Qi Specification version 2.0 - Part 6: Communications Protocol

IEC 63563-6:2025 defines the messaging between a Power Transmitter and a Power Receiver. The primary purpose of this messaging is to set up and control the power transfer. As a secondary purpose, it provides a transport mechanism for higher-level applications such as Authentication. The communications protocol comprises both the required order and timing relations of successive messages.

Spécification Qi version 2.0 - Partie 6 : Protocole de communication

IEC 63563-6:2025 définit la messagerie entre un émetteur de puissance et un récepteur de puissance. L'objectif principal de cette messagerie est de mettre en place et de contrôler le transfert de puissance. En tant qu'objectif secondaire, il fournit un mécanisme de transport pour des applications de niveau supérieur telles que l'authentification. Le protocole de communication comprend à la fois l'ordre requis et les relations temporelles des messages successifs.

General Information

Status
Published
Publication Date
13-Feb-2025
Drafting Committee
WG 1 - TC 100/TA 15/WG 1
Current Stage
PPUB - Publication issued
Start Date
14-Feb-2025
Completion Date
07-Mar-2025

Overview

IEC 63563-6:2025 - Qi Specification version 2.0 – Part 6: Communications Protocol defines the messaging between a Power Transmitter and a Power Receiver for wireless power transfer. Its primary purpose is the setup and control of power delivery; as a secondary function it provides a transport mechanism for higher‑level applications such as Authentication and device identification. The standard specifies the required message types, sequencing, timing relations and state diagrams that ensure reliable, interoperable wireless charging under the Qi v2.0 ecosystem.

Key topics and technical requirements

  • Protocol phases: Detailed phases including Ping, Configuration, Negotiation and Power Transfer. Each phase has defined states, message flows and timing constraints.
  • Power Transfer Contract: Rules for negotiating and updating contract elements (e.g., power profiles and permitted operating parameters) between transmitter and receiver.
  • Data packet types and headers: Definitions for numerous packet types used during communication - e.g., ADC (Auxiliary Data Control), ADT (Auxiliary Data Transport), CHS (Charge Status), CFG (Configuration), CE (Control Error), EPT (End Power Transfer), XID (Extended Identification), FOD (Foreign Object Detection) and others - including when and how they are used.
  • State diagrams and timing: Prescribed state diagrams and explicit timing relations for message ordering, retries and timeouts to guarantee deterministic behavior.
  • Data transport streams & higher‑level apps: Mechanisms for transporting larger or higher‑level payloads (authentication tokens, identification data, NFC tag protection) over the established communications link.
  • Safety and integrity features: Support for Foreign Object Detection (FOD) reporting and negotiated hold‑offs, aiding safe operation and device protection.
  • Backward compatibility & conformance: Provisions to maintain interoperability with earlier Qi implementations and guidance for compliance testing and certification.

Practical applications - who uses this standard

  • Hardware and firmware engineers designing Qi‑compliant power transmitters, receiver coils and control electronics.
  • Embedded systems developers implementing message parsing, state machines and timing logic for wireless chargers or mobile devices.
  • Test labs and certification bodies validating interoperability, timing, FOD behavior and message conformance per IEC 63563‑6:2025.
  • Product managers and integrators ensuring devices meet Qi v2.0 communications requirements for consumer electronics, wearables, automotive wireless charging and IoT charging surfaces.
  • Security and application developers leveraging the communications transport for authentication, device identity and NFC tag protection.

Related standards and references

  • Part of the IEC 63563 series based on the Wireless Power Consortium’s Qi Specification v2.0; implementers should consult the other Qi parts (identification, power profiles, interoperability tests) and the IEC/ISO directives referenced in the document for full compliance and conformance requirements.

Keywords: IEC 63563-6:2025, Qi Specification v2.0, wireless power, communications protocol, Power Transmitter, Power Receiver, power transfer contract, wireless charging, FOD, data packets, authentication.

Standard

IEC 63563-6:2025 - Qi Specification version 2.0 - Part 6: Communications Protocol Released:14. 02. 2025 Isbn:9782832701898

English language
141 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

IEC 63563-6:2025 is a standard published by the International Electrotechnical Commission (IEC). Its full title is "Qi Specification version 2.0 - Part 6: Communications Protocol". This standard covers: IEC 63563-6:2025 defines the messaging between a Power Transmitter and a Power Receiver. The primary purpose of this messaging is to set up and control the power transfer. As a secondary purpose, it provides a transport mechanism for higher-level applications such as Authentication. The communications protocol comprises both the required order and timing relations of successive messages.

IEC 63563-6:2025 defines the messaging between a Power Transmitter and a Power Receiver. The primary purpose of this messaging is to set up and control the power transfer. As a secondary purpose, it provides a transport mechanism for higher-level applications such as Authentication. The communications protocol comprises both the required order and timing relations of successive messages.

IEC 63563-6:2025 is classified under the following ICS (International Classification for Standards) categories: 29.240.99 - Other equipment related to power transmission and distribution networks; 35.240.99 - IT applications in other fields. The ICS classification helps identify the subject area and facilitates finding related standards.

You can purchase IEC 63563-6:2025 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of IEC standards.

Standards Content (Sample)


IEC 63563-6 ®
Edition 1.0 2025-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Qi Specification version 2.0 –
Part 6: Communications Protocol

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - webstore.iec.ch/advsearchform IEC Products & Services Portal - products.iec.ch
The advanced search enables to find IEC publications by a Discover our powerful search engine and read freely all the
variety of criteria (reference number, text, technical publications previews, graphical symbols and the glossary.
committee, …). It also gives information on projects, replaced With a subscription you will always have access to up to date
and withdrawn publications. content tailored to your needs.

IEC Just Published - webstore.iec.ch/justpublished
Electropedia - www.electropedia.org
Stay up to date on all new IEC publications. Just Published
The world's leading online dictionary on electrotechnology,
details all new publications released. Available online and once
containing more than 22 500 terminological entries in English
a month by email.
and French, with equivalent terms in 25 additional languages.

Also known as the International Electrotechnical Vocabulary
IEC Customer Service Centre - webstore.iec.ch/csc
(IEV) online.
If you wish to give us your feedback on this publication or need

further assistance, please contact the Customer Service
Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications IEC gratuitement tous les aperçus des publications, symboles
en utilisant différents critères (numéro de référence, texte, graphiques et le glossaire. Avec un abonnement, vous aurez
comité d’études, …). Elle donne aussi des informations sur les toujours accès à un contenu à jour adapté à vos besoins.
projets et les publications remplacées ou retirées.

Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished
Le premier dictionnaire d'électrotechnologie en ligne au monde,
Restez informé sur les nouvelles publications IEC. Just
avec plus de 22 500 articles terminologiques en anglais et en
Published détaille les nouvelles publications parues.
français, ainsi que les termes équivalents dans 25 langues
Disponible en ligne et une fois par mois par email.
additionnelles. Egalement appelé Vocabulaire

Electrotechnique International (IEV) en ligne.
Service Clients - webstore.iec.ch/csc

Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-nous:
sales@iec.ch.
IEC 63563-6 ®
Edition 1.0 2025-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Qi Specification version 2.0 –

Part 6: Communications Protocol

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
INTERNATIONALE
ICS 29.240.99, 35.240.99 ISBN 978-2-8327-0189-8

- 2 - IEC 63563-6:2025 © IEC 2025
INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
QI SPECIFICATION VERSION 2.0 –
Part 6: Communications Protocol
FOREWORD
 The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprisingall
national electrotechnical committees (IEC National Committees). The object of IEC is to promote internationalco-
operation on all questions concerning standardization in the electrical and electronic fields. To this end andin addition
to other activities, IEC publishes International Standards, Technical Specifications, TechnicalReports, Publicly
Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Theirpreparation is entrusted to
technical committees; any IEC National Committee interested in the subject dealt withmay participate in this
preparatory work. International, governmental and non-governmental organizationsliaising with the IEC also
participate in this preparation. IEC collaborates closely with the InternationalOrganization for Standardization
(ISO) in accordance with conditions determined by agreement between the twoorganizations.
 The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
 IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
 In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence betweenany IEC
Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
 IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
 All users should ensure that they have the latest edition of this publication.
 No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage orother
damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) andexpenses
arising out of the publication, use of, or reliance upon, this IEC Publication or any other IECPublications.
 Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
 IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights inrespect
thereof. As of the date of publication of this document, IEChad not received notice of (a) patent(s),which may be
required to implement this document. However, implementers are cautioned that this may notrepresent the latest
information, which may be obtained from the patent database available athttps://patents.iec.ch. IEC shall
not be held responsible for identifying any or all such patent rights.
IEC 635-6 has been prepared by technical area 15: Wireless Power Transfer, of IEC
technical committee 100: Audio, video and multimedia systems and equipment. It is an
International Standard.
It is based on Qi Specification version 2.0, Communications Protocol and was submitted as a
Fast-Track document.
The text of this International Standard is based on the following documents:
Draft Report on voting
//FDIS //RVD
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
The structure and editorial rules used in this publication reflect the practice of the organization
which submitted it.
This document was developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC
Directives, IEC Supplement available at www.iec.ch/members_experts/refdocs. The main
document types developed by IEC are described in greater detail at www.iec.ch/publications.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
x reconfirmed,
x withdrawn, or
x revised.
- 4 - IEC 63563-6:2025 © IEC 2025
WIRELESS POWER
CONSORTIUM
Qi Specification
Communications Protocol
Version 2.0
April 2023
DISCLAIMER
Theinformationcontainedhereinisbelievedtobeaccurateasofthedateofpublication,
butisprovided“asis”andmaycontainerrors.TheWirelessPowerConsortiummakesno
warranty,expressorimplied,withrespecttothisdocumentanditscontents,includingany
warrantyoftitle,ownership,merchantability,orfitnessforaparticularuseorpurpose.
NeithertheWirelessPowerConsortium,noranymemberoftheWirelessPower
Consortiumwillbeliableforerrorsinthisdocumentorforanydamages,includingindirect
orconsequential,fromuseoforrelianceontheaccuracyofthisdocument.For any further
explanation of the contents of this document, or in case of any perceived inconsistency or ambiguity
of interpretation, contact: info@wirelesspowerconsortium.com.
RELEASE HISTORY
Specification Version Release Date Description
v2.0 Final Draft April 2023 Initial release of the v2.0 Qi Specification.

- 6 - IEC 63563-6:2025 © IEC 2025
Table of Contents
1  General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Structure of the Qi Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Power Profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Protocol phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Power Transfer Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Data packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 High-level messages and data transport streams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Backward compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3  Power Receiver and Power Transmitter identification . . . . . . . . . . . . . . . . . . . . 18
4  Ping phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Ping phase state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Ping phase timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5  Configuration phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1 Configuration phase state diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Configuration phase timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6  Negotiation phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Negotiable elements of the Power Transfer Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Updating the Power Transfer Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Foreign Object Detection support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Wireless power ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 NFC tag protection support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6 Negotiation phase state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.7 Negotiation phase timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7  Power transfer phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1 Power transfer state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Data transport stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Power transfer phase timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8  Power Receiver data packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.1 Auxiliary Data Control—ADC (0x25; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Auxiliary Data Transport—ADT (multiple header codes; simple query) . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Charge Status—CHS (0x05; status update) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.4 Configuration—CFG (0x51; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.5 Control Error—CE (0x03; power control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.6 Data Stream Response—DSR (0x15; data request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.7 End Power Transfer—EPT (0x02; power control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.8 Extended Identification—XID (0x81; status update) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.9 FOD Status—FOD (0x22; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.10 General Request—GRQ (0x07; data request). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.11 Identification—ID (0x71; status update) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.12 Power Control Hold-off—PCH (0x06; status update) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.13 Proprietary—PROP (multiple headers; multiple types) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.14 Received Power—RP8 (0x04; status update). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
8.15 Received Power—RP (0x31; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.16 Renegotiate—NEGO (0x09; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.17 Signal Strength—SIG (0x01; status update). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.18 Specific Request—SRQ (0x20; simple query). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.19 Wireless Power ID—WPID (0x54, 0x55; simple query) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.20 Reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
9  Power Transmitter data packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9.1 Auxiliary Data Control—ADC (0x25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Auxiliary Data Transport—ADT (multiple header codes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
9.3 Data Not Available—NULL (0x00). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.4 Power Transmitter Capabilities—CAP (0x31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.5 Power Transmitter Extended Capabilities—XCAP (0x32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.6 Power Transmitter Identification—ID (0x30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.7 Proprietary—PROP (multiple headers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.8 Reserved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

- 8 - IEC 63563-6:2025 © IEC 2025
1 General
The Wireless Power Consortium (WPC) is a worldwide organization that aims to develop and
promote global standards for wireless power transfer in various application areas. A first
application area comprises flat-surface devices such as mobile phones and chargers in the
Baseline Power Profile (up to 5 W) and Extended Power Profile (above 5 W).
1.1 Structure of the Qi Specification
General documents
ƒ Introduction
ƒ Glossary, Acronyms, and Symbols
System description documents
ƒ Mechanical, Thermal, and User Interface
ƒ Power Delivery
ƒ Communications Physical Layer
ƒ Communications Protocol
ƒ Foreign Object Detection
ƒ NFC Tag Protection
ƒ Authentication Protocol
1.2 Scope
The QiSpecification,CommunicationsProtocol (this document) defines the messaging between a
Power Transmitter and a Power Receiver. The primary purpose of this messaging is to set up and
control the power transfer. As a secondary purpose, it provides a transport mechanism for higher-
level applications such as Authentication. The communications protocol comprises both the
required order and timing relations of successive messages.
1.3 Compliance
All provisions in the QiSpecification are mandatory, unless specifically indicated as recommended,
optional, note, example, or informative. Verbal expression of provisions in this Specification follow
the rules provided in ISO/IEC Directives, Part 2.
Table 1: Verbal forms for expressions of provisions
Provision Verbal form
requirement “shall” or “shall not”
recommendation “should” or “should not”
permission “may” or “may not”
capability “can” or “cannot”
1.4 References
For undated references, the most recently published document applies. The most recent WPC
publications can be downloaded from http://www.wirelesspowerconsortium.com.

- 10 - IEC 63563-6:2025 © IEC 2025
1.5 Conventions
1.5.1 Notation of numbers
ƒ Real numbers use the digits 0 to 9, a decimal point, and optionally an exponential part.
ƒ Integer numbers in decimal notation use the digits 0 to 9.
ƒ Integer numbers in hexadecimal notation use the hexadecimal digits 0 to 9 and A to F, and are
prefixed by "0x" unless explicitly indicated otherwise.
ƒ Single bit values use the words ZERO and ONE.
1.5.2 Tolerances
Unless indicated otherwise, all numeric values in the QiSpecification are exactly as specified and do
not have any implied tolerance.
1.5.3 Fields in a data packet
A numeric value stored in a field of a data packet uses a big-endian format. Bits that are more
significant are stored at a lower byte offset than bits that are less significant. Table 2 and Figure 1
provide examples of the interpretation of such fields.
Table 2: Example of fields in a data packet
b b b b b b b b
7 6 5 4 3 2 1 0
(msb)
B
16-bit Numeric Data Field
B
(lsb)
B Other Field (msb)
B 10-bit Numeric Data Field (lsb) Field
Figure 1. Examples of fields in a data packet
16-bit Numeric Data Field
b b b b b b b b b b b b b b b b
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B B
0 1
10-bit Numeric Data Field
b b b b b b b b b b
9 8 7 6 5 4 3 2 1 0
B B
2 3
1.5.4 Notation of text strings
Text strings consist of a sequence of printable ASCII characters (i.e. in the range of 0x20 to 0x7E)
enclosed in double quotes ("). Text strings are stored in fields of data structures with the first
character of the string at the lowest byte offset, and are padded with ASCII NUL (0x00) characters
to the end of the field where necessary.
EXAMPLE: The text string “WPC” is stored in a six-byte fields as the sequence of characters 'W', 'P', 'C', NUL,
NUL, and NUL. The text string “M:4D3A” is stored in a six-byte field as the sequence 'M', ':', '4', 'D',
'3', and 'A'.
1.5.5 Short-hand notation for data packets
In many instances, the QiSpecification refers to a data packet using the following shorthand
notation:
/
In this notation, refers to the data packet's mnemonic defined in the QiSpecification,
CommunicationsProtocol, and refers to a particular value in a field of the data packet.
The definitions of the data packets in the QiSpecification,CommunicationsProtocol, list the
meanings of the modifiers.
For example, EPT/cc refers to an End Power Transfer data packet having its End Power Transfer
code field set to 0x01.
- 12 - IEC 63563-6:2025 © IEC 2025
1.6 Power Profiles
A Power Profile determines the level of compatibility between a Power Transmitter and a Power
Receiver. Table 3 defines the available Power Profiles.
ƒ BPPPTx: A Baseline Power Profile Power Transmitter.
ƒ EPP5PTx: An Extended Power Profile Power Transmitter having a restricted power transfer
()pot
capability, i.e. P = 5 W.
L
ƒ EPPPTx: An Extended Power Profile Power Transmitter.
ƒ BPPPRx: A Baseline Power Profile Power Receiver.
ƒ EPPPRx: An Extended Power Profile Power Receiver.
Table 3: Capabilities included in a Power Profile
Feature BPP PTx EPP5 PTx EPP PTx BPP PRx EPP PRx
Ax or Bx design Yes Yes No N/A N/A
MP-Ax or MP-Bx design No No Yes N/A N/A
Baseline Protocol Yes Yes Yes Yes Yes
Extended Protocol No Yes Yes No Yes
Authentication N/A Optional Yes N/A Optional

2 Overview
When a user places a Power Receiver within the Operating Volume of a Power Transmitter, the two
start to communicate with the aim to configure and control the power transfer. The Power Signal
provides the carrier for all communications. The QiSpecification,CommunicationsPhysicalLayer
defines the low-level formats of data bits, data bytes, and data packets. The QiSpecification,
CommunicationsProtocol(this document) defines the payloads of the data packets and their use in
the power control protocols.
2.1 Protocol phases
The QiSpecificationdefines two communications protocols.
ƒ BaselineProtocol—the original protocol introduced in version 1.0 of the Qi Power Class 0
Specification, which uses Power Receiver to Power Transmitter communications only.
ƒ ExtendedProtocol—added in version 1.2 of the Qi Power Class 0 Specification to support bi-
directional communications and enhanced Foreign Object Detection (FOD) features. Version
1.3 of the QiSpecificationadds data transport stream functionality and authentication options.
As shown in Figure 2, the communications protocol comprises several phases. The negotiation
phase is not present in the Baseline Protocol.
Figure 2. Protocol phases
Power
Ping Configuration Negotiation
Transfer
ƒ Pingphase. The Power Transmitter tries to establish communications with a Power Receiver.
Before doing so, it typically performs measurements to determine if there are objects such as
bankcards, coins or other metals, which can damage or heat up during the power transfer.
These measurements proceed without waking up the Power Receiver. See the QiSpecification,
PowerDelivery,for restrictions on such measurements.
NOTE: The Power Transmitter typically postpones a conclusion whether detected metals are Foreign
Objects or Friendly Metals to the negotiation phase, after obtaining design information from the
Power Receiver. See the QiSpecification,ForeignObjectDetection,for details about recommended
methods.
ƒ Configurationphase. The Power Receiver sends basic identification and configuration data to
the Power Transmitter. Both sides use this information to create a baseline Power Transfer
Contract. Moreover, the Power Transmitter and Power Receiver decide whether to continue
with the Baseline Protocol or the Extended Protocol.
NOTE: A Power Receiver can only make use of features such as enhanced FOD, data transport streams,
and authentication if it implements the Extended Protocol.

- 14 - IEC 63563-6:2025 © IEC 2025
ƒ Negotiationphase. This phase is not present in the Baseline Protocol. The Power Transmitter
and Power Receiver establish an extended Power Transfer Contract containing additional
settings and limits. The Power Receiver also provides design information to the Power
Transmitter, which the latter can use to complete FOD before switching to the power transfer
phase. See the QiSpecification,ForeignObjectDetection,for details about this information.
ƒ Powertransferphase. This is the phase in which the power transfer to the Power Receiver’s
Load occurs. In the Extended Protocol, the Power Transmitter and Power Receiver perform a
system calibration at the start of this phase. See the QiSpecification,ForeignObjectDetection,
for details about calibration. Occasional interruptions of this phase may occur to renegotiate
an element of the Power Transfer Contract. However, the power transfer continues during
such renegotiations.
Table 4 summarizes the main features of the two protocol variants.
Table 4: Comparison of the Baseline Protocol and the Extended Protocol
Feature
Baseline Protocol Extended Protocol
Power Transmitter design Type Ax and type Bx designs All designs
only
Power Receiver to Power Load modulation at a fixed 2 Load modulation at a fixed 2 kHz clock
Transmitter Communications kHz clock
Power Transmitter to Power N/A Frequency shift keying at a frequency
Receiver Communications dependent clock of f /512
op
Operating phases Ping, configuration, and power Ping, configuration, negotiation, and
transfer power transfer
Power level calibration N/A At the start of the power transfer phase
Authentication N/A Using data transport streams in the
power transfer phase
2.2 Power Transfer Contract
A Power Transfer Contract comprises the settings and limits governing the power transfer. The
Power Receiver sets up an initial Power Transfer Contract as applicable to the Baseline Protocol.
The first part of Table 5 shows the elements of this initial (or baseline) Power Transfer Contract.
The Power Transmitter receives all information to duplicate the baseline Power Transfer Contract
in the configuration phase of the protocol.
Some elements of the Power Transfer Contract are negotiable, enabling the Power Transmitter and
Power Receiver to determine new values for these elements in the negotiation phase of the
protocol (Extended Protocol only). In the Baseline Protocol, all elements of the Power Transfer
Contract keep their values until the power transfer ends.
The Extended Protocol makes use of an extended Power Transfer Contract that contains the
additional elements shown in the second part of Table 5. See the QiSpecification,PowerDelivery,
and Section6,Negotiationphase,for details about the use of these elements.
Table 5: Power Transfer Contract
Element Symbol Unit Negotiable Comment
Elements of a baseline Power Transfer Contract
The reference power level for RP8 and RP data
packets. The CFG data packet provides the initial
()ref
*
Reference Power W
P Yes
r
value. See Section 8.14, Received Power—RP8
(0x04; status update), for an example of its usage.
Received Power
The properties of the time window for measuring
t
ms No
window
window size
the Received Power. The CFG data packet provides
these values. See Figure 62 in Section 7.3, Power
Received Power
t
ms No
offset transfer phase timings.
window offset
The delay between the CE data packet and the
Power Control power level adjustment window. Defaults to 5 ms.
t
ms No
delay
Hold-off See Figure 61 in Section 7.3, Power transfer phase
timings.
Received Power
The resolution of the reported Received Power.
*
reporting N/A N/A
Yes
Defaults to 8 bit (RP8 data packet).
resolution
Additional elements of an extended Power Transfer Contract
Power Transmitter to Power Receiver
FSK polarity,
communications parameters. The CFG data packet
modulation depth,
N/A N/A Yes provides the initial values for the polarity and
and number of
modulation depth. The number of cycles per bit
cycles per bit
defaults to 512.
The highest Guaranteed Load Power level the Power
Potential Load Transmitter can negotiate. No default. See Section
()pot
WNo
P
L
Power 2.2.1, Load Power level negotiation, and the
Qi Specification, Power Delivery, for details.

- 16 - IEC 63563-6:2025 © IEC 2025
Table 5: Power Transfer Contract (Continued)
Element Symbol Unit Negotiable Comment
The negotiated power level. Defaults to 5 W. See
Guaranteed Load
()gtd
WYes Section 2.2.1, Load Power level negotiation, and the
P
L
Power
Qi Specification, Power Delivery, for details.
The delay between an EPT/rep data packet and the
t
Re-ping delay ms Yes
reping
next Digital Ping. Defaults to 12.6 second.
*
In the negotiation phase of the Extended Protocol

2.2.1 Load Power level negotiation
A Power Receiver can typically operate at multiple target power levels. To determine the most
appropriate one, the Power Receiver negotiates a Guaranteed Load Power level with the Power
Transmitter. Figure 3 shows the steps involved.
Figure 3. Load Power levels
GRQ/cap SRQ/gp Power Transfer Contract
Potential Load Power
Requested Load Power (1)
Negotiable Load Power
Requested Load Power (2) Guaranteed Load Power
The Potential Load Power level is the highest Load power level the Power Transmitter can
negotiate at any time. The Negotiable Load Power level is the highest Load power level the Power
Transmitter is willing to negotiate at a given time. Usually, the Negotiable Load Power level is equal
to the Potential Load Power level. However, in some conditions, the Power Transmitter may set the
Negotiable Load Power level to a lower value. A first example of such a condition is an operating
temperature that can cause the Power Transmitter to overheat when transferring power at the
highest level. A second example is an insufficiently capable power supply driving the Power
Transmitter. The Power Receiver can retrieve the Potential Load Power level and the Negotiable
Load Power level from the Power Transmitter using a GRQ/cap data packet.
The Requested Load Power is the Load power level at which the Power Receiver intends to
operate. It provides this power level to the Power Transmitter using an SRQ/gp data packet. If the
Requested Load Power level is less than or equal to the Negotiable Load Power level, the power level
negotiation is successful, and both the Power Transmitter and Power Receiver store the Requested
Load Power level as a Guaranteed Load Power level in their copies of the Power Transfer Contract.
Section6,Negotiationphase, Section8.18.3,SRQ/gp—GuaranteedLoadPower:parameterfieldand
responses, and Section9.4,PowerTransmitterCapabilities—CAP(0x31), provide details and
examples of power level negotiation sequences.
The Load Power level a Power Transmitter can support depends on several factors.
ƒ The designs of the Power Transmitter and Power Receiver
ƒ The position of the Power Receiver in the Operating Volume
ƒ The power supply of the Power Transmitter
ƒ The Load of the Power Receiver
ƒ The operating temperature
- 18 - IEC 63563-6:2025 © IEC 2025
The Potential Load Power, Negotiable Load Power, and Requested Load Power levels used in the
negotiation process are meaningful only if the Power Receiver has a design that is “similar” to one
the reference designs listed in Table 6. See the QiSpecification,PowerDelivery,for details.
NOTE: A Power Receiver may attempt to draw more power than the Guaranteed Load Power level, and a
Power Transmitter may provide more power than the Guaranteed Load Power level or Potential Load
Power level. However, the system operation is undefined in those cases. See the QiSpecification,Power
Delivery,for details.
Table 6: Power Levels
*
Power Level Reference Power Receiver
5 W Power Receiver example 1,
Power Receiver example 2
8 W Power Receiver example 3
12 W Power Receiver example 5
15 W Power Receiver example 4
2.2.2 Examples
Table 7, Table 8, and Table 9 provide examples of Power Transfer Contracts. In the Extended
Protocol, the initial Power Transfer Contract contains the elements of the baseline Power Transfer
Contract plus the elements of the extended Power Transfer Contract.
Table 7: Example of a baseline Power Transfer Contract when leaving the configuration phase
Element Symbol Power Receiver Value Power Transmitter Value
()ref
Reference Power 5 W 5 W
P
r
Received Power window size t
8 ms 8 ms
window
Received Power window offset t 8 ms 8 ms
offset
Power Control Hold-off t
5 ms 5 ms
delay
Received Power reporting resolution N/A 8 bit 8 bit

Table 8: Example of an extended Power Transfer Contract when entering the negotiation phase
Element Symbol Power Receiver Value Power Transmitter Value
()ref
Reference Power 5 W 5 W
P
r
t
Received Power window size 8 ms 8 ms
window
Received Power window offset t 8 ms 8 ms
offset
t
Power Control Hold-off 5 ms 5 ms
delay
Received Power reporting resolution N/A 8 bit 8 bit
FSK polarity, modulation depth, and
N/A Positive / Category 0/512 Positive / Category 0/512
number of cycles per bit
()pot
Potential Load Power Unknown 15 W
P
L
()gtd
Guaranteed Load Power 5 W 5 W
P
L
Re-ping delay t 1000 ms 1000 ms
reping
Table 9: Example of an extended Power Transfer Contract when leaving the negotiation phase
Element Symbol Power Receiver Value Power Transmitter Value
()ref
Reference Power 10 W 10 W
P
r
t
Received Power window size 8 ms 8 ms
window
Received Power window offset t 8 ms 8 ms
offset
t
Power Control Hold-off 5 ms 5 ms
delay
Received Power reporting resolution N/A 16 bit 16 bit
FSK polarity, modulation depth, and
N/A Positive / Category 0/512 Positive / Category 0/512
number of cycles per bit
()pot
*
Potential Load Power 15 W or unknown 15 W
P
L
()gtd
Guaranteed Load Power 8 W 8 W
P
L
t
Re-ping delay 500 ms 500 ms
reping
* If the Power Receiver does not request the CAP data packet in the Extended Protocol, the Potential Load
Power remains unknown in the Power Receiver’s copy of the Power Transfer Contract.

- 20 - IEC 63563-6:2025 © IEC 2025
2.3 Data packet types
Whereas the Power Transmitter starts the communications protocol by applying a Digital Ping (at
the end of the ping phase), the Power Receiver drives the execution of the remaining phases of the
protocol. This means that the Power Receiver initiates all data packet communications, and that the
Power Transmitter waits to send a data packet or Response Pattern until explicitly invited to do so.
NOTE: Although it is the Power Receiver that drives the communications protocol, the Power Transmitter
may adjust the power level or stop the power transfer completely at any time if it considers that
necessary to ensure safe system operation. For additional information, see the QiSpecification,Power
Delivery.
The Power Receiver can send four kinds of data packets:
ƒ Statusupdate—the Power Transmitter does not reply to these data packets.
ƒ Powercontrol—the Power Transmitter adjusts the power level in response to these data
packets.
ƒ Simplequery—invites the Power Transmitter to reply with a Response Pattern (ACK, NAK, ND,
ATN).
ƒ Datarequest—invites the Power Transmitter to reply with a full data packet.
NOTE: The Baseline Protocol uses status update and power-control data packets only.
The Power Transmitter should not respond to data packets that suffer from communications
errors. The reason is that data packet corruption could result in the Power Transmitter providing
the wrong type of response, confusing the Power Receiver. The lack of a response is a clear signal to
the Power Receiver that something went wrong and that it should resend the data packet.

2.4 High-level messages and data transport streams
The purpose of most communications in the protocol is to configure and control the power
transfer. However, the Extended Protocol also supports data transport streams, which can pass
high-level messages (often unrelated to the power transfer) between the Power Transmitter and
Power Receiver. Examples of such messages include the authentication messages that the Power
Transmitter and Power Receiver can use to verify each other's credentials in a tamper-resistant
manner.
NOTE: The goal of authentication is to ensure that the Power Transmitter and/or the Power Receiver have
passed independent tests certifying safe operation.
A Power Receiver to Power Transmitter data transport stream consists of a sequence of simple-
query data packets, with the payloads of these data packets carrying the high-level message data.
The Power Receiver can initiate a data transport stream at any time in the power transfer phase.
Conversely, when a Power Transmitter has a high-level message to send to the Power
Receiver—and has ensured that the latter can process that message—it can draw the Power
Receiver's attention by responding with an ATN Response Pattern to an incoming simple-query
data packet in the power transfer phase. This signals the Power Receiver to transmit a series of
data-request data packets enabling the Power Transmitter to send a data transport stream.

- 22 - IEC 63563-6:2025 © IEC 2025
2.5 Backward compatibility
Table 10 summarizes the key differences between previous versions and version 1.3 of the
QiSpecification,CommunicationsProtocol(this document), other than those associated with the
new data transport stream and authentication functionalities. Power Transmitters and Power
Receivers should examine their counterpart’s version number to handle these differences
appropriately.
NOTE: Prior to version 1.3, the definition of the communications protocol was contained in section 5 of the Qi
WirelessPowerTransferSystem,PowerClass0Specification,Parts1and2,InterfaceDefinitions.
Table 10: Backward compatibility
Version Backward compatibility notes
1.0.x Baseline Protocol differences to version 1.3
ƒ The value contained in an RP8 data packet represents a rectified power level rather than a
Received Power level.
1.1.x —
1.2.x No Baseline Protocol differences to version 1.3
Extended Protocol differences to version 1.3
ƒ A Power Transmitter does not support a defined delay between the removal of the Power
Signal and the next Digital Ping
ƒ A Power Transmitter does not support a Power Receiver aborting the negotiation phase and
proceeding to the power transfer phase of the baseline protocol
ƒ A Power Transmitter do
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...

IEC 63563-6:2025 표준은 Power Transmitter와 Power Receiver 간의 메시징을 정의하며, 주요 목적은 전력 전송의 설정 및 제어입니다. 이 표준의 범위는 전력 전송의 안전하고 효과적인 운영을 위한 필수적인 기반을 제공하며, 전력 제어 프로토콜의 구조 및 절차를 명확히 합니다. IEC 63563-6:2025의 주요 강점 중 하나는 메시지의 순서와 타이밍 관계를 규정함으로써 시스템의 신뢰성과 일관성을 보장하는 것입니다. 이러한 측면은 특히 복잡한 전력 시스템에서 중요한 역할을 하며, 전송 효율성을 높이는 데 기여합니다. 또한, 이 표준은 인증과 같은 상위 수준의 응용 프로그램을 위한 전송 메커니즘을 제공하여 응용 프로그램과 전력 전송 장치 간의 통합을 촉진합니다. 이 표준은 최신 기술 트렌드와 사용자의 요구를 반영하고 있어, 전력 전송 기술의 발전에 발맞추어 나가는 데 매우 중요합니다. 특히, IEC 63563-6:2025는 다양한 산업 응용 분야에 더욱 통합되고 유연한 솔루션을 제공할 수 있는 토대를 마련하며, 궁극적으로는 안전하고 효율적인 에너지 관리 시스템을 촉진하는 데 기여합니다.

IEC 63563-6:2025は、Qi Specification version 2.0の一部として、Power TransmitterとPower Receiver間のメッセージングを定義しています。この標準は、電力転送を設定・制御するための主要な目的を持ち、さらに認証などの高レベルアプリケーションのための輸送メカニズムも提供します。 この標準の大きな強みは、メッセージの必要な順序およびタイミング関係を明確に規定している点です。これにより、異なるデバイス間での相互運用性が確保され、円滑なコミュニケーションが実現します。また、通信プロトコルの定義は、システム全体のパフォーマンスを向上させるために不可欠です。 IEC 63563-6:2025は、特に急速に成長する電力ワイヤレス伝送技術において、その関連性が高いです。この規格に準拠することで、メーカーは製品の信頼性と安全性を向上させることができます。また、認証機能の涵養により、ユーザーはより安心してデバイスを利用することが可能になります。 総じて、IEC 63563-6:2025は、パワートランスミッターとパワーレシーバー間の効果的なコミュニケーションを実現するための必須の基準であり、将来的なアプリケーション開発にも豊かな可能性を秘めています。この標準は、ユーザーが求める機能およびセキュリティを確保するための重要な要素となるでしょう。

IEC 63563-6:2025 is a critical standard in the realm of wireless power transfer, specifically focusing on the Qi Specification version 2.0 - Part 6: Communications Protocol. This standard delineates the framework for messaging between a Power Transmitter and a Power Receiver, ensuring the efficient setup and control of power transfer processes. The clarity it provides in defining the communication pathway is vitally relevant in today's technology-driven world, where seamless operation is paramount. One of the major strengths of IEC 63563-6:2025 is its dual-purpose approach. Not only does it establish the core messaging required for power transfer operations, but it also accommodates higher-level applications, including Authentication. This flexibility makes it a robust resource for developers and manufacturers looking to implement advanced features alongside basic power transfer capabilities. Moreover, the standard’s focus on the required order and timing relations of messages enhances the reliability of communication between devices. This aspect is particularly crucial in preventing communication errors which can lead to inefficient power transfer or device malfunction. By standardizing these elements, IEC 63563-6:2025 provides a solid foundation for manufacturers to create compatible and reliable devices, thereby fostering innovation in wireless charging technologies. In conclusion, IEC 63563-6:2025 stands out as a pivotal document that not only details the operational aspects of power transfer but also encourages further development in wireless technology applications. Its thoroughness and clarity make it an indispensable guide for stakeholders in the industry, ensuring that the evolution of communications protocols in power transfer systems remains cohesive and efficient.

La norme IEC 63563-6:2025, intitulée "Qi Specification version 2.0 - Part 6: Communications Protocol", définit les exigences en matière de messagerie entre un émetteur de puissance et un récepteur de puissance. Son champ d'application est fondamental pour établir et contrôler le transfert de puissance, ce qui est essentiel pour garantir l'efficacité et la fiabilité des systèmes de charge sans fil. Un des points forts majeurs de cette norme est son approche structurée concernant les relations d'ordre et les délais des messages successifs. Cela permet une synchronisation précise entre l'émetteur et le récepteur, minimisant ainsi les risques d'erreur et optimisant la performance du transfert. En parallèle, la norme introduit également un mécanisme de transport pour des applications de niveau supérieur, telles que l'authentification, renforçant ainsi la sécurité du processus de charge. La pertinence de la norme IEC 63563-6:2025 réside dans son application croissante dans le secteur des technologies de recharge sans fil. En fournissant des directives claires sur le protocole de communication, elle favorise l'interopérabilité entre différents appareils et fabricants, ce qui est crucial pour l'adoption généralisée de la technologie Qi. En somme, cette norme se distingue par sa vision complète et son attention aux détails techniques, la rendant indispensable dans l'évolution des systèmes de charge sans fil.

Die Norm IEC 63563-6:2025, bekannt als Qi-Spezifikation Version 2.0 - Teil 6: Kommunikationsprotokoll, stellt eine grundlegende Richtlinie für die Kommunikation zwischen einem Power Transmitter und einem Power Receiver dar. Der Umfang dieser Norm umfasst die Definition der Nachrichten, die für die Einrichtung und Kontrolle des Energieübertragungsprozesses erforderlich sind. Diese klare Fokussierung auf die Interaktion zwischen den Geräten garantiert eine effiziente und zuverlässige Übertragung von Energie. Besonders hervorzuheben ist, dass die Norm nicht nur die erforderlichen Abläufe für die Energieübertragung berücksichtigt, sondern auch einen Transportmechanismus für höherstufige Anwendungen wie die Authentifizierung bereitstellt. Dies zeigt die Stärke der Norm in Sachen Vielseitigkeit und Integration, da sie sowohl die grundlegenden Funktionen der Energieübertragung als auch mögliche Erweiterungen für zusätzliche Anwendungen abdeckt. Ein weiterer bedeutender Aspekt der IEC 63563-6:2025 ist die Präzision in den zeitlichen und sequenziellen Beziehungen der Nachrichten. Diese Anforderungen sind entscheidend, um eine reibungslose Kommunikation zwischen den Geräten zu gewährleisten, was insbesondere in hochgradig technologisierten Anwendungen von Bedeutung ist. Die Relevanz dieser Norm ist unbestreitbar, da sie nicht nur aktuelle technische Anforderungen berücksichtigt, sondern auch zukunftsorientierte Lösungen bietet, die den wachsenden Ansprüchen an wireless Energieübertragung gerecht werden. Die IEC 63563-6:2025 stellt somit einen wichtigen Standard dar, der die Grundlage für die Weiterentwicklung von drahtlosen Stromübertragungssystemen bildet und erheblich zur Verbesserung der Benutzererfahrung beiträgt.