EN 485-2:2016+A1:2018
(Main)Aluminium and aluminium alloys - Sheet, strip and plate - Part 2: Mechanical properties
Aluminium and aluminium alloys - Sheet, strip and plate - Part 2: Mechanical properties
This European Standard specifies the mechanical properties of wrought aluminium and wrought aluminium alloy sheet, strip and plate for general engineering applications.
It does not apply to semi-finished rolled products in coiled form to be subjected to further rolling (reroll stock) or to special products such as corrugated, embossed, painted, sheets and strips or to special applications such as aerospace, can stock, finstock, for which mechanical properties are specified in separate European Standards.
The chemical composition limits of the alloys are specified in EN 573 3. Temper designations are defined in EN 515.
Aluminium und Aluminiumlegierungen - Bänder, Bleche und Platten - Teil 2: Mechanische Eigenschaften
Aluminium et alliages d'aluminium - Tôles, bandes et tôles épaisses - Partie 2: Caractéristiques mécaniques
La présente Norme européenne spécifie les caractéristiques mécaniques des tôles, bandes et tôles épaisses en aluminium corroyé et alliages d’aluminium corroyés pour applications courantes.
Elle ne s’applique pas aux demi-produits laminés, livrés en bobines, destinés à être relaminés (ébauches de relaminage), ni aux produits spéciaux, tels que les tôles et bandes ondulées, gravées, laquées, etc., ni aux applications spéciales, telles que la construction aéronautique, le boîtage et les échangeurs thermiques, pour lesquels les caractéristiques mécaniques sont spécifiées dans des Normes européennes séparées.
Les limites de composition chimique des alliages sont spécifiées dans l’EN 573-3. Les désignations des états métallurgiques sont définies sont définies dans l'EN 515.
Aluminij in aluminijeve zlitine - Pločevina, trakovi in plošče - 2. del: Mehanske lastnosti
Ta evropski standard določa mehanske lastnosti pločevin, trakov in plošč iz gnetenega aluminija in aluminijeve zlitine za splošno tehnično uporabo.
Ne uporablja se za valjane polizdelke v zviti obliki, ki bodo dalje valjani (material za ponovno valjanje) ali za posebne izdelke, kot so valovite, reliefne, barvane pločevine in trakovi, ali za posebne uporabe, npr. v aeronavtiki, za izdelavo pločevink in folij, za katere so mehanske lastnosti opredeljene v ločenih evropskih standardih.
Omejitve kemijske sestave zlitin so podane v standardu EN 573 3. Oznake za popuščanje so opredeljene v standardu EN 515.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-december-2018
1DGRPHãþD
SIST EN 485-2:2016
$OXPLQLMLQDOXPLQLMHYH]OLWLQH3ORþHYLQDWUDNRYLLQSORãþHGHO0HKDQVNH
ODVWQRVWL
Aluminium and aluminium alloys - Sheet, strip and plate - Part 2: Mechanical properties
Aluminium und Aluminiumlegierungen - Bänder, Bleche und Platten - Teil 2:
Mechanische Eigenschaften
Aluminium et alliages d'aluminium - Tôles, bandes et tôles épaisses - Partie 2:
Caractéristiques mécaniques
Ta slovenski standard je istoveten z: EN 485-2:2016+A1:2018
ICS:
77.150.10 Aluminijski izdelki Aluminium products
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 485-2:2016+A1
EUROPEAN STANDARD
NORME EUROPÉENNE
October 2018
EUROPÄISCHE NORM
ICS 77.150.10 Supersedes EN 485-2:2016
English Version
Aluminium and aluminium alloys - Sheet, strip and plate -
Part 2: Mechanical properties
Aluminium et alliages d'aluminium - Tôles, bandes et Aluminium und Aluminiumlegierungen - Bänder,
tôles épaisses - Partie 2: Caractéristiques mécaniques Bleche und Platten - Teil 2: Mechanische Eigenschaften
This European Standard was approved by CEN on 12 June 2016 and includes Amendment 1 approved by CEN on 25 July 2018.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2018 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 485-2:2016+A1:2018 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Requirements . 4
4 List of alloys with mechanical property limits . 4
4.1 General . 4
4.2 Elongation . 4
4.3 List of alloys and their mechanical properties . 5
Annex A (normative) Rules for rounding . 96
Bibliography . 97
European foreword
This document (EN 485-2:2016+A1:2018) has been prepared by Technical Committee CEN/TC 132
“Aluminium and aluminium alloys”, the secretariat of which is held by AFNOR.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by April 2019, and conflicting national standards shall be
withdrawn at the latest by April 2019.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document includes Amendment 1 approved by CEN on 2018-07-25.
This document supersedes !EN 485-2:2016".
The start and finish of text introduced or altered by amendment is indicated in the text by tags !".
CEN/TC 132 affirms it is policy that in the case when a patentee refuses to grant licences on
standardized standard products under reasonable and not discriminatory condition, then this product
should be removed from the corresponding document.
Details of any patents rights identified during the development of this document will be in the CEN list
of patent declaration received (see
http://www.cencenelec.eu/ipr/Patents/PatentDeclaration/Pages/default.aspx).
!deleted text"
EN 485 comprises the following parts under the general title, “Aluminium and aluminium alloys — Sheet,
strip and plate”:
— Part 1: Technical conditions for inspection and delivery
— Part 2: Mechanical properties
— Part 3: Tolerances on dimensions and form for hot-rolled products
— Part 4: Tolerances on shape and dimensions for cold-rolled products
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
1 Scope
This European Standard specifies the mechanical properties of wrought aluminium and wrought
aluminium alloy sheet, strip and plate for general engineering applications.
It does not apply to semi-finished rolled products in coiled form to be subjected to further rolling (reroll
stock) or to special products such as corrugated, embossed, painted, sheets and strips or to special
applications such as aerospace, can stock, finstock, for which mechanical properties are specified in
separate European Standards.
The chemical composition limits of the alloys are specified in EN 573-3. Temper designations are
defined in EN 515.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
EN 13195, Aluminium and aluminium alloys — Specifications for wrought and cast products for marine
applications (shipbuilding, marine and offshore)
ASTM G66, Standard Test Method for Visual Assessment of Exfoliation Corrosion Susceptibility of 5xxx
Series Aluminium Alloys (ASSET Test)
ASTM G67, Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5xxx
Series Aluminium Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test)
3 Requirements
The mechanical properties shall be in conformity with those specified in Clause 4 or those agreed upon
between supplier and purchaser and stated on the order document.
4 List of alloys with mechanical property limits
4.1 General
Table 1 to Table 54 contain mechanical property limits values obtained by tensile testing according to
EN ISO 6892-1 after sampling and after sample preparation according to EN 485-1.
They also contain values of bend radius and hardness following sampling and test methods as described
in EN 485-1. These values are for information only.
For some alloys they contain provisions related to inter-granular corrosion, exfoliation corrosion or
stress corrosion testing, see also EN 485-1.
4.2 Elongation
The A value is the elongation measured over a gauge length of 50 mm and expressed in percent.
50mm
The A value for elongation is the elongation measured over a gauge length of 5,65 (where S is the
S o
o
initial cross-sectional area of the test-piece), and expressed in percent.
4.3 List of alloys and their mechanical properties
Page
Table 1 — Aluminium EN AW-1050A [Al 99,5] 8
Table 2 — Aluminium EN AW-1070A [Al 99,7] 10
Table 3 — Aluminium EN AW-1080A [Al 99,8(A)] 12
Table 4 — Aluminium EN AW-1200 [Al 99,0] 14
Table 5 — Aluminium EN AW-1350 [Al 99,5] 16
Table 6 — Alloy EN AW-2014 [Al Cu4SiMg] 18
Table 7 — Alloy EN AW-2014A [Al Cu4SiMg(A)] 20
Table 8 — Alloy EN AW-2017A [Al Cu4MgSi(A)] 22
Table 9 — Alloy EN AW-2024 [Al Cu4Mg1] 24
Table 10 — Alloy EN AW-2618A [Al Cu2Mg1,5Ni] 25
Table 11 — Alloy EN AW-3003 [Al Mn1Cu] 26
Table 12 — Alloy EN AW-3004 [Al Mn1Mg1] 28
Table 13 — Alloy EN AW-3005 [Al Mn1Mg0,5] 30
Table 14 — Alloy EN AW-3103 [Al Mn1] 32
Table 15 — Alloy EN AW-3105 [Al Mn0,5Mg0,5] 34
Table 16 — Alloy EN AW-4006 [Al Si1Fe] 35
Table 17 — Alloy EN AW-4007 [Al Si1,5Mn] 36
Table 18 — Alloy EN AW-4015 [Al Si2Mn] 37
Table 19 — Alloy EN AW-4115 [Al Si2MnMgCu] 37
Table 20 — Alloy EN AW-5005 [Al Mg1(B)] Alloy EN AW-5005A [Al 38
Mg1(C)]
Table 21 — Alloy EN AW-5010 [AlMg 0,5Mn] 41
Table 22 — Alloy EN AW-5026 [AI Mg4,5 MnSiFe] 43
Table 23 — Alloy EN AW-5040 [Al Mg1,5Mn] 43
Table 24 — Alloy EN AW-5042 [AlMg 3,5 Mn] 44
Table 25 — Alloy EN AW-5049 [Al Mg2Mn0,8] 45
Table 26 — Alloy EN AW-5050 [Al Mg1,5(C)] 48
Table 27 — Alloy EN AW-5052 [Al Mg2,5] 50
Table 28 — Alloy EN AW-5059 [Al Mg5,5MnZnZr] 53
Table 29 — Alloy EN AW-5070 [Al Mg4MnZn] 54
Table 30 — Alloy EN AW-5083 [Al Mg4,5Mn0,7] 54
Table 31 — Alloy EN AW-5086 [Al Mg4] 57
Table 32 — Alloy EN AW-5088 [AlMg5Mn0,4] 60
Table 33 — Alloy EN AW-5154A [Al Mg3,5(A)] 61
Table 34 — Alloy EN AW-5182 [Al Mg4,5Mn0,4] 63
Table 35 — Alloy EN AW-5251 [Al Mg2Mn0,3] 64
Table 36 — Alloy EN AW-5383 [Al Mg4,5Mn0,9] 66
Table 37 — Alloy EN AW-5449 [Al Mg2Mn0,8(B)] !69"
Table 38 — Alloy EN AW-5449A [Al Mg2Mn0,8(C)] 69
Table 39 — Alloy EN AW-5454 [Al Mg3Mn] 70
Table 40 — Alloy EN AW-5456 [Al Mg5Mn1] 73
Table 41 — Alloy EN AW-5657 [Al 99,85Mg 1] 74
Table 42 — Alloy EN AW-5754 [Al Mg3] 74
Table 43 — Alloy EN AW-6016 [Al Si1,2Mg0,4] 77
Table 44 — Alloy EN AW-6025 [Al Mg2,5SiMnCu] 77
Table 45 – Alloy EN AW-6056 [Al Si1MgCuMn] 78
Table 46 — Alloy EN AW-6061 [Al Mg1SiCu] 79
Table 47 — Alloy EN AW-6082 [Al Si1MgMn] 81
Table 48 — Alloy EN AW-7010 [Al Zn6MgCu] 85
Table 49 — Alloy EN AW-7019 [Al Zn4Mg2] 88
Table 50 — Alloy EN AW-7020 [Al Zn4,5Mg1] 89
Table 51 — Alloy EN AW-7021 [Al Zn5,5Mg1,5] 91
Table 52 — Alloy EN AW-7022 [Al Zn5Mg3Cu] 91
Table 53 — Alloy EN AW-7075 [Al Zn5,5MgCu] 92
Table 54 — Alloy EN AW-8011A [Al FeSi(A)] 95
Table 1 — Aluminium EN AW-1050A [Al 99,5]
Temper Specified Tensile Yield Elongation Bend Hardn
a
thickness strength strength a ess
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
50 mm
a ≥ 2,5 150,0 60
F
O 0,2 0,5 65 95 20 20 0 t 0 t 20
0,5 1,5 65 95 20 22 0 t 0 t 20
1,5 3,0 65 95 20 26 0 t 0 t 20
3,0 6,0 65 95 20 29 0,5 t 0,5 t 20
6,0 12,5 65 95 20 35 1,0 t 1,0 t 20
12,5 80,0 65 95 20 32 20
H111 0,2 0,5 65 95 20 20 0 t 0 t 20
0,5 1,5 65 95 20 22 0 t 0 t 20
1,5 3,0 65 95 20 26 0 t 0 t 20
3,0 6,0 65 95 20 29 0,5 t 0,5 t 20
6,0 12,5 65 95 20 35 1,0 t 1,0 t 20
12,5 80,0 65 95 20 32 20
H112 ≥ 6,0 12,5 75 30 20 23
12,5 80,0 70 25 20 22
H12 0,2 0,5 85 125 65 2 0,5 t 0 t 28
0,5 1,5 85 125 65 4 0,5 t 0 t 28
1,5 3,0 85 125 65 5 0,5 t 0,5 t 28
3,0 6,0 85 125 65 7 1,0 t 1,0 t 28
6,0 12,5 85 125 65 9 2,0 t 28
12,5 40,0 85 125 65 9 28
H14 0,2 0,5 105 145 85 2 1,0 t 0 t 34
0,5 1,5 105 145 85 2 1,0 t 0,5 t 34
1,5 3,0 105 145 85 4 1,0 t 1,0 t 34
3,0 6,0 105 145 85 5 1,5 t 34
6,0 12,5 105 145 85 6 2,5 t 34
12,5 25,0 105 145 85 6 34
H16 0,2 0,5 120 160 100 1 0,5 t 39
0,5 1,5 120 160 100 2 1,0 t 39
Temper Specified Tensile Yield Elongation Bend Hardn
a
thickness strength strength a ess
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
50 mm
1,5 4,0 120 160 100 3 1,5 t 39
H18 0,2 0,5 135 120 1 1,0 t 42
0,5 1,5 140 120 2 2,0 t 42
1,5 3,0 140 120 2 3,0 t 42
H19 0,2 0,5 155 140 1 45
0,5 1,5 150 130 1 45
1,5 3,0 150 130 1 45
H22 0,2 0,5 85 125 55 4 0,5 t 0 t 27
0,5 1,5 85 125 55 5 0,5 t 0 t 27
1,5 3,0 85 125 55 6 0,5 t 0,5 t 27
3,0 6,0 85 125 55 11 1,0 t 1,0 t 27
6,0 12,5 85 125 55 12 2,0 t 27
H24 0,2 0,5 105 145 75 3 1,0 t 0 t 33
0,5 1,5 105 145 75 4 1,0 t 0,5 t 33
1,5 3,0 105 145 75 5 1,0 t 1,0 t 33
3,0 6,0 105 145 75 8 1,5 t 1,5 t 33
6,0 12,5 105 145 75 8 2,5 t 33
H26 0,2 0,5 120 160 90 2 0,5 t 38
0,5 1,5 120 160 90 3 1,0 t 38
1,5 4,0 120 160 90 4 1,5 t 38
H28 0,2 0,5 140 110 2 1,0 t 41
0,5 1,5 140 110 2 2,0 t 41
1,5 3,0 140 110 3 3,0 t 41
a
For information only.
Table 2 — Aluminium EN AW-1070A [Al 99,7]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 25,0 60
F
O 0,2 0,5 60 90 15 23 0 t 0 t 18
0,5 1,5 60 90 15 25 0 t 0 t 18
1,5 3,0 60 90 15 29 0 t 0 t 18
3,0 6,0 60 90 15 32 0,5 t 0,5 t 18
6,0 12,5 60 90 15 35 0,5 t 0,5 t 18
12,5 25,0 60 90 15 32 18
H111 0,2 0,5 60 90 15 23 0 t 0 t 18
0,5 1,5 60 90 15 25 0 t 0 t 18
1,5 3,0 60 90 15 29 0 t 0 t 18
3,0 6,0 60 90 15 32 0,5 t 0,5 t 18
6,0 12,5 60 90 15 35 0,5 t 0,5 t 18
12,5 25,0 60 90 15 32 18
H112 ≥ 6,0 12,5 70 20 20
12,5 25,0 70 20
H12 0,2 0,5 80 120 55 5 0,5 t 0 t 26
0,5 1,5 80 120 55 6 0,5 t 0 t 26
1,5 3,0 80 120 55 7 0,5 t 0,5 t 26
3,0 6,0 80 120 55 9 1,0 t 26
6,0 12,5 80 120 55 12 2,0 t 26
H14 0,2 0,5 100 140 70 4 0,5 t 0 t 32
0,5 1,5 100 140 70 4 0,5 t 0,5 t 32
1,5 3,0 100 140 70 5 1,0 t 1,0 t 32
3,0 6,0 100 140 70 6 1,5 t 32
6,0 12,5 100 140 70 7 2,5 t 32
H16 0,2 0,5 110 150 90 2 1,0 t 0,5 t 36
0,5 1,5 110 150 90 2 1,0 t 1,0 t 36
1,5 4,0 110 150 90 3 1,0 t 1,0 t 36
H18 0,2 0,5 125 105 2 1,0 t 40
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
0,5 1,5 125 105 2 2,0 t 40
1,5 3,0 125 105 2 2,5 t 40
H22 0,2 0,5 80 120 50 7 0,5 t 0 t 26
0,5 1,5 80 120 50 8 0,5 t 0 t 26
1,5 3,0 80 120 50 10 0,5 t 0,5 t 26
3,0 6,0 80 120 50 12 1,0 t 26
6,0 12,5 80 120 50 15 2,0 t 26
H24 0,2 0,5 100 140 60 5 0,5 t 0 t 31
0,5 1,5 100 140 60 6 0,5 t 0,5 t 31
1,5 3,0 100 140 60 7 1,0 t 1,0 t 31
3,0 6,0 100 140 60 9 1,5 t 31
6,0 12,5 100 140 60 11 2,5 t 31
H26 0,2 0,5 110 150 80 3 0,5 t 35
0,5 1,5 110 150 80 3 1,0 t 35
1,5 4,0 110 150 80 4 1,0 t 35
a
For information only.
Table 3 — Aluminium EN AW-1080A [Al 99,8(A)]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 25,0 60
F
O 0,2 0,5 60 90 15 26 0 t 0 t 18
0,5 1,5 60 90 15 28 0 t 0 t 18
1,5 3,0 60 90 15 31 0 t 0 t 18
3,0 6,0 60 90 15 35 0,5 t 0,5 t 18
6,0 12,5 60 90 15 35 0,5 t 0,5 t 18
H111 0,2 0,5 60 90 15 26 0 t 0 t 18
0,5 1,5 60 90 15 28 0 t 0 t 18
1,5 3,0 60 90 15 31 0 t 0 t 18
3,0 6,0 60 90 15 35 0,5 t 0,5 t 18
6,0 12,5 60 90 15 35 0,5 t 0,5 t 18
H112 ≥ 6,0 12,5 70 20
12,5 25,0 70 20
H12 0,2 0,5 80 120 55 5 0,5 t 0 t 26
0,5 1,5 80 120 55 6 0,5 t 0 t 26
1,5 3,0 80 120 55 7 0,5 t 0,5 t 26
3,0 6,0 80 120 55 9 1,0 t 26
6,0 12,5 80 120 55 12 2,0 t 26
H14 0,2 0,5 100 140 70 4 0,5 t 0 t 32
0,5 1,5 100 140 70 4 0,5 t 0,5 t 32
1,5 3,0 100 140 70 5 1,0 t 1,0 t 32
3,0 6,0 100 140 70 6 1,5 t 32
6,0 12,5 100 140 70 7 2,5 t 32
H16 0,2 0,5 110 150 90 2 1,0 t 0,5 t 36
0,5 1,5 110 150 90 2 1,0 t 1,0 t 36
1,5 4,0 110 150 90 3 1,0 t 1,0 t 36
H18 0,2 0,5 125 105 2 1,0 t 40
0,5 1,5 125 105 2 2,0 t 40
1,5 3,0 125 105 2 2,5 t 40
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H22 0,2 0,5 80 120 50 8 0,5 t 0 t 26
0,5 1,5 80 120 50 9 0,5 t 0 t 26
1,5 3,0 80 120 50 11 0,5 t 0,5 t 26
3,0 6,0 80 120 50 13 1,0 t 26
6,0 12,5 80 120 50 15 2,0 t 26
H24 0,2 0,5 100 140 60 5 0,5 t 0 t 31
0,5 1,5 100 140 60 6 0,5 t 0,5 t 31
1,5 3,0 100 140 60 7 1,0 t 1,0 t 31
3,0 6,0 100 140 60 9 1,5 t 31
6,0 12,5 100 140 60 11 2,5 t 31
H26 0,2 0,5 110 150 80 3 0,5 t 35
0,5 1,5 110 150 80 3 1,0 t 35
1,5 4,0 110 150 80 4 1,0 t 35
a
For information only.
Table 4 — Aluminium EN AW-1200 [Al 99,0]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 150,0 75
F
O 0,2 0,5 75 105 25 19 0 t 0 t 23
0,5 1,5 75 105 25 21 0 t 0 t 23
1,5 3,0 75 105 25 24 0 t 0 t 23
3,0 6,0 75 105 25 28 0,5 t 0,5 t 23
6,0 12,5 75 105 25 33 1,0 t 1,0 t 23
12,5 80,0 75 105 25 30 23
H111 0,2 0,5 75 105 25 19 0 t 0 t 23
0,5 1,5 75 105 25 21 0 t 0 t 23
1,5 3,0 75 105 25 24 0 t 0 t 23
3,0 6,0 75 105 25 28 0,5 t 0,5 t 23
6,0 12,5 75 105 25 33 1,0 t 1,0 t 23
12,5 80,0 75 105 25 30 23
H112 ≥ 6,0 12,5 85 35 16 26
12,5 80,0 80 30 16 24
H12 0,2 0,5 95 135 75 2 0,5 t 0 t 31
0,5 1,5 95 135 75 4 0,5 t 0 t 31
1,5 3,0 95 135 75 5 0,5 t 0,5 t 31
3,0 6,0 95 135 75 6 1,0 t 1,0 t 31
6,0 12,5 95 135 75 8 2,0 t 31
12,5 40,0 95 135 75 8 31
H14 0,2 0,5 105 155 95 1 1,0 t 0 t 37
0,5 1,5 115 155 95 3 1,0 t 0,5 t 37
1,5 3,0 115 155 95 4 1,0 t 1,0 t 37
3,0 6,0 115 155 95 5 1,5 t 1,5 t 37
6,0 12,5 115 155 90 6 2,5 t 37
12,5 25,0 115 155 90 6 37
H16 0,2 0,5 120 170 110 1 0,5 t 42
0,5 1,5 130 170 115 2 1,0 t 42
1,5 4,0 130 170 115 3 1,5 t 42
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H18 0,2 0,5 150 130 1 1,0 t 45
0,5 1,5 150 130 2 2,0 t 45
1,5 3,0 150 130 2 3,0 t 45
H19 0,2 0,5 160 140 1 48
0,5 1,5 160 140 1 48
1,5 3,0 160 140 1 48
H22 0,2 0,5 95 135 65 4 0,5 t 0 t 30
0,5 1,5 95 135 65 5 0,5 t 0 t 30
1,5 3,0 95 135 65 6 0,5 t 0,5 t 30
3,0 6,0 95 135 65 10 1,0 t 1,0 t 30
6,0 12,5 95 135 65 10 2,0 t 30
H24 0,2 0,5 115 155 90 3 1,0 t 0 t 37
0,5 1,5 115 155 90 4 1,0 t 0,5 t 37
1,5 3,0 115 155 90 5 1,0 t 1,0 t 37
3,0 6,0 115 155 90 7 1,5 t 37
6,0 12,5 115 155 85 9 2,5 t 36
H26 0,2 0,5 130 170 105 2 0,5 t 41
0,5 1,5 130 170 105 3 1,0 t 41
1,5 4,0 130 170 105 4 1,5 t 41
a
For information only.
Table 5 — Aluminium EN AW-1350 [Al 99,5]
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a
2,5 150,0 60
F
O 0,2 0,5 65 95 20 20 0 t 0 t 20
0,5 1,5 65 95 20 22 0 t 0 t 20
1,5 3,0 65 95 20 26 0 t 0 t 20
3,0 6,0 65 95 20 29 0,5 t 0,5 t 20
6,0 12,5 65 95 20 35 1,0 t 1,0 t 20
12,5 80,0 65 95 20 32 20
H111 0,2 0,5 65 95 20 20 0 t 0 t 20
0,5 1,5 65 95 20 22 0 t 0 t 20
1,5 3,0 65 95 20 26 0 t 0 t 20
3,0 6,0 65 95 20 29 0,5 t 0,5 t 20
6,0 12,5 65 95 20 35 1,0 t 1,0 t 20
12,5 80,0 65 95 20 32 20
H112 0,2 0,5 75 30 20 23
0,5 1,5 75 30 20 23
1,5 3,0 75 30 20 23
3,0 6,0 75 30 20 23
6,0 12,5 75 30 20 23
12,5 80,0 75 30 20 23
H12 0,2 0,5 85 125 65 2 0,5 t 0 t 28
0,5 1,5 85 125 65 4 0,5 t 0 t 28
1,5 3,0 85 125 65 5 0,5 t 0,5 t 28
3,0 6,0 85 125 65 7 1,0 t 1,0 t 28
6,0 12,5 85 125 65 9 2,0 t 28
12,5 40,0 85 125 65 9 28
H14 0,2 0,5 105 145 85 2 1,0 t 0 t 34
0,5 1,5 105 145 85 2 1,0 t 0,5 t 34
1,5 3,0 105 145 85 4 1,0 t 1,0 t 34
3,0 6,0 105 145 85 5 1,5 t 34
6,0 12,5 105 145 85 6 2,5 t 34
12,5 25,0 105 145 85 6 34
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H16 0,2 0,5 120 160 100 1 0,5 t 39
0,5 1,5 120 160 100 2 1,0 t 39
1,5 4,0 120 160 100 3 1,5 t 39
H18 0,2 0,5 140 120 1 1,0 t 42
0,5 1,5 140 120 2 2,0 t 42
1,5 3,0 140 120 2 3,0 t 42
H19 0,2 0,5 150 130 1 45
0,5 1,5 150 130 1 45
1,5 3,0 150 130 1 45
H22 0,2 0,5 85 125 55 4 0,5 t 0 t 27
0,5 1,5 85 125 55 5 0,5 t 0 t 27
1,5 3,0 85 125 55 6 0,5 t 0,5 t 27
3,0 6,0 85 125 55 11 1,0 t 1,0 t 27
6,0 12,5 85 125 55 12 2,0 t 27
H24 0,2 0,5 105 145 75 3 1,0 t 0 t 33
0,5 1,5 105 145 75 4 1,0 t 0,5 t 33
1,5 3,0 105 145 75 5 1,0 t 1,0 t 33
3,0 6,0 105 145 75 8 1,5 t 1,5 t 33
6,0 12,5 105 145 75 8 2,5 t 33
H26 0,2 0,5 120 160 90 2 0,5 t 38
0,5 1,5 120 160 90 3 1,0 t 38
1,5 4,0 120 160 90 4 1,5 t 38
H28 0,2 0,5 140 110 2 1,0 t 41
0,5 1,5 140 110 2 2,0 t 41
1,5 3,0 140 110 3 3,0 t 41
a
For information only.
Table 6 — Alloy EN AW-2014 [Al Cu4SiMg]
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A50 mm A 180° 90°
O ≥ 0,4 1,5 220 140 12 0,5 t 0 t 55
1,5 3,0 220 140 13 1,0 t 1,0 t 55
3,0 6,0 220 140 16 1,5 t 55
6,0 9,0 220 140 16 2,5 t 55
9,0 12,5 220 140 16 4,0 t 55
12,5 25,0 220 10 55
T3 ≥ 0,4 1,5 395 245 14 111
1,5 6,0 400 245 14 112
T4 ≥ 0,4 1,5 395 240 14 b b 110
3,0 t 3,0 t
1,5 6,0 395 240 14 b b 110
5,0 t 5,0 t
6,0 12,5 400 250 14 b 112
8,0 t
12,5 40,0 400 250 10 112
40,0 100,0 395 250 7 111
T451 ≥ 0,4 1,5 395 240 14 b b 110
3,0 t 3,0 t
1,5 6,0 395 240 14 b b 110
5,0 t 5,0 t
6,0 12,5 400 250 14 b 112
8,0 t
12,5 40,0 400 250 10 112
40,0 100,0 395 250 7 111
T42 ≥ 0,4 6,0 395 230 14 110
6,0 12,5 400 235 14 111
12,5 25,0 400 235 12 111
T6 ≥ 0,4 1,5 440 390 6 b 133
5,0 t
1,5 6,0 440 390 7 b 133
7,0 t
6,0 12,5 450 395 7 b 135
10 t
12,5 40,0 460 400 6 138
40,0 60,0 450 390 5 135
60,0 80,0 435 380 4 131
80,0 100,0 420 360 4 126
100,0 125,0 410 350 4 123
125,0 160,0 390 340 2
T651 ≥ 0,4 1,5 440 390 6 b 133
5,0 t
1,5 6,0 440 390 7 b 133
7,0 t
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A50 mm A 180° 90°
6,0 12,5 450 395 7 b 135
10 t
12,5 40,0 460 400 6 138
40,0 60,0 450 390 5 135
60,0 80,0 435 380 4 131
80,0 100,0 420 360 4 126
100,0 125,0 410 350 4 123
125,0 160,0 390 340 2
T62 ≥ 0,4 12,5 440 390 7 133
12,5 25,0 450 395 6 135
Whenever a new application of this alloy is contemplated, and if this application involves special properties such as corrosion
resistance, toughness, fatigue strength, it is strongly recommended that the user consult the producer in order to make a precise
and appropriate selection of the material.
a
For information only.
b
Appreciably smaller cold bend radii can be achieved immediately after quenching.
Table 7 — Alloy EN AW-2014A [Al Cu4SiMg(A)]
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A50 mm A 180° 90°
O ≥ 0,2 0,5 235 110 1,0 t 55
0,5 1,5 235 110 14 2,0 t 55
1,5 3,0 235 110 16 2,0 t 55
3,0 6,0 235 110 16 2,0 t 55
T4 ≥ 0,2 0,5 400 225 b 110
3,0 t
0,5 1,5 400 225 13 b 110
3,0 t
1,5 6,0 400 225 14 b 110
5,0 t
6,0 12,5 400 250 14
12,5 25,0 400 250 12
25,0 40,0 400 250 10
40,0 80,0 395 250 7
T451 ≥ 0,2 0,5 400 225 b 110
3,0 t
0,5 1,5 400 225 13 b 110
3,0 t
1,5 6,0 400 225 14 b 110
5,0 t
6,0 12,5 400 250 14
12,5 25,0 400 250 12
25,0 40,0 400 250 10
40,0 80,0 395 250 7
T6 ≥ 0,2 0,5 440 380 b 150
5,0 t
0,5 1,5 440 380 6 b 150
5,0 t
1,5 3,0 440 380 7 b 150
6,0 t
3,0 6,0 440 380 8 b 150
6,0 t
6,0 12,5 460 410 8
12,5 25,0 460 410 6
25,0 40,0 450 400 5
40,0 60,0 430 390 5
60,0 90,0 430 390 4
90,0 115,0 420 370 4
115,0 140,0 410 350 4
a
Temper Specified Tensile Yield strength Elongation a Hardness
Bend radius
thickness strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A50 mm A 180° 90°
T651 ≥ 0,2 0,5 440 380 b 150
5,0 t
0,5 1,5 440 380 6 b 150
5,0 t
1,5 3,0 440 380 7 b 150
6,0 t
3,0 6,0 440 380 8 b 150
6,0 t
6,0 12,5 460 410 8
12,5 25,0 460 410 6
25,0 40,0 450 400 5
40,0 60,0 430 390 5
60,0 90,0 430 390 4
90,0 115,0 420 370 4
115,0 140,0 410 350 4
Whenever a new application of this alloy is contemplated, and if this application involves special properties such as corrosion
resistance, toughness, fatigue strength, it is strongly recommended that the user consult the producer in order to make a
precise and appropriate selection of the material.
a
For information only.
b
Appreciably smaller cold bend radii can be achieved immediately after quenching.
Table 8 — Alloy EN AW-2017A [Al Cu4MgSi(A)]
Temper Specified Tensile Yield Elongation a Hardn
Bend radius
a
thickness strength strength ess
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
O ≥ 0,4 1,5 225 145 12 0,5 t 0 t 55
1,5 3,0 225 145 14 1,0 t 1,0 t 55
3,0 6,0 225 145 13 1,5 t 55
6,0 9,0 225 145 13 2,5 t 55
9,0 12,5 225 145 13 4,0 t 55
12,5 25,0 225 145 12 55
T4 ≥ 0,4 1,5 390 245 14 b b 110
3,0 t 3,0 t
1,5 6,0 390 245 15 b b 110
5,0 t 5,0 t
6,0 12,5 390 260 13 b 111
8,0 t
12,5 40,0 390 250 12 110
40,0 60,0 385 245 12 108
60,0 80,0 370 240 7
80,0 120,0 360 240 6 105
120,0 150,0 350 240 4 101
150,0 180,0 330 220 2
180,0 200,0 300 200 2
T451 ≥ 0,4 1,5 390 245 14 b b 110
3,0 t 3,0 t
1,5 6,0 390 245 15 b b 110
5,0 t 5,0 t
6,0 12,5 390 260 13 b 111
8,0 t
12,5 40,0 390 250 12 110
40,0 60,0 385 245 12 108
60,0 80,0 370 240 7
80,0 120,0 360 240 6 105
120,0 150,0 350 240 4 101
150,0 180,0 330 220 2
180,0 200,0 300 200 2
T452 150,0 180,0 330 220 2
180,0 200,0 300 200 2
Temper Specified Tensile Yield Elongation a Hardn
Bend radius
a
thickness strength strength ess
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
T42 ≥ 0,4 3,0 390 235 14 109
3,0 12,5 390 235 15 109
12,5 25,0 390 235 12 109
Whenever a new application of this alloy is contemplated, and if this application involves special
properties such as corrosion resistance, toughness, fatigue strength, it is strongly recommended that
the user consult the producer in order to make a precise and appropriate selection of the material.
a
For information only.
b
Appreciably smaller cold bend radii can be achieved immediately after quenching.
Table 9 — Alloy EN AW-2024 [Al Cu4Mg1]
a
Temper Specified Tensile Yield Elongation a Hardness
Bend radius
thickness strength strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
50 mm
O ≥ 0,4 1,5 220 140 12 0,5 t 0 t 55
1,5 3,0 220 140 13 2,0 t 1,0 t 55
3,0 6,0 220 140 13 3,0 t 1,5 t 55
6,0 9,0 220 140 13 2,5 t 55
9,0 12,5 220 140 13 4,0 t 55
12,5 25,0 220 11 55
T4 ≥ 0,4 1,5 425 275 12 4,0 t 120
1,5 6,0 425 275 14 5,0 t 120
T3 ≥ 0,4 1,5 435 290 12 b b 123
4,0 t 4,0 t
1,5 3,0 435 290 14 b b 123
4,0 t 4,0 t
3,0 6,0 440 290 14 b b 124
5,0 t 5,0 t
6,0 12,5 440 290 13 b 124
8,0 t
12,5 40,0 430 290 11 122
40,0 80,0 420 290 8 120
80,0 100,0 400 285 7 115
100,0 120,0 380 270 5 110
120,0 150,0 360 250 5 104
T351 ≥ 0,4 1,5 435 290 12 b b 123
4,0 t 4,0 t
1,5 3,0 435 290 14 b b 123
4,0 t 4,0 t
3,0 6,0 440 290 14 b b 124
5,0 t 5,0 t
6,0 12,5 440 290 13 b 124
8,0 t
12,5 40,0 430 290 11 122
40,0 80,0 420 290 8 120
80,0 100,0 400 285 7 115
100,0 120,0 380 270 5 110
120,0 150,0 360 250 5 104
T42 ≥ 0,4 6,0 425 260 15 119
6,0 12,5 425 260 12 119
12,5 25,0 420 260 8 118
a
Temper Specified Tensile Yield Elongation a Hardness
Bend radius
thickness strength strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
50 mm
T8 ≥ 0,4 1,5 460 400 5 138
1,5 6,0 460 400 6 138
6,0 12,5 460 400 5 138
12,5 25,0 455 400 4 137
25,0 40,0 455 395 4 136
T851 ≥ 0,4 1,5 460 400 5 138
1,5 6,0 460 400 6 138
6,0 12,5 460 400 5 138
12,5 25,0 455 400 4 137
25,0 40,0 455 395 4 136
T62 ≥ 0,4 12,5 440 345 5 129
12,5 25,0 435 345 4 128
Whenever a new application of this alloy is contemplated, and if this application involves special
properties such as corrosion resistance, toughness, fatigue strength, it is strongly recommended that the
user consult the producer in order to make a precise and appropriate selection of the material.
a
For information only.
b
Appreciably smaller cold bend radii can be achieved immediately after quenching.
Table 10 — Alloy EN AW-2618A [Al Cu2Mg1,5Ni]
a
Temper Specified Tensile Yield Elongation a Hardness
Bend radius
thickness strength strength
min.
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
50 mm
T851 > 6,0 12,5 420 375 5
12,5 40,0 420 375 5
40,0 80,0 410 370 5
80,0 100,0 405 365 4
100,0 140,0 395 360 4
a
No data available.
Table 11 — Alloy EN AW-3003 [Al Mn1Cu]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 80,0 95
F
O 0,2 0,5 95 135 35 15 0 t 0 t 28
0,5 1,5 95 135 35 17 0 t 0 t 28
1,5 3,0 95 135 35 20 0 t 0 t 28
3,0 6,0 95 135 35 23 1,0 t 1,0 t 28
6,0 12,5 95 135 35 24 1,5 t 28
12,5 50,0 95 135 35 23 28
H111 0,2 0,5 95 135 35 15 0 t 0 t 28
0,5 1,5 95 135 35 17 0 t 0 t 28
1,5 3,0 95 135 35 20 0 t 0 t 28
3,0 6,0 95 135 35 23 1,0 t 1,0 t 28
6,0 12,5 95 135 35 24 1,5 t 28
12,5 50,0 95 135 35 23 28
H112 ≥ 6,0 12,5 115 70 10 35
12,5 80,0 100 40 18 29
H12 0,2 0,5 120 160 90 3 1,5 t 0 t 38
0,5 1,5 120 160 90 4 1,5 t 0,5 t 38
1,5 3,0 120 160 90 5 1,5 t 1,0 t 38
3,0 6,0 120 160 90 6 1,0 t 38
6,0 12,5 120 160 90 7 2,0 t 38
12,5 40,0 120 160 90 8 38
H14 0,2 0,5 145 185 125 2 2,0 t 0,5 t 46
0,5 1,5 145 185 125 2 2,0 t 1,0 t 46
1,5 3,0 145 185 125 3 2,0 t 1,0 t 46
3,0 6,0 145 185 125 4 2,0 t 46
6,0 12,5 145 185 125 5 2,5 t 46
12,5 25,0 145 185 125 5 46
H16 0,2 0,5 170 210 150 1 2,5 t 1,0 t 54
0,5 1,5 170 210 150 2 2,5 t 1,5 t 54
1,5 4,0 170 210 150 2 2,5 t 2,0 t 54
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H18 0,2 0,5 190 170 1 1,5 t 60
0,5 1,5 190 170 2 2,5 t 60
1,5 3,0 190 170 2 3,0 t 60
H19 0,2 0,5 210 180 1 65
0,5 1,5 210 180 2 65
1,5 3,0 210 180 2 65
H22 0,2 0,5 120 160 80 6 1,0 t 0 t 37
0,5 1,5 120 160 80 7 1,0 t 0,5 t 37
1,5 3,0 120 160 80 8 1,0 t 1,0 t 37
3,0 6,0 120 160 80 9 1,0 t 37
6,0 12,5 120 160 80 11 2,0 t 37
H24 0,2 0,5 145 185 115 4 1,5 t 0,5 t 45
0,5 1,5 145 185 115 4 1,5 t 1,0 t 45
1,5 3,0 145 185 115 5 1,5 t 1,0 t 45
3,0 6,0 145 185 115 6 2,0 t 45
6,0 12,5 145 185 110 8 2,5 t 45
H26 0,2 0,5 170 210 140 2 2,0 t 1,0 t 53
0,5 1,5 170 210 140 3 2,0 t 1,5 t 53
1,5 4,0 170 210 140 3 2,0 t 2,0 t 53
H28 0,2 0,5 190 160 2 1,5 t 59
0,5 1,5 190 160 2 2,5 t 59
1,5 3,0 190 160 3 3,0 t 59
a
For information only.
Table 12 — Alloy EN AW-3004 [Al Mn1Mg1]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 80,0 155
F
O 0,2 0,5 155 200 60 13 0 t 0 t 45
0,5 1,5 155 200 60 14 0 t 0 t 45
1,5 3,0 155 200 60 15 0,5 t 0 t 45
3,0 6,0 155 200 60 16 1,0 t 1,0 t 45
6,0 12,5 155 200 60 16 2,0 t 45
12,5 50,0 155 200 60 14 45
H111 0,2 0,5 155 200 60 13 0 t 0 t 45
0,5 1,5 155 200 60 14 0 t 0 t 45
1,5 3,0 155 200 60 15 0,5 t 0 t 45
3,0 6,0 155 200 60 16 1,0 t 1,0 t 45
6,0 12,5 155 200 60 16 2,0 t 45
12,5 50,0 155 200 60 14 45
H12 0,2 0,5 190 240 155 2 1,5 t 0 t 59
0,5 1,5 190 240 155 3 1,5 t 0,5 t 59
1,5 3,0 190 240 155 4 2,0 t 1,0 t 59
3,0 6,0 190 240 155 5 1,5 t 59
H14 0,2 0,5 220 265 180 1 2,5 t 0,5 t 67
0,5 1,5 220 265 180 2 2,5 t 1,0 t 67
1,5 3,0 220 265 180 2 2,5 t 1,5 t 67
3,0 6,0 220 265 180 3 2,0 t 67
H16 0,2 0,5 240 285 200 1 3,5 t 1,0 t 73
0,5 1,5 240 285 200 1 3,5 t 1,5 t 73
1,5 4,0 240 285 200 2 2,5 t 73
H18 0,2 0,5 260 230 1 1,5 t 80
0,5 1,5 260 230 1 2,5 t 80
1,5 3,0 260 230 2 80
H19 0,2 0,5 270 240 1 83
0,5 1,5 270 240 1 83
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min.
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H22 0,2 0,5 190 240 145 4 1,0 t 0 t 58
0,5 1,5 190 240 145 5 1,0 t 0,5 t 58
1,5 3,0 190 240 145 6 1,5 t 1,0 t 58
3,0 6,0 190 240 145 7 1,5 t 58
H32 0,2 0,5 190 240 145 4 1,0 t 0 t 58
0,5 1,5 190 240 145 5 1,0 t 0,5 t 58
1,5 3,0 190 240 145 6 1,5 t 1,0 t 58
3,0 6,0 190 240 145 7 1,5 t 58
H24 0,2 0,5 220 265 170 3 2,0 t 0,5 t 66
0,5 1,5 220 265 170 4 2,0 t 1,0 t 66
1,5 3,0 220 265 170 4 2,0 t 1,5 t 66
H34 0,2 0,5 220 265 170 3 2,0 t 0,5 t 66
0,5 1,5 220 265 170 4 2,0 t 1,0 t 66
1,5 3,0 220 265 170 4 2,0 t 1,5 t 66
H26 0,2 0,5 240 285 190 3 3,0 t 1,0 t 72
0,5 1,5 240 285 190 3 3,0 t 1,5 t 72
1,5 3,0 240 285 190 3 2,5 t 72
H36 0,2 0,5 240 285 190 3 3,0 t 1,0 t 72
0,5 1,5 240 285 190 3 3,0 t 1,5 t 72
1,5 3,0 240 285 190 3 2,5 t 72
H28 0,2 0,5 260 220 2 1,5 t 79
0,5 1,5 260 220 3 2,5 t 79
H38 0,2 0,5 260 220 2 1,5 t 79
0,5 1,5 260 220 3 2,5 t 79
a
For information only.
Table 13 — Alloy EN AW-3005 [Al Mn1Mg0,5]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength min. a
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 80,0 115
F
O 0,2 0,5 115 165 45 12 0 t 0 t 33
0,5 1,5 115 165 45 14 0 t 0 t 33
1,5 3,0 115 165 45 16 1,0 t 0,5 t 33
3,0 6,0 115 165 45 19 1,0 t 33
H111 0,2 0,5 115 165 45 12 0 t 0 t 33
0,5 1,5 115 165 45 14 0 t 0 t 33
1,5 3,0 115 165 45 16 1,0 t 0,5 t 33
3,0 6,0 115 165 45 19 1,0 t 33
H12 0,2 0,5 145 195 125 3 1,5 t 0 t 46
0,5 1,5 145 195 125 4 1,5 t 0,5 t 46
1,5 3,0 145 195 125 4 2,0 t 1,0 t 46
3,0 6,0 145 195 125 5 1,5 t 46
H14 0,2 0,5 170 215 150 1 2,5 t 0,5 t 54
0,5 1,5 170 215 150 2 2,5 t 1,0 t 54
1,5 3,0 170 215 150 2 1,5 t 54
3,0 6,0 170 215 150 3 2,0 t 54
H16 0,2 0,5 195 240 175 1 1,0 t 61
0,5 1,5 195 240 175 2 1,5 t 61
1,5 4,0 195 240 175 2 2,5 t 61
H18 0,2 0,5 220 200 1 1,5 t 69
0,5 1,5 220 200 2 2,5 t 69
1,5 3,0 220 200 2 69
H19 0,2 0,5 235 210 1 73
0,5 1,5 235 210 1 73
H22 0,2 0,5 145 195 110 5 1,0 t 0 t 45
0,5 1,5 145 195 110 5 1,0 t 0,5 t 45
1,5 3,0 145 195 110 6 1,5 t 1,0 t 45
3,0 6,0 145 195 110 7 1,5 t 45
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength min. a
radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
H24 0,2 0,5 170 215 130 4 1,5 t 0,5 t 52
0,5 1,5 170 215 130 4 1,5 t 1,0 t 52
1,5 3,0 170 215 130 4 1,5 t 52
H26 0,2 0,5 195 240 160 3 1,0 t 60
0,5 1,5 195 240 160 3 1,5 t 60
1,5 3,0 195 240 160 3 2,5 t 60
H28 0,2 0,5 220 190 2 1,5 t 68
0,5 1,5 220 190 2 2,5 t 68
1,5 3,0 220 190 3 68
a
For information only.
Table 14 — Alloy EN AW-3103 [Al Mn1]
a
Temper Specified Tensile Yield Elongation Bend Hardness
thickness strength strength a
min. radius
R R
m p0,2
mm MPa MPa % HBW
over up to min. max. min. max. A A 180° 90°
mm
a ≥ 2,5 80,0 90
F
O 0,2 0,5 90 130 35 17 0
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...