IEC 61303:1994/COR1:2016
(Corrigendum)Corrigendum 1 - Medical electrical equipment - Radionuclide calibrators - Particular methods for describing performance
Corrigendum 1 - Medical electrical equipment - Radionuclide calibrators - Particular methods for describing performance
Corrigendum 1 - Appareils électromédicaux - Calibrateurs de radionucléides - Méthodes particulières pour décrire les performances
General Information
Standards Content (Sample)
IEC 2016
INTERNATIONAL ELECTROTECHNICAL COMMISSION
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
IEC 61303 IEC 61303
Edition 1.0 1994-09 Édition 1.0 1994-09
Medical electrical equipment – Appareils électromédicaux –
Radionuclide calibrators – Calibrateurs de radionucléides –
Particular methods for describing performance Méthodes particulières pour décrire
les performances
CO RRI G ENDU M 1
4.1.2.2 Evaluation 4.1.2.2 Évaluation
Replace the third sentence of the Remplacer la troisième phrase de ce
subclause by the following new sentence: paragraphe par la nouvelle phrase
suivante:
...
This May Also Interest You
IEC 61267:2025 applies to test procedures which, for the determination of characteristics of systems or components of medical diagnostic X-ray equipment, require well-defined X-ray radiation conditions. This document deals with methods for generating X-ray radiation conditions which can be used under test conditions typically found in test laboratories or in manufacturing facilities for the determination of characteristics of medical diagnostic X-ray equipment.
IEC 61267:2025 cancels and replaces the second edition published 2005. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) removing former Annex C “Measurement of the practical peak voltage”;
b) inserting informative “Tabulated values for the squared signal-to-noise ratio per air kerma (SNR2in)” and normative “Additional X-ray radiation conditions as used in mammography and determination of the corresponding nominal aluminium half-value layers”;
c) revision of X-ray radiation conditions;
d) new method for verification of X-ray radiation conditions;
e) change of term definitions.
- Standard44 pagesEnglish languagesale 15% off
- Standard47 pagesFrench languagesale 15% off
- Standard91 pagesEnglish and French languagesale 15% off
IEC 63322:2025 establishes security requirements of ME EQUIPMENT using high-activity SEALED RADIOACTIVE SOURCES, directly or indirectly, for medical treatment and other clinical procedures. ME EQUIPMENT containing SEALED RADIOACTIVE SOURCES that are defined as Category 1, 2 and 3 RADIOACTIVE SOURCES by IAEA are subject to this document. The object of this document is to specify requirements for the security of ME EQUIPMENT containing high-activity SEALED RADIOACTIVE SOURCES with the aim to minimize the risk of unauthorized access to the contained SEALED RADIOACTIVE SOURCES, and to serve as the basis for other standards. This document contains requirements for the MANUFACTURER of the ME EQUIPMENT and, separately, for the RESPONSIBLE ORGANIZATION regarding security at the location during use and storage. The requirements of this document apply when the SEALED RADIOACTIVE SOURCES are contained in the ME EQUIPMENT, i.e. from the time when the SEALED RADIOACTIVE SOURCES are inserted into the ME EQUIPMENT, during the INTENDED USE and when the ME EQUIPMENT is not being used for its INTENDED USE or taken out of regular use, until the equipment is being decommissioned, i.e. until all SEALED RADIOACTIVE SOURCES are permanently removed from the equipment.
- Standard66 pagesEnglish languagesale 15% off
- Standard70 pagesFrench languagesale 15% off
- Standard136 pagesEnglish and French languagesale 15% off
IEC 61674:2024 specifies the performance and some related constructional requirements of DIAGNOSTIC DOSIMETERS intended for the measurement of AIR KERMA, AIR KERMA LENGTH PRODUCT or AIR KERMA RATE, in photon radiation fields used in medical X-ray imaging, such as RADIOGRAPHY, RADIOSCOPY and COMPUTED TOMOGRAPHY (CT), for X-RADIATION with generating potentials in the range of 20 kV to 150 kV. This document is applicable to the performance of DOSIMETERS with VENTED IONIZATION CHAMBERS and/or SEMICONDUCTOR DETECTORS as used in X-ray diagnostic imaging.
IEC 61674:2024 cancels and replaces the second edition published in 2012. This edition constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) for mammography, the manufacturer specifies the REFERENCE VALUE for the RADIATION QUALITY;
b) for mammography, the manufacturer provides the MINIMUM RATED RANGE of RADIATION QUALITIES for the compliance test on energy dependence of response;
c) the compliance test for analogue displays was removed;
d) the compliance tests for range reset, the effect of leakage and recombination losses were removed. These tests are already covered by the test on linearity and cannot be conducted for modern devices. The estimation of COMBINED STANDARD UNCERTAINTY was changed accordingly;
e) the compliance test for mains rechargeable and battery-operated dosimeters were updated for modern devices
- Standard116 pagesEnglish languagesale 15% off
- Standard75 pagesEnglish and French languagesale 15% off
- Standard1 pageEnglish and French languagesale 15% off
IEC 61676:2023 specifies the performance requirements of instruments as used in the non-invasive measurement of X-RAY tube voltage up to 150 kV and the relevant compliance tests. This document also describes the method for calibration and gives guidance for estimating the uncertainty in measurements performed under conditions different from those during calibration. Applications for such measurement are found in diagnostic radiology including mammography, computed tomography (CT), dental radiology and radioscopy. This document is not concerned with the safety aspect of such instruments. The requirements for electrical safety applying to them are contained in IEC 61010-1. IEC 61676:2023 cancels and replaces first edition published in 2002, Amendment 1:2008. This edition constitutes a technical revision. It includes an assessment of the combined standard uncertainty for the performance of a hypothetical instrument for the non-invasive measurement of the tube high voltage (in Annex A) which replaces Annex A of the edition 1.1 titled "Recommended performance criteria for the invasive divider".
The contents of the corrigendum of January 2024 have been included in this copy.
- Standard104 pagesEnglish languagesale 15% off
- Standard67 pagesEnglish and French languagesale 15% off
IEC 61675-1:2022 specifies terminology and test methods for declaring the characteristics of POSITRON EMISSION TOMOGRAPHS. POSITRON EMISSION TOMOGRAPHS detect the ANNIHILATION RADIATION of positron emitting RADIONUCLIDES by COINCIDENCE DETECTION. IEC 61675-1:2022 cancels and replaces the second edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical change with respect to the previous edition: requirements have been changed or newly created regarding the technical aspects of SPATIAL RESOLUTION, sensitivity measurement, SCATTER FRACTION, COUNT RATE performance, image quality, PET/CT registration accuracy and time-of-flight resolution.
- Standard136 pagesEnglish languagesale 15% off
- Standard87 pagesEnglish and French languagesale 15% off
IEC 63073-1:2020 specifies terminology and test methods for describing the characteristics of SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY (SPECT) systems designed specifically for tomographic cardiac imaging. This includes dedicated systems or general purpose systems with dedicated sub-systems which are not included in the scope of IEC 61675-2.
- Standard58 pagesEnglish and French languagesale 15% off
IEC 60580:2019 specifies the performance and testing of Dose Area Product Meters intended to measure Dose Area Product and/or Dose Area Product Rate to which the Patient is exposed during Medical Radiological Examinations. This document is applicable to the following types of Dose Area Product Meters:
a) Field-Class Dose Area Product Meters normally used for the measurement of Dose Area Products during Medical Radiological Examinations;
b) Reference-Class Dose Area Product Meters normally used for the Calibration of Field-Class Dosimeters.
NOTE Reference-Class Dose Area Product Meters can be used as Field-Class Dose Area Product Meters.
The object of this document is
1) to establish requirements for a satisfactory level of performance for Dose Area Product Meters, and
2) to standardize the methods for the determination of compliance with this level of performance.
Two levels of performance are specified:
– a lower level of performance applying to Field-Class Dose Area Product Meters;
– a higher level of performance applying to Reference-Class Dose Area Product Meters.
IEC 60580:2019 cancels and replaces the second edition published 2000, and constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) a second class of devices is introduced with tighter uncertainty tolerances;
b) this document has been expanded to include detectors other than ionization chambers;
c) radiation qualities have been updated to the new definitions according to IEC 61267;
d) a requirement on the linearity of the dose area product rate measurement was added;
e) changed chamber light transmission requirement from 70 % to 60 %.
- Standard107 pagesEnglish languagesale 15% off
- Standard69 pagesEnglish and French languagesale 15% off
IEC TR 61948-2:2019 is valid for single photon scintillation cameras with parallel hole collimators used in planar scintigraphy and tomography. It is also valid for the SPECT portion of SPECT/CT systems with parallel hole collimators, including the co-registration between the SPECT and CT subsystems. The objective is to specify ROUTINE TESTS for QUALITY CONTROL. Methods for the ACCEPTANCE TEST are described in IEC 61675-2.
IEC TR 61948-2:2019 cancels and replaces the first edition published in 2001. It constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous edition:
a) adaptation to apply to the present technology;
b) updating of the test methods to comply with the recent state of the art.
- Technical report15 pagesEnglish languagesale 15% off
IEC TR 62926:2019 provides guidelines for safe integration and operation of an adaptive external-beam RADIOTHERAPY system (AEBRS) for intra-fractionally moving rigid TARGET VOLUMEs, where required equipment can be sourced from one or several MANUFACTURERs. In particular it addresses guidelines to help ensure safe integration and operation for the PATIENT, OPERATOR, other persons and sensitive devices in the vicinity. In this document, the word “system” is hereafter used to refer to an AEBRS.
This document specifies the safety guidelines for a MANUFACTURER or RESPONSIBLE ORGANIZATION who integrates the AEBRS for intra-fractionally moving rigid TARGET VOLUMEs. If a RESPONSIBLE ORGANIZATION integrates an AEBRS, then it takes the role of MANUFACTURER and will be referred to as a MANUFACTURER throughout this document.
This document includes reference models of the AEBRS for intra-fractionally moving rigid TARGET VOLUMEs and HAZARDs which, at a minimum, are considered during the RISK ANALYSIS.
Although TARGET VOLUMES and OARs can deform during motion, adaptations in response to deformations of the TARGET VOLUME are out of the scope of this document. The scope is limited to rigid TARGET VOLUMEs exhibiting intra-fractional movements, both translational and rotational. While technical HAZARDs are discussed in this document, the RESPONSIBLE ORGANIZATION is reminded that clinical judgement is always employed when determining clinical usability and reviewing TREATMENT PARAMETER changes.
This document does not specifically address HAZARD mitigations for each of the HAZARDs mentioned in the document; however, some mitigations are given as examples in Clauses 4 and 5. All guidelines in this document are intended to be implemented in accordance with the general standard IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012, with special attention to 4.2 of IEC 60601-1:2005 and IEC 60601-1:2005/AMD1:2012.
- Technical report47 pagesEnglish languagesale 15% off







Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...