, degrees of protection (IP/IK), and interfaces for cables and bushings.
- Gas and vacuum tightness: Sealed and controlled pressure systems, leakage and gas‑handling procedures.
- Safety systems: Pressure coordination, pressure relief devices, internal arc considerations and limitation of pressure rise in internal faults.
- Operational aspects: Stored energy operation, interlocking, position indication, nameplates, locking devices and maintenance access.
- Testing: Type and routine test requirements, dielectric tests, test criteria and reporting for development and manufacturing verification.
- Additional topics: EMC, noise, fire hazard (flammability), corrosion protection, and provisions for future extensions.
Practical applications and users
IEC TS 62271-318:2024 is directly applicable to:
- Manufacturers of DC GIS equipment and components
- HVDC project engineers and system designers specifying switchgear for converter stations and high‑voltage DC transmission
- Utilities and independent transmission operators implementing HVDC links
- Testing and certification laboratories conducting type and routine tests
- Specifiers and procurement teams preparing technical contracts and installation requirements
Typical applications include HVDC converter stations, DC gas‑insulated substations, converter transformer interfaces and modular DC switching installations where compact, gas‑insulated designs are required at ≥100 kV.
Related standards
- TS IEC 62271‑5:2024 (referenced in the document)
- The broader IEC 62271 series of standards for high‑voltage switchgear and controlgear (for component‑level and general requirements)
Keywords: IEC TS 62271-318:2024, DC GIS, DC gas‑insulated switchgear, HVDC, high‑voltage switchgear, type tests, gas‑insulated metal‑enclosed switchgear, LCC, VSC.
Standards Content (Sample)
IEC TS 62271-318 ®
Edition 1.0 2024-09
TECHNICAL
SPECIFICATION
High-voltage switchgear and controlgear –
Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages
including and above 100 kV
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.
IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.
Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need
further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC TS 62271-318 ®
Edition 1.0 2024-09
TECHNICAL
SPECIFICATION
High-voltage switchgear and controlgear –
Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages
including and above 100 kV
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 29.130.10 ISBN 978-2-8322-9674-5
– 2 – IEC TS 62271-318:2024 © IEC 2024
CONTENTS
FOREWORD . 8
1 Scope . 10
2 Normative references . 10
3 Terms and definitions . 12
4 Normal and special service conditions . 16
4.1 Normal service conditions . 16
4.2 Special service conditions . 16
4.101 General . 17
5 Ratings . 17
5.1 General . 17
5.2 Rated direct voltage (U ) . 17
rd
5.3 Rated insulation level (U , U , U ) . 18
dd p s
5.4 Rated continuous current (I ) . 18
rd
5.5 Rated values of short-time withstand current . 18
5.5.1 Typical waveform of short-circuit current . 18
5.5.2 Rated short-time withstand direct current (I ) . 18
kd
5.5.3 Rated peak withstand current (I ) . 18
pd
5.5.4 Rated duration of short-circuit (t ) . 18
kd
5.6 Rated supply voltage of auxiliary and control circuits (U ) . 18
a
5.7 Rated supply frequency of auxiliary and control circuits . 18
5.8 Rated pressure of compressed gas supply for controlled pressure systems . 18
6 Design and construction . 19
6.1 Requirements for liquids in switchgear and controlgear . 19
6.2 Requirements for gases in switchgear and controlgear . 19
6.3 Earthing of switchgear and controlgear . 19
6.3.101 Earthing of the main circuit . 19
6.3.102 Earthing of the enclosure . 19
6.4 Auxiliary and control equipment and circuits . 19
6.5 Dependent power operation . 19
6.6 Stored energy operation . 19
6.7 Independent unlatched operation (independent manual or power operation) . 19
6.8 Manually operated actuators . 20
6.9 Operation of releases . 20
6.10 Pressure/level indication . 20
6.11 Nameplates. 20
6.12 Locking devices . 21
6.13 Position indication . 21
6.14 Degrees of protection provided by enclosures . 21
6.15 Creepage distances for outdoor insulators . 21
6.16 Gas and vacuum tightness . 21
6.16.1 General . 21
6.16.2 Controlled pressure systems for gas . 21
6.16.3 Closed pressure systems for gas . 21
6.16.4 Sealed pressure systems . 22
6.16.101 Leakage . 22
6.16.102 Gas handling . 22
6.17 Tightness for liquid systems . 22
6.18 Fire hazard (flammability) . 22
6.19 Electromagnetic compatibility (EMC) . 22
6.20 X-Ray emission . 22
6.21 Corrosion . 23
6.22 Filling levels for insulation, switching and/or operation . 23
6.101 General requirements for DC GIS . 23
6.102 Pressure coordination . 23
6.103 Internal arc fault . 24
6.103.1 General . 24
6.103.2 External effects of the arc . 25
6.103.3 Internal fault location . 26
6.104 Enclosures . 26
6.104.1 General . 26
6.104.2 Design of enclosures . 26
6.105 Partitions . 27
6.105.1 Design of partitions . 27
6.105.2 Partitioning . 27
6.106 Pressure relief . 29
6.106.1 General . 29
6.106.2 Non-reclosing pressure relief device . 29
6.106.3 Pressure relief valve . 29
6.106.4 Limitation of pressure rise in the case of an internal fault. 30
6.107 Noise . 30
6.108 Interfaces . 30
6.108.1 General . 30
6.108.2 Cable connections . 30
6.108.3 Direct transformer connections . 31
6.108.4 Bushings . 31
6.108.5 Interfaces for future extensions. 31
6.109 Interlocking . 32
7 Type tests . 32
7.1 General . 32
7.1.1 General remarks . 32
7.1.2 Information for identification of test objects . 33
7.1.3 Information to be included in type-test reports . 33
7.2 Dielectric tests . 33
7.2.1 General . 33
7.2.2 Ambient air conditions during tests . 34
7.2.3 Wet test procedure . 34
7.2.4 Arrangement of the equipment . 34
7.2.5 Criteria to pass the test . 34
7.2.6 Application of the test voltage and test conditions . 34
7.2.7 Tests of switchgear and controlgear . 35
7.2.8 Artificial pollution tests for outdoor insulators . 36
7.2.9 Partial discharge tests . 36
7.2.10 Dielectric tests on auxiliary and control circuits . 38
7.2.11 Voltage test as condition check . 38
– 4 – IEC TS 62271-318:2024 © IEC 2024
7.2.101 DC insulation system test . 38
7.2.102 Long-term energized test . 41
7.3 Resistance measurement . 41
7.3.1 Measurement of the resistance of auxiliary contacts class 1 and class 2. 41
7.3.2 Measurement of the resistance of auxiliary contacts class 3 . 41
7.3.3 Electrical continuity of earthed metallic parts test . 41
7.3.4 Resistance measurement of contacts and connections in the main
circuit as a condition check . 42
7.4 Continuous current tests . 42
7.4.1 Conditions of the test object . 42
7.4.2 Arrangement of the equipment . 42
7.4.3 Test current and duration . 42
7.4.4 Temperature measurement during test . 42
7.4.5 Resistance of the main circuit . 43
7.4.6 Criteria to pass test . 43
7.5 Short-time withstand current and peak withstand current tests . 43
7.5.1 General . 43
7.5.2 Arrangement of the equipment and of the test circuit . 43
7.5.3 Test current and duration . 43
7.5.4 Conditions of the test object after test . 43
7.5.101 Tests on the main circuits . 43
7.5.102 Tests on earthing circuits . 44
7.6 Verification of the protection . 44
7.6.1 General . 44
7.6.2 Verification of the IP coding . 44
7.6.3 Verification of the IK coding . 44
7.7 Tightness tests . 44
7.7.1 General . 44
7.7.2 Controlled pressure systems for gas . 44
7.7.3 Closed pressure systems for gas . 45
7.7.4 Sealed pressure systems . 45
7.7.5 Liquid tightness tests . 45
7.8 Electromagnetic compatibility tests (EMC) . 45
7.9 Additional tests on auxiliary and control circuits . 45
7.10 X-radiation test for vacuum interrupters . 45
7.101 Verification of making and breaking capacities . 45
7.102 Mechanical and environmental tests . 45
7.102.1 General . 45
7.102.2 Mechanical operation test at ambient temperature . 45
7.102.3 Low- and high-temperature test . 46
7.103 Proof tests for enclosures . 46
7.103.1 General . 46
7.103.2 Burst test procedure . 46
7.103.3 Strain measurement test . 47
7.104 Pressure test on partitions . 47
7.105 Test under conditions of arcing due to an internal fault . 48
7.106 Insulator tests . 48
7.106.1 General . 48
7.106.2 Thermal performance . 48
7.106.3 Tightness test for partitions . 49
7.107 Corrosion test on earthing connections . 49
7.107.1 General . 49
7.107.2 Test procedure . 49
7.107.3 Criteria to pass the test . 49
7.108 Corrosion tests on sealing systems of enclosures and auxiliary equipment . 50
7.108.1 General . 50
7.108.2 Test procedure . 50
7.108.3 Criteria to pass the test . 50
8 Routine tests . 50
8.1 General . 50
8.2 Dielectric test on the main circuit . 51
8.2.101 Alternating or direct voltage tests on the main circuit . 51
8.2.102 Partial discharge measurement . 51
8.3 Tests on auxiliary and control circuits . 51
8.4 Measurement of the resistance of the main circuit . 52
8.5 Tightness test . 52
8.6 Design and visual checks . 52
8.101 Pressure tests of enclosures . 52
8.102 Mechanical operation tests . 52
8.103 Tests on auxiliary circuits, equipment and interlocks in the control
mechanism . 53
8.104 Pressure test on partitions . 53
9 Guide to the selection of switchgear and controlgear (informative) . 53
9.1 General . 53
9.2 Selection of rated values . 53
9.3 Cable-interface considerations . 53
9.4 Continuous or temporary overload due to changed service conditions . 53
9.5 Environmental aspects . 53
10 Information to be given with enquiries, tenders and orders (informative) . 54
10.1 General . 54
10.2 Information with enquiries and orders . 54
10.3 Information with tenders . 54
11 Transport, storage, installation, operating instructions and maintenance. 54
11.1 General . 54
11.2 Conditions during transport, storage and installation . 54
11.3 Installation . 54
11.4 Operating instructions . 54
11.5 Maintenance . 54
11.101 Tests after installation on-site . 54
11.101.1 General . 54
11.101.2 Dielectric tests on the main circuits . 55
11.101.3 Dielectric tests on auxiliary circuits . 59
11.101.4 Measurement of the resistance of the main circuit . 59
11.101.5 Gas tightness tests . 59
11.101.6 Checks and verifications . 59
11.101.7 Gas quality verifications . 59
12 Safety . 60
– 6 – IEC TS 62271-318:2024 © IEC 2024
13 Influence of the product on the environment . 60
Annex A (normative) Methods for alternating current testing of DC gas-insulated
metal-enclosed switchgear under conditions of arcing due to an internal fault . 61
A.1 General . 61
A.2 Short-circuit current arcing test . 61
A.2.1 Test arrangements . 61
A.2.2 Current and voltage applied . 61
A.2.3 Test procedure . 62
A.2.4 Criteria to pass the test . 62
A.2.5 Test report . 63
A.2.6 Extension of the test results . 63
A.3 Composite verification by calculation and separate tests . 63
Annex B (informative) Technical and practical considerations of site testing . 64
B.1 Test voltage generators . 64
B.2 Locating discharges . 64
B.3 Special test procedures . 64
B.3.1 General . 64
B.3.2 Testing at reduced voltage. 65
B.3.3 Testing at reduced gas density . 65
B.4 Partial discharge measurements . 65
B.5 Electrical conditioning . 65
B.6 Repetition tests . 65
B.6.1 General . 65
B.6.2 Recommended procedure . 66
B.7 Partial discharge detection method . 66
B.7.1 General . 66
B.7.2 Conventional method according to IEC 60270 . 66
B.7.3 VHF/UHF method . 66
B.7.4 Acoustic method . 67
B.7.5 Sensitivity verification of acoustic and UHF method . 68
Annex C (informative) Calculation of pressure rise due to an internal fault . 69
Annex D (informative) Information to be given with enquiries, tenders and orders . 70
D.1 General . 70
D.2 Normal and special service conditions . 70
D.3 Ratings . 71
D.4 Design and construction . 72
D.5 Bus ducts . 72
D.6 Disconnector and earthing switch . 73
D.7 Bushing . 73
D.8 Cable connection . 73
D.9 Transformer connection . 74
D.10 Current transducer . 74
D.11 Voltage transducer . 74
D.12 Metal-oxide surge arrester . 74
D.13 Documentation for enquiries and tenders . 75
Annex E (informative) List of notes concerning certain countries . 76
Annex F (informative) Long-term energized test . 77
F.1 Test objects . 77
F.2 Test sequence . 77
F.3 Pre-test . 79
F.4 Condition check . 79
F.5 Success criteria, re-testing and interruptions . 79
Annex G (informative) Application of DC GIS under composite voltage of alternating
and direct voltage components . 81
G.1 General . 81
G.2 Composite voltage consisting of alternating and direct voltage components . 81
G.3 Recommendation for application of DC GIS in bipolar DC schemes under
composite voltage stress . 82
Annex H (informative) DC switchgear located on neutral buses . 83
Bibliography . 84
Figure 1 – Pressure coordination . 24
Figure 2 – Example of arrangement of enclosures and gas compartments . 29
Figure G.1 – Composite phase-to-earth voltage at midpoint of converter pole including
third harmonic content and simplified voltage curve . 81
Table 1 – Reference table of service conditions relevant to DC GIS . 17
Table 2 – Performance criteria . 25
Table 3 – Type tests . 33
Table 4 – Test voltage for measuring PD intensity . 37
Table 5 – Sequence of DC insulation system test . 40
Table 6 – On-site test voltages . 57
Table D.1 – Normal and special service conditions . 70
Table D.2 – Ratings . 71
Table D.3 – Design and construction. 72
Table D.4 – Bus ducts . 72
Table D.5 – Bushing . 73
Table D.6 – Cable connection . 73
Table D.7 – Transformer connection . 74
Table D.8 – Current transducer . 74
Table D.9 – Voltage transducer . 74
Table D.10 – Documentation for enquiries and tenders . 75
Table F.1 – Test sequence for long-term energized test . 77
Table F.2 – Test sequence for long-term energized test with combined switching and
lightning impulse voltage tests and changed sequence . 78
Table F.3 – Test procedure for the long-term energized test . 79
Table F.4 – Condition check for the long-term energized test . 79
– 8 – IEC TS 62271-318:2024 © IEC 2024
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –
Part 318: DC gas-insulated metal-enclosed switchgear
for rated voltages including and above 100 kV
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC TS 62271-318 has been prepared by subcommittee 17C: Assemblies, of IEC technical
committee 17: High-voltage switchgear and controlgear. It is a Technical Specification.
The text of this Technical Specification is based on the following documents:
Draft Report on voting
17C/930/DTS 17C/937/RVDTS
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this Technical Specification is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/standardsdev/publications.
The list of all parts of the IEC 62271 series under the general title, High-voltage switchgear and
controlgear, may be found on the IEC website.
This document should be read in conjunction with IEC TS 62271-5:2024, to which it refers and
which is applicable unless otherwise specified. In order to simplify the indication of
corresponding requirements, the same numbering of clauses and subclauses is used as in
IEC TS 62271-5:2024. Amendments to these clauses and subclauses are given under the same
numbering, whilst additional subclauses, are numbered from 101.
The reader's attention is drawn to the fact that Annex E lists all of the "in-some-country" clauses
on differing practices of a less permanent nature relating to the subject of this document.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
• reconfirmed,
• withdrawn, or
• revised.
IMPORTANT – The "colour inside" logo on the cover page of this document indicates
that it contains colours which are considered to be useful for the correct understanding
of its contents. Users should therefore print this document using a colour printer.
– 10 – IEC TS 62271-318:2024 © IEC 2024
HIGH-VOLTAGE SWITCHGEAR AND CONTROLGEAR –
Part 318: DC gas-insulated metal-enclosed switchgear
for rated voltages including and above 100 kV
1 Scope
This part of IEC 62271 specifies requirements for gas-insulated metal-enclosed switchgear in
which the insulation is obtained, at least partly, by an insulating gas or gas mixture other than
air at atmospheric pressure, for direct current of rated voltages including and above 100 kV, for
indoor and outdoor installation. This document includes rules for service conditions, ratings,
design, and construction requirements. Test requirements and criteria for proof for passing type
and routine tests are defined in this document for development and manufacturing of DC
switchgear.
For the purpose of this document, the terms "DC GIS" and "DC switchgear" are used for "DC
gas-insulated metal-enclosed switchgear".
This specification is applicable for both Line Commutated Converter (LCC) and Voltage Sourced
Converter (VSC) for HVDC systems.
The DC gas-insulated metal-enclosed switchgear covered by this document consists of
individual components intended to be directly connected together and able to operate only in
this manner.
This document completes and amends, if applicable, the various relevant documents applying
to the individual components constituting DC gas-insulated metal-enclosed switchgear.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60060-1:2010, High-voltage test techniques – Part 1: General definitions and test
requirements
IEC 60085:2007, Electrical insulation – Thermal evaluation and designation
IEC 60068-2-11:2021, Environmental testing – Part 2-11: Tests – Test Ka: Salt mist
IEC 60068-2-17:2023, Environmental testing – Part 2-17: Tests – Test Q: Sealing
IEC/IEEE 60076-57-129:2017, Power transformers – Part 57-129: Transformers for HVDC
applications
IEC 60099-4:2014, Surge arresters – Part 4: Metal-oxide sur
...
IEC TS 62271-318 ®
Edition 1.0 2024-09
EXTENDED VERSION
TECHNICAL
SPECIFICATION
colour
inside
This full version of IEC TS 62271-318:2024 includes the content of the references made to
TS IEC 62271-5:2024
High-voltage switchgear and controlgear –
Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages
including and above 100 kV
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.
IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.
About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.
IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.
IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.
Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need
further assistance, please contact the Customer Service
Centre: sales@iec.ch.
IEC TS 62271-318 ®
Edition 1.0 2024-09
EXTENDED VERSION
TECHNICAL
SPECIFICATION
colour
inside
This full version of IEC TS 62271-318:2024 includes the content of the references made to
TS IEC 62271-5:2024
High-voltage switchgear and controlgear –
Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages
including and above 100 kV
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 29.130.10 ISBN 978-2-8322-9762-9
– 2 – IEC TS 62271-318:2024 EXV © IEC 2024
CONTENTS
FOREWORD . 12
INTRODUCTION to IEC TS 62271-5:2024 . 14
1 Scope . 15
2 Normative references . 15
3 Terms and definitions . 18
3.1 General terms and definitions . 19
3.2 Assemblies of switchgear and controlgear . 23
3.3 Parts of assemblies . 24
3.4 Switching devices . 24
3.5 Parts of switchgear and controlgear . 25
3.6 Operational characteristics of switchgear and controlgear . 29
3.6.5 Terms and definitions relative to pressure (or density) . 30
3.6.6 Terms and definitions relating to gas and vacuum tightness . 31
3.6.7 Terms and definitions relating to liquid tightness. 33
3.7 Characteristic quantities . 34
3.8 Index of definitions . 39
4 Normal and special service conditions . 41
4.1 Normal service conditions . 41
4.1.1 General . 41
4.1.2 Indoor switchgear and controlgear . 41
4.1.3 Outdoor switchgear and controlgear . 42
4.2 Special service conditions . 43
4.2.1 General . 43
4.2.2 Altitude . 43
4.2.3 Exposure to pollution . 43
4.2.4 Temperature and humidity . 43
4.2.5 Exposure to abnormal vibrations, shock or tilting . 44
4.2.6 Wind speed . 44
4.2.7 Other parameters . 44
4.101 General . 44
5 Ratings . 45
5.1 General . 45
5.2 Rated direct voltage (U ) . 45
rd
5.2.1 General . 45
5.2.2 Rated voltages . 46
5.3 Rated insulation level (U , U , U ) . 46
dd p s
5.4 Rated continuous current (I ) . 49
rd
5.5 Rated values of short-time withstand current . 49
5.5.1 Typical waveform of short-circuit current . 49
5.5.2 Rated short-time withstand direct current (I ) . 52
kd
5.5.3 Rated peak withstand current (I ) . 52
pd
5.5.4 Rated duration of short-circuit (t ) . 52
kd
5.6 Rated supply voltage of auxiliary and control circuits (U ) . 52
a
5.6.1 General . 52
5.6.2 Rated supply voltage (U ) . 53
a
5.7 Rated supply frequency of auxiliary and control circuits . 53
6 Design and construction . 54
6.1 Requirements for liquids in switchgear and controlgear . 54
6.2 Requirements for gases in switchgear and controlgear . 54
6.3 Earthing of switchgear and controlgear . 54
6.3.101 Earthing of the main circuit . 54
6.3.102 Earthing of the enclosure . 55
6.4 Auxiliary and control equipment and circuits . 55
6.4.1 General . 55
6.4.2 Protection against electric shock . 56
6.4.3 Components installed in enclosures . 56
6.5 Dependent power operation . 59
6.6 Stored energy operation . 59
6.6.1 General . 59
6.6.2 Energy storage in gas receivers or hydraulic accumulators . 59
6.6.3 Energy storage in springs (or weights) . 59
6.6.4 Manual charging . 59
6.6.5 Motor charging . 60
6.6.6 Energy storage in capacitors . 60
6.7 Independent unlatched operation (independent manual or power operation) . 60
6.8 Manually operated actuators . 60
6.9 Operation of releases . 60
6.9.1 General . 60
6.9.2 Shunt closing release . 60
6.9.3 Shunt opening release . 60
6.9.4 Capacitor operation of shunt releases . 61
6.9.5 Under-voltage release . 61
6.10 Pressure/level indication . 61
6.10.1 Gas pressure . 61
6.10.2 Liquid level . 62
6.11 Nameplates. 62
6.11.1 General . 62
6.11.2 Application . 62
6.12 Locking devices . 63
6.13 Position indication . 64
6.14 Degrees of protection provided by enclosures . 64
6.14.1 General . 64
6.14.2 Protection of persons against access to hazardous parts and protection
of the equipment against ingress of solid foreign objects (IP coding) . 64
6.14.3 Protection against ingress of water (IP coding) . 64
6.14.4 Protection against mechanical impact under normal service conditions
(IK coding) . 64
6.15 Creepage distances for outdoor insulators . 65
6.16 Gas and vacuum tightness . 65
6.16.1 General . 65
6.16.2 Controlled pressure systems for gas . 65
6.16.3 Closed pressure systems for gas . 66
6.16.4 Sealed pressure systems . 66
6.16.101 Leakage . 66
– 4 – IEC TS 62271-318:2024 EXV © IEC 2024
6.16.102 Gas handling . 67
6.17 Tightness for liquid systems . 67
6.18 Fire hazard (flammability) . 67
6.19 Electromagnetic compatibility (EMC) . 67
6.20 X-ray emission . 67
6.21 Corrosion . 67
6.22 Filling levels for insulation, switching and/or operation . 67
6.101 General requirements for DC GIS . 68
6.102 Pressure coordination . 68
6.103 Internal arc fault . 69
6.103.1 General . 69
6.103.2 External effects of the arc . 69
6.103.3 Internal fault location . 70
6.104 Enclosures . 70
6.104.1 General . 70
6.104.2 Design of enclosures . 70
6.105 Partitions . 71
6.105.1 Design of partitions . 71
6.105.2 Partitioning . 72
6.106 Pressure relief . 73
6.106.1 General . 73
6.106.2 Non-reclosing pressure relief device . 74
6.106.3 Pressure relief valve . 74
6.106.4 Limitation of pressure rise in the case of an internal fault. 74
6.107 Noise . 74
6.108 Interfaces . 74
6.108.1 General . 74
6.108.2 Cable connections . 75
6.108.3 Direct transformer connections . 75
6.108.4 Bushings . 76
6.108.5 Interfaces for future extensions. 76
6.109 Interlocking . 76
7 Type tests . 76
7.1 General . 76
7.1.1 Basics . 76
7.1.2 Information for identification of test objects . 78
7.1.3 Information to be included in type-test reports . 78
7.2 Dielectric tests . 78
7.2.1 General . 78
7.2.2 Ambient air conditions during tests . 79
7.2.3 Wet test procedure . 79
7.2.4 Arrangement of the equipment . 79
7.2.5 Criteria to pass the test . 80
7.2.6 Application of the test voltage and test conditions . 81
7.2.7 Tests of switchgear and controlgear . 83
7.2.8 Artificial pollution tests for outdoor insulators . 86
7.2.9 Partial discharge tests . 86
7.2.10 Dielectric tests on auxiliary and control circuits . 87
7.2.11 Voltage test as condition check . 88
7.2.101 DC insulation system test . 88
7.2.102 Long-term energized test . 91
7.3 Resistance measurement . 91
7.3.1 Measurement of the resistance of auxiliary contacts class 1 and class 2. 91
7.3.2 Measurement of the resistance of auxiliary contacts class 3 . 92
7.3.3 Electrical continuity of earthed metallic parts test . 92
7.3.4 Resistance measurement of contacts and connections in the main
circuit as a condition check . 92
7.4 Continuous current tests . 93
7.4.1 Condition of the test object . 93
7.4.2 Arrangement of the equipment . 93
7.4.3 Test current and duration . 94
7.4.4 Temperature measurement during test . 95
7.4.5 Resistance of the main circuit . 96
7.4.6 Criteria to pass test . 96
7.5 Short-time withstand current and peak withstand current tests . 100
7.5.1 General . 100
7.5.2 Arrangement of the equipment and of the test circuit . 100
7.5.3 Test current and duration . 101
7.5.4 Conditions of the test object after test . 102
7.5.101 Tests on the main circuits . 102
7.5.102 Tests on earthing circuits . 102
7.6 Verification of the protection . 102
7.6.1 Verification of the IP coding . 102
7.6.2 Verification of the IK coding . 103
7.7 Tightness tests . 103
7.7.1 General . 103
7.7.2 Controlled pressure systems for gas . 105
7.7.3 Closed pressure systems for gas . 105
7.7.4 Sealed pressure systems . 105
7.7.5 Liquid tightness tests . 106
7.8 Electromagnetic compatibility tests (EMC) . 106
7.8.1 Emission tests . 106
7.8.2 Immunity tests on auxiliary and control circuits . 109
7.8.3 Additional EMC tests on auxiliary and control circuits . 111
7.9 Additional tests on auxiliary and control circuits . 112
7.9.1 General . 112
7.9.2 Functional tests . 112
7.9.3 Verification of the operational characteristics of auxiliary contacts . 112
7.9.4 Environmental tests . 113
7.9.5 Dielectric test . 114
7.10 X-radiation test for vacuum interrupters . 114
7.10.1 General requirements . 114
7.10.2 Test voltage and measurement procedure . 116
7.10.3 Acceptance criteria . 116
7.101 Verification of making and breaking capacities . 117
7.102 Mechanical and environmental tests . 117
7.102.1 General . 117
7.102.2 Mechanical operation test at ambient temperature . 117
– 6 – IEC TS 62271-318:2024 EXV © IEC 2024
7.102.3 Low- and high-temperature test . 117
7.103 Proof tests for enclosures . 117
7.103.1 General . 117
7.103.2 Burst test procedure . 117
7.103.3 Strain measurement test . 118
7.104 Pressure test on partitions . 119
7.105 Test under conditions of arcing due to an internal fault . 119
7.106 Insulator tests . 119
7.106.1 General . 119
7.106.2 Thermal performance . 120
7.106.3 Tightness test for partitions . 120
7.107 Corrosion test on earthing connections . 120
7.107.1 General . 120
7.107.2 Test procedure . 121
7.107.3 Criteria to pass the test . 121
7.108 Corrosion tests on sealing systems of enclosures and auxiliary equipment . 121
7.108.1 General . 121
7.108.2 Test procedure . 121
7.108.3 Criteria to pass the test . 121
8 Routine tests . 121
8.1 General . 121
8.2 Dielectric test on the main circuit . 122
8.2.101 Alternating or direct voltage tests on the main circuit . 123
8.2.102 Partial discharge measurement . 123
8.3 Tests on auxiliary and control circuits . 123
8.3.1 Inspection of auxiliary and control circuits, and verification of conformity
to the circuit diagrams and wiring diagrams . 123
8.3.2 Functional tests . 124
8.3.3 Verification of protection against electrical shock . 124
8.3.4 Dielectric tests . 124
8.4 Measurement of the resistance of the main circuit . 124
8.5 Tightness test . 125
8.5.1 General . 125
8.5.2 Controlled pressure systems for gas . 125
8.5.3 Closed pressure systems for gas . 125
8.5.4 Sealed pressure systems . 125
8.5.5 Liquid tightness tests . 125
8.6 Design and visual checks . 126
8.101 Pressure tests of enclosures . 126
8.102 Mechanical operation tests . 126
8.103 Tests on auxiliary circuits, equipment and interlocks in the control
mechanism . 126
8.104 Pressure test on partitions . 126
9 Guide to the selection of switchgear and controlgear (informative) . 127
9.1 General . 127
9.2 Selection of rated values . 127
9.3 Cable-interface considerations . 127
9.4 Continuous or temporary overload due to changed service conditions . 127
9.5 Environmental aspects . 127
9.5.1 Service conditions . 127
9.5.2 Clearances affected by service conditions . 128
9.5.3 High humidity . 128
9.5.4 Solar radiation . 128
10 Information to be given with enquiries, tenders and orders (informative) . 128
10.1 General . 128
10.2 Information with enquiries and orders . 128
10.3 Information with tenders . 129
11 Transport, storage, installation, operating instructions and maintenance. 130
11.1 General . 130
11.2 Conditions during transport, storage and installation . 130
11.3 Installation . 131
11.3.1 General . 131
11.3.2 Unpacking and lifting . 131
11.3.3 Assembly . 131
11.3.4 Mounting . 131
11.3.5 Connections . 131
11.3.6 Information about gas and gas mixtures for controlled and closed
pressure systems . 131
11.3.7 Final installation inspection . 132
11.3.8 Basic input data by the user . 132
11.3.9 Basic input data by the manufacturer . 133
11.4 Operating instructions . 133
11.5 Maintenance . 133
11.5.1 General . 133
11.5.2 Information about fluids and gas to be included in maintenance manual . 133
11.5.3 Recommendations for the manufacturer . 134
11.5.4 Recommendations for the user . 135
11.5.5 Failure report . 135
11.101 Tests after installation on-site . 137
11.101.1 General . 137
11.101.2 Dielectric tests on the main circuits . 137
11.101.3 Dielectric tests on auxiliary circuits . 141
11.101.4 Measurement of the resistance of the main circuit . 141
11.101.5 Gas tightness tests . 141
11.101.6 Checks and verifications . 141
11.101.7 Gas quality verifications . 141
12 Safety . 142
12.1 General . 142
12.2 Precautions by manufacturers . 142
12.3 Precautions by users . 142
13 Influence of the product on the environment . 143
Annex A (informative) Examples of HVDC side switchgear arrangement for one pole in
an HVDC substation . 144
Annex B (informative) Exposure to pollution . 146
B.1 General . 146
B.2 Minimum requirements for switchgear in normal service condition. 146
B.3 Minimum requirements for switchgear in special service condition . 146
Annex C (informative) Preferred insulation levels for rated voltages lower than 105 kV . 147
– 8 – IEC TS 62271-318:2024 EXV © IEC 2024
Annex D (informative) Short-circuit current in HVDC systems . 148
D.1 VSC HVDC . 148
D.2 LCC HVDC . 149
D.3 Special case of LCC HVDC DC faults – LCC as diode bridge . 149
D.4 HVDC systems with DC circuit-breakers. 151
D.5 Calculation of the rated short-time withstand direct current . 152
D.6 Calculation of Joule integral value (E ) . 153
j
Annex E (informative) References for auxiliary and control circuit components . 154
Annex F (informative) List of symbols . 156
Annex G (normative) Method for the weatherproofing test for outdoor switchgear and
controlgear . 158
Annex H (normative) Tolerances on test quantities during tests . 161
Annex I (informative) Extension of validity of type tests. 164
I.1 General . 164
I.2 Dielectric tests . 164
I.3 Short-time withstand current and peak withstand current tests . 164
I.4 Electromagnetic immunity test on auxiliary and control circuits . 164
I.5 Environmental tests on auxiliary and control circuits . 164
Annex J (normative) Identification of test objects . 166
J.1 General . 166
J.2 Data . 166
J.3 Drawings. 166
Annex K (informative) Test circuit for superimposed impulse voltage tests . 168
K.1 General . 168
K.2 Test circuit using blocking capacitor . 168
K.3 Test circuit using sphere gap . 168
Annex L (informative) Information and technical requirements to be given with
enquiries, tenders and orders . 170
L.1 General . 170
L.2 Normal and special service conditions (refer to Clause 4) . 170
L.3 Ratings (refer to Clause 5) . 171
L.4 Design and construction (refer to Clause 6) . 171
L.5 System information . 172
L.6 Documentation for enquiries and tenders . 172
Annex M (informative) Electromagnetic compatibility on site . 173
Annex N (informative) Standardization activities of HVDC . 174
Annex A (normative) Methods for alternating current testing of DC gas-insulated
metal-enclosed switchgear under conditions of arcing due to an internal fault . 175
A.1 General . 175
A.2 Short-circuit current arcing test . 175
A.2.1 Test arrangements . 175
A.2.2 Current and voltage applied . 175
A.2.3 Test procedure . 176
A.2.4 Criteria to pass the test . 176
A.2.5 Test report . 177
A.2.6 Extension of the test results . 177
A.3 Composite verification by calculation and separate tests . 177
Annex B (informative) Technical and practical considerations of site testing . 178
B.1 Test voltage generators . 178
B.2 Locating discharges . 178
B.3 Special test procedures . 178
B.3.1 General . 178
B.3.2 Testing at reduced voltage. 179
B.3.3 Testing at reduced gas density . 179
B.4 Partial discharge measurements . 179
B.5 Electrical conditioning . 179
B.6 Repetition tests . 179
B.6.1 General . 179
B.6.2 Recommended procedure . 180
B.7 Partial discharge detection method . 180
B.7.1 General .
...
Frequently Asked Questions
IEC TS 62271-318:2024 is a technical specification published by the International Electrotechnical Commission (IEC). Its full title is "High-voltage switchgear and controlgear - Part 318: DC gas-insulated metal-enclosed switchgear for rated voltages including and above 100 kV". This standard covers: IEC TS 62271-318:2024 specifies requirements for gas-insulated metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas or gas mixture other than air at atmospheric pressure, for direct current of rated voltages including and above 100 kV, for indoor and outdoor installation. This document includes rules for service conditions, ratings, design, and construction requirements. Test requirements and criteria for proof for passing type and routine tests are defined in this document for development and manufacturing of DC switchgear. For the purpose of this document, the terms "DC GIS" and "DC switchgear" are used for "DC gas-insulated metal-enclosed switchgear". This specification is applicable for both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) for HVDC systems. The DC gas-insulated metal-enclosed switchgear covered by this document consists of individual components intended to be directly connected together and able to operate only in this manner. This document completes and amends, if applicable, the various relevant documents applying to the individual components constituting DC gas-insulated metal-enclosed switchgear.
IEC TS 62271-318:2024 specifies requirements for gas-insulated metal-enclosed switchgear in which the insulation is obtained, at least partly, by an insulating gas or gas mixture other than air at atmospheric pressure, for direct current of rated voltages including and above 100 kV, for indoor and outdoor installation. This document includes rules for service conditions, ratings, design, and construction requirements. Test requirements and criteria for proof for passing type and routine tests are defined in this document for development and manufacturing of DC switchgear. For the purpose of this document, the terms "DC GIS" and "DC switchgear" are used for "DC gas-insulated metal-enclosed switchgear". This specification is applicable for both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) for HVDC systems. The DC gas-insulated metal-enclosed switchgear covered by this document consists of individual components intended to be directly connected together and able to operate only in this manner. This document completes and amends, if applicable, the various relevant documents applying to the individual components constituting DC gas-insulated metal-enclosed switchgear.
IEC TS 62271-318:2024 is classified under the following ICS (International Classification for Standards) categories: 29.130.10 - High voltage switchgear and controlgear. The ICS classification helps identify the subject area and facilitates finding related standards.
You can purchase IEC TS 62271-318:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.
IEC TS 62271-318:2024 is a comprehensive standard that specifically addresses the requirements for high-voltage switchgear and controlgear, focusing on DC gas-insulated metal-enclosed switchgear (DC GIS) intended for rated voltages of 100 kV and above. This document is particularly relevant in the context of today's evolving electrical infrastructure, where the integration of high-voltage direct current (HVDC) systems is increasingly critical for efficient energy transmission. The scope of the standard is wide-ranging, encompassing design, construction, ratings, and service conditions, making it an essential reference for manufacturers and developers in the high-voltage sector. The detailed test requirements outlined in IEC TS 62271-318:2024 ensure that the DC switchgear undergo rigorous evaluation through defined type and routine tests, ensuring reliability and safety in operational environments. One of the strengths of this standard is its dual applicability to both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) systems, which broadens its relevance across various HVDC technologies. The articulation of specific rules for service conditions, alongside construction requirements, allows for a harmonized approach to DC GIS, facilitating compatibility and interoperability among different systems and components. The standard effectively revises and complements existing related documents, ensuring that current technological advancements are recognized and integrated into the guidelines for DC gas-insulated metal-enclosed switchgear. This adaptability underscores the document's commitment to maintaining an up-to-date relevance in a rapidly advancing field. Overall, IEC TS 62271-318:2024 stands out as a crucial guideline that enhances operational safety and performance in high-voltage applications, paving the way for more secure and efficient energy solutions worldwide.
La norme IEC TS 62271-318:2024 est un document essentiel qui définit les exigences pour les postes à isolant gazeux metal-enveloppés pour courants continus, spécifiquement pour des tensions nominales égales ou supérieures à 100 kV. Cette norme est particulièrement pertinente dans le contexte des systèmes HVDC, car elle traite des convertisseurs à courant commuté en ligne (LCC) et à source de tension (VSC), qui sont des aspects cruciaux de la transmission moderne d'électricité. L'un des points forts de cette norme est son approche détaillée concernant les conditions de service, les classifications, ainsi que les exigences de conception et de construction. En précisant les critères d'essai et établissant des normes claires pour les tests de type et de routine, IEC TS 62271-318:2024 assure non seulement la sécurité et la fiabilité des équipements, mais favorise également l'innovation dans la conception des appareillages de commutation à courant continu. La norme aborde également l'importance de l'utilisation de gaz isolants, qui sont supérieurs aux solutions d'isolation à air sous pression atmosphérique, ce qui garantit une meilleure performance et une efficacité accrue des équipements. De plus, la spécification stipule que le matériel doit être conçu pour fonctionner uniquement comme un ensemble de composants interconnectés, renforçant ainsi l'intégrité et la fonctionnalité des systèmes électriques. En somme, la norme IEC TS 62271-318:2024 se distingue par sa couverture exhaustive et ses directives précises, rendant ce document indispensable pour tous les professionnels impliqués dans la conception, le développement et la fabrication de postes à isolant gazeux métal-enveloppés pour courant continu. Sa pertinence dans l'avancement des technologies électriques fait de cette norme un référence incontournable pour l'avenir des infrastructures énergétiques.
Die Norm IEC TS 62271-318:2024 bietet umfassende Anforderungen für gasisolierte, metallumhüllte Schaltanlagen, die spezifisch für Gleichstromanwendungen (DC) bei Nennspannungen von 100 kV und mehr entwickelt wurden. Der Anwendungsbereich dieser Norm ist besonders relevant, da sie sowohl für den Innen- als auch den Außenbereich von Schaltanlagen gilt, was die Flexibilität in verschiedenen Installationsszenarien unterstreicht. Ein herausragendes Merkmal dieser Norm ist die spezifizierte Verwendung von Isoliergasen oder Gasgemischen, die nicht Luft bei atmosphärischem Druck ist. Dies ermöglicht eine verbesserte Isolationsleistung und eine höhere Betriebssicherheit in Hochspannungssystemen. Die klare Definition von Betriebsbedingungen, Nennwerten sowie design- und konstruktionsrelevanten Anforderungen erhöht die Standardisierung und sorgt für eine konsistente Qualitätskontrolle bei der Entwicklung und Herstellung von DC-Schaltanlagen. Die Norm legt außerdem präzise Testanforderungen und Kriterien fest, die für die Durchführung von Typen- und Routineprüfungen erforderlich sind. Dies stellt sicher, dass die DC gasisolierten, metallumhüllten Schaltanlagen den hohen Anforderungen der Industrie gerecht werden und ihre Zuverlässigkeit und Sicherheit bestätigen können. Die IEC TS 62271-318:2024 ist auch hinsichtlich ihrer Anwendung in modernen Hochspannungs-Gleichstromübertragungssystemen (HVDC) von großer Bedeutung. Sie berücksichtigt sowohl Line Commutated Converter (LCC) als auch Voltage Sourced Converter (VSC) Technologien, was den praktischen Nutzen für Hersteller und Betreiber von DC-GIS-Systemen maßgeblich erhöht. Zusammenfassend bietet die IEC TS 62271-318:2024 eine solide Grundlage für die Standardisierung von DC gasisolierten Schaltanlagen und unterstützt die Harmonisierung in der Branche durch klare Richtlinien und Anforderungen.
IEC TS 62271-318:2024は、高電圧開閉装置及び制御装置に関する規格であり、主に100 kV以上の定格電圧を持つ直流ガス絶縁金属封入開閉装置に関する要件を明記しています。この標準は、屋内および屋外のインストールに対応しており、ガス絶縁に関して大気圧の空気以外の絶縁ガスまたはガス混合物を利用することで、優れた絶縁性能を提供します。 本規格の強みは、サービス条件、定格、設計、及び製造要求に関する詳細なガイドラインが含まれている点です。特に、直流スイッチギア(DC switchgear)の開発と製造に必要な試験要件および合格基準が明確に定義されているため、実用的な適用性が高いです。また、規格では、「DC GIS」と「DC switchgear」という用語が用いられており、理解しやすい表現となっています。 さらに、この標準は、高電圧直流(HVDC)システム向けのライン整流コンバータ(LCC)及び電圧源コンバータ(VSC)に対して適用可能です。これにより、さまざまな技術に基づくコンポーネントの統一された基準が提供され、各コンポーネントが直接接続されて動作することを前提としています。このようにして、IEC TS 62271-318:2024は、DCガス絶縁金属封入開閉装置の構成要素に適用される様々な関連文書を補完・明確化する役割を果たしています。 以上の点から、IEC TS 62271-318:2024は、高電圧開閉装置分野における重要な標準であり、業界の技術的基盤を強化するものであると評価できます。この標準に基づいた開発は、安全性と信頼性を大幅に向上させることが期待されます。
IEC TS 62271-318:2024는 100 kV 이상의 정격 전압을 포함하는 고전압 스위치기어 및 제어 장비의 기준을 규정한 문서로, 가스로 절연된 금속 인클로저에서 정전류(DC) 환경을 위한 요구사항을 명확하게 제시합니다. 이 기준의 주요 범위는 정격 전압이 100 kV 이상인 정전류 스위치기어의 설계, 제작 및 시험 요구사항을 포함하고 있습니다. 이 표준의 강점 중 하나는 실내 및 실외 설치를 모두 고려한 포괄적인 서비스 조건 규정을 포함하고 있다는 점입니다. 이는 다양한 설치 환경에서의 활용 가능성을 높이며, 전력 시스템의 안전성과 신뢰성을 보장합니다. 또한, 기준은 실질적인 테스트 요구사항과 유형 및 순회 테스트를 통과하기 위한 기준을 체계적으로 정의하여, DC 스위치기어의 개발 및 제조에 유용합니다. IEC TS 62271-318:2024는 LCC(Line Commutated Converter) 및 VSC(Voltage Sourced Converter)를 포함한 HVDC 시스템에 대한 요구사항을 제시하여, 현재의 에너지 전송 기술에 필수적인 고려사항을 충족합니다. 이 문서에 포함된 내용은 개별 구성 요소들이 직접 연결되어 작동될 수 있는 구조로, DC 가스로 절연된 금속 인클로저 스위치기어의 완전한 정체성을 부여하고 있음을 강조합니다. 마지막으로, 해당 표준은 DC 가스로 절연된 금속 인클로저 스위치기어에 적용되는 여러 관련 문서를 완성하고 추가하는 역할을 함으로써, 전력 시스템의 종합적인 발전과 안전성을 도모하는 데 기여합니다. 이러한 이유로 IEC TS 62271-318:2024는 고전압 스위치기어 설계 및 운영 분야에서 매우 중요한 문서입니다.
IEC TS 62271-318:2024 표준은 100 kV 이상의 정격 전압을 가진 직류에 대해 가스 절연 금속 밀폐 개폐 장치의 요구 사항을 명시하고 있습니다. 이 표준은 공기 압력 환경에서 벗어난 절연 가스 또는 가스 혼합물에 의해 부분적으로 절연이 이루어지는 개폐 장치에 대한 조건을 규정합니다. 실내 및 실외 설치를 위한 DC 가스 절연 금속 밀폐 개폐 장치의 설계와 구축 요구 사항, 서비스 조건 및 정격이 포함되어 있습니다. 강점으로는 이 문서가 직류 개폐 장치를 개발하고 제조하는 데 있어 필요한 시험 요구 사항 및 기준을 명확히 정의하고 있다는 점입니다. 이는 사용자의 안전성과 장비의 신뢰성을 크게 향상시키는 요소로 작용합니다. 또한, 문서에서는 LCC(Line Commutated Converter) 및 VSC(Voltage Sourced Converter)와 같은 HVDC 시스템에 적합하다는 점에서 높은 유용성을 보여줍니다. IEC TS 62271-318:2024는 DC 가스 절연 금속 밀폐 개폐 장치를 구성하는 개별 구성 요소가 서로 직접 연결되어 작동할 수 있도록 설계되어 있다는 점도 중요한 특징입니다. 이 표준은 관련된 다양한 문서를 보완하고 수정할 수 있는 기능을 제공하여, 사용자가 신뢰할 수 있는 기준을 따를 수 있도록 합니다. 전반적으로, IEC TS 62271-318:2024 표준은 고전압 스위치기어 및 제어 장비 분야에서 필수적인 문서로 자리잡고 있으며, 직류 기술의 발전에 큰 기여를 하고 있습니다.
Die Norm IEC TS 62271-318:2024 bietet eine umfassende Spezifikation für Hochspannungs-Schaltanlagentechnik, insbesondere für DC gasisolierte metallumhüllte Schaltanlagen mit Nennspannungen von 100 kV und höher. Der Geltungsbereich dieser Norm ist entscheidend, da er Anforderungen an die Konstruktion, das Design sowie an die Betriebsbedingungen dieser speziellen Schaltanlagen definiert. Ein besonders starkes Merkmal dieser Norm ist die klare Definition der Anforderungen für verschiedene Tests, die sowohl für die Typprüfung als auch für die Routineprüfung nötig sind. Dies ist von großer Relevanz für die Entwicklung und Produktion von DC-Schaltanlagen, da es die erforderlichen Nachweisen für Hersteller und Betreiber von Hochspannungsanlagen standardisiert. Im Hinblick auf die Verwendung von isolierenden Gasen oder Gasgemischen anstelle von Luft unter Atmosphärendruck wird durch IEC TS 62271-318:2024 eine innovative Lösung für die Herausforderungen bei der Hochspannungsisolierung geboten. Dies ist sowohl für Innen- als auch für Außeninstallationen von Bedeutung und stellt sicher, dass diese Schaltanlagen den hohen Anforderungen eines sich evolving Elektromarktes gerecht werden. Die Norm spricht gezielt die Bedürfnisse von HVDC-Systemen an, einschließlich der Anwendung bei Line Commutated Converters (LCC) und Voltage Sourced Converters (VSC). Indem sie die Interoperabilität und den direkten Anschluss von Einzelkomponenten betont, fördert sie die Effizienz und Zuverlässigkeit von DC gasisolierten metallumhüllten Schaltanlagen entscheidend. Zusammenfassend lässt sich festhalten, dass IEC TS 62271-318:2024 eine essentielle Grundlage für die Entwicklung, Konstruktion und den Betrieb von hochspannungsisolierten Schaltanlagen bildet, die den gegenwärtigen und zukünftigen Herausforderungen in der Energietechnik gerecht wird.
IEC TS 62271-318:2024 establishes comprehensive specifications for high-voltage switchgear and controlgear, specifically focusing on DC gas-insulated metal-enclosed switchgear (DC GIS) designed for rated voltages of 100 kV and above. The standard's scope is adeptly defined, covering both indoor and outdoor installations, thereby catering to a wide range of applications in modern electrical infrastructure. One of the strengths of IEC TS 62271-318:2024 lies in its detailed requirements regarding the service conditions, ratings, and construction of DC switchgear. By specifying criteria for type and routine tests, the standard ensures that manufacturers can verify the performance and reliability of their DC GIS products. This focus on rigorous testing strengthens the overall quality assurance of high-voltage switchgear in the market, promoting safety and efficiency. Moreover, the relevance of this standard can be seen in its application to both Line Commutated Converter (LCC) and Voltage Sourced Converter (VSC) systems within the realm of high-voltage direct current (HVDC) technology. As more energy transition projects prioritize HVDC solutions due to their efficiency and capacity for long-distance energy transmission, IEC TS 62271-318:2024 becomes increasingly vital. It effectively addresses the unique challenges posed by DC applications, contrasting traditional AC systems, and fills a significant gap in existing standardization for gas-insulated switchgear. In addition, the standard's emphasis on the interconnectivity of individual components further highlights its holistic approach to DC gas-insulated metal-enclosed switchgear. This facilitates a better understanding and implementation of integrated systems designed for modern electrical networks. Overall, IEC TS 62271-318:2024 serves as a critical framework for the development, manufacturing, and deployment of DC gas-insulated metal-enclosed switchgear, directly addressing the technological advancements in high-voltage applications. Its well-defined guidelines significantly contribute to the safety, performance, and efficiency of electrical systems in an evolving energy landscape.
IEC TS 62271-318:2024は、100 kV以上の定格電圧用のDC(直流)ガス絶縁メタルエンクロージャスイッチギアに関する標準として、非常に重要な要素を取り入れています。この文書は、空気とは異なる絶縁ガスまたはガス混合物を使用して絶縁を実現するガス絶縁メタルエンクロージャスイッチギアの要件を明確に定義しており、屋内および屋外の設置に対応しています。 この標準の強みは、サービス条件、定格、設計、施工要件に関する詳細なルールを提供していることです。特に、DCスイッチギアの開発および製造に必要な試験要件と基準を明示することで、業界に対する信頼性の向上を図っています。また、ラインコミューテッドコンバータ(LCC)およびボルテージソースコンバータ(VSC)に対応しているため、HVDCシステムにおける幅広い適用性を持つことも、他の標準にはないこの文書の優れた特性と言えるでしょう。 さらに、DCガス絶縁メタルエンクロージャスイッチギアに関連する個別コンポーネントの要件を整理し、相互接続されて作動するためのルールをまとめている点でも、効率的な設計と実装が可能になります。このように、IEC TS 62271-318:2024は、技術的な整合性を持ちながら、多様なアプリケーションニーズに応えることができる柔軟性を兼ね備えており、業界におけるガス絶縁メタルエンクロージャスイッチギアの基準を大いに強化するものです。
La norme IEC TS 62271-318:2024 est un document essentiel qui spécifie les exigences nécessaires pour les appareillages de commutation et de contrôle à haute tension, en particulier pour les appareils à gaz isolés métalliques. Son champ d'application couvre les systèmes à courant continu (DC) pour des tensions nominales allant de 100 kV et plus, tant pour une installation en intérieur qu'en extérieur. Parmi les forces de cette norme, on note sa capacité à définir des conditions de service claires, des classifications de puissance, ainsi que des exigences de conception et de construction. Cela garantit non seulement la sécurité des installations, mais aussi leur efficacité opérationnelle. De plus, la norme détaille les exigences liées aux tests, tant pour les tests de type que pour les tests de routine, répondant ainsi aux besoins essentiels de développement et de fabrication pour les appareillages de commutation DC, couramment désignés sous le terme "DC GIS". La pertinence de la norme IEC TS 62271-318:2024 est accentuée par son application à la fois pour les convertisseurs à commutation de ligne (LCC) et pour les convertisseurs à sources de tension (VSC) dans les systèmes HVDC. Cette spécification joue un rôle fondamental dans la standardisation et l'harmonisation des processus de fabrication et d'assemblage des composants individuels des appareils à gaz isolés métalliques. Enfin, le fait que cette norme complète et, si nécessaire, amende les documents pertinents relatifs aux composants constitutifs des appareillages de commutation DC souligne son importance pour l'industrie. En intégrant ces exigences, la norme contribue à renforcer la fiabilité et la durabilité des installations électriques à haute tension, ce qui en fait un document incontournable pour les professionnels du secteur.










Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...