Explosives for civil uses - High explosives - Part 15: Calculation of thermodynamic properties

This European Standard specifies a method to calculate the detonation characteristics at the constant-volume explosion state and some parameters derived thereof.

Explosivstoffe für zivile Zwecke - Sprengstoffe - Teil 15: Berechnung der thermodynamischen Eigenschaften

Diese Europäische Norm legt ein Verfahren zur Berechnung der Detonationskennwerte für den
Explosionszustand mit konstantem Volumen und einiger davon abgeleiteter Parameter fest.

Explosifs à usage civil - Explosifs - Partie 15 : Calcul des propriétés thermodynamiques

La présente Norme européenne décrit une méthode de calcul des caractéristiques de la détonation pour l'état d'explosion à volume constant et de certains paramètres dérivés.

Eksplozivi za civilno uporabo - Razstreliva -15. del: Izračun termodinamičnih lastnosti

General Information

Status
Published
Publication Date
10-May-2005
Withdrawal Date
29-Nov-2005
Current Stage
9093 - Decision to confirm - Review Enquiry
Completion Date
12-Oct-2023

Buy Standard

Standard
EN 13631-15:2005
English language
21 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)


2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.Explosives for civil uses - High explosives - Part 15: Calculation of thermodynamic propertiesPRGLQDPLþQLKODVWQRVWLExplosifs a usage civil - Explosifs - Partie 15 : Calcul des propriétés thermodynamiquesExplosivstoffe für zivile Zwecke - Sprengstoffe - Teil 15: Berechnung der thermodynamischen EigenschaftenTa slovenski standard je istoveten z:EN 13631-15:2005SIST EN 13631-15:2005en71.100.30ICS:SLOVENSKI
STANDARDSIST EN 13631-15:200501-julij-2005

EUROPEAN STANDARDNORME EUROPÉENNEEUROPÄISCHE NORMEN 13631-15May 2005ICS 71.100.30English versionExplosives for civil uses - High explosives - Part 15: Calculationof thermodynamic propertiesExplosifs à usage civil - Explosifs - Partie 15 : Calcul despropriétés thermodynamiquesExplosivstoffe für zivile Zwecke - Sprengstoffe - Teil 15:Berechnung der thermodynamischen EigenschaftenThis European Standard was approved by CEN on 21 March 2005.CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the Central Secretariat or to any CEN member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the officialversions.CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia,Slovenia, Spain, Sweden, Switzerland and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMITÉ EUROPÉEN DE NORMALISATIONEUROPÄISCHES KOMITEE FÜR NORMUNGManagement Centre: rue de Stassart, 36
B-1050 Brussels© 2005 CENAll rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN 13631-15:2005: E

Sample calculations.16 Annex ZA (informative)
Clauses of this European Standard addressing essential requirements or other provisions of EU Directives.20 Bibliography.21

Thermodynamic Data and Functions 4.1.1 General The thermodynamic properties needed relate to both explosive components and detonation products. 4.1.2 Explosive components For each component the following data are required: - Molecular or empirical formula.

Table 1 - Explosives components Name Abbreviation Molecular or empirical formula 298fE∆ kJ/kg ReferenceAluminium Al Al 0
Ammonium chloride
ClH4N –5 739 Meyer Ammonium nitrate AN H4N2O3 –4 428 Meyer Ammonium perchlorate AP ClH4NO4 –2 412 Meyer Calcium carbonate
CCaO3 –12 022 Meyer Calcium nitrate
CaN2O6 –5 657 Meyer Calcium stearate
C36H70CaO4 –4 416 Meyer Carbon, Graphite
C 0
Cellulose
C6H10O5 –5 670 USAMC Dinitrotoluene 2,4 DNT 2,4C7H6N2O4 –292,8 Meyer Dinitrotoluene 2,6 DNT 2,6C7H6N2O4 –159,5 Meyer Ethylene diamine dinitrate EDDN C2H10N4O6 –3 378 Meyer Glycol
C2H6O2 –7 177 Meyer Guar gum
C37,26H55,89O31,05 –6 900 Meyer Hexanitrostilbene HNS C14H6N6O12 239,8 Meyer Hexogene, Cyclonite RDX C3H6N6O6 401,8 Meyer Methylamine nitrate MAN CH6N2O3 –3 604 Meyer Nitrocellulose 11,5 % N NC11,5C6000H7890N2111O9222 –2 793 Meyer Nitrocellulose 12,0 % N NC12,0C6000H7739N2261O9520 –2 663 Meyer Nitrocellulose 12,5 % N NC12,5C6000H7579N2416O9833 –2 534 Meyer Nitroglycerine NG C3H5N3O9 –1 540 Meyer Nitroglycol EGDN C2H4N2O6 –1 499 Meyer

C16H34 -1 828 Lide Paraffin, solid; wax
C71H148 –2 094 Meyer Pentaerithrytol tetranitrate PETN C5H8N4O12 –1 611 Meyer Polyisobutylene PIB CH2 –1 386 Meyer Potassium chlorate
ClKO3 –3 205 Lide Potassium nitrate
KNO3 –4 841 Meyer Potassium sulfate
K2O4S –8 222 Lide Sodium chlorate
ClNaO3 –3 390 Lide Sodium chloride
ClNa –7 013 Chase Sodium nitrate
NNaO3 –5 447 Meyer Sodium perchlorate
ClNaO4 –3 080 Lide Trinitrophenil methyl nitramine Tetryl C7H5N5O8 147,6 Meyer Trinitrotoluene TNT C7H5N3O6 –219,0 Meyer Urea
CH4N2O –5 403 Meyer Water (liquid)
H2O –15 660 Chase Wood dust, plant meal
C41,7H60,4O27,4 –4 564 Meyer NOTE References are listed in the Bibliography. In many cases, internal energies of formation have been worked out from enthalpy of formation values.
4.1.3 Detonation products Detonation calculations require, in all cases, the following knowledge on detonation products: - Formula. - Internal energy or enthalpy of formation at a reference temperature, e.g. 298 K (∆Ef 298, ∆Hf298); Table 2 shows these data for some detonation products. Data for other products may be obtained elsewhere. In this case, values used and the source should be reported.

Carbon dioxide CO2 –393,8 –393,8 Meyer Carbon monoxide CO –111,9 –110,6 Meyer Chlorine Cl2 0 0
Hydrogen H2 0 0
Hydrogen chloride ClH –92,4 –92,4 Meyer Iron (III) oxide (s) Fe2O3 (s) –821,8 –825,5 Chase Magnesium oxide (g) MgO (g) 56,9 58,2 Chase Magnesium oxide (l) MgO (l) –531,4 –532,6 Chase Magnesium oxide (s) MgO (s) –600,0 –601,2 Chase Methane CH4 –72,4 –74,9 Chase Nitrogen N2 0 0
Nitrogen monoxide NO 90,3 90,3 Meyer Oxygen O2 0 0
Potassium carbonate (l) CK2O3 (l) –1 127 –1 131 Chase Potassium carbonate (s) CK2O3 (s) –1 146 –1 150 Chase Potassium chloride (g) ClK (g) –215,9 –214,7 Chase Potassium chloride (l) ClK (l) –420,6 –421,8 Chase Potassium chloride (s) ClK (s) –435,4 –436,7 Chase Silicon dioxide (l) O2Si (l) –900,2 –902,7 Chase

NOTE 1 (g), (l) and (s) indicate gaseous, liquid and solid state respectively. Where no state is indicated, data are for the gas. NOTE 2 References are listed in the Bibliography. In many cases, internal energies of formation have been worked out from enthalpy of formation values.
- Internal energy or enthalpy as a function of temperature1. As a minimum, the detonation products listed in Table 2 should be considered, as required, depending on the composition elements. Others may also be included. The detonation products used should be reported. For the calculation of the equilibrium composition by means of minimization of the free energy of the products, the following is also required to build a chemical potential: - Entropy constant, or entropy at one temperature. With these basic data, the following ideal thermodynamic functions can be formed; reference state is taken that of the elements in their stable state at 298 K and atmospheric pressure: Internal energy For gases, )T()HH(E)EE(E)T(EiTfiiTfii298R298298298298−−−+=−+=∆∆ T being absolute temperature. For condensed species, iTfiiHHHTE)()(298298−+∆= Chemical potential:
1 These can be obtained from Chase (1998), Meyer et al. (2002) and other sources. Polynomial fits are customarily used. The source of the data used should be reported. iiTfioiTS)HH(H)T(−−+=298298∆µ

Equations of state 4.2.1 Gases A suitable equation of state (EOS) for the detonation products is required to calculate the thermodynamic functions. The following EOS can be used: - BKW - H9
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.