17.040.99 - Other standards related to linear and angular measurements
ICS 17.040.99 Details
Other standards related to linear and angular measurements
Weitere Aspekte der Langen- und Winkelmessungen
Autres normes de mesurage de longueur et mesurage angulaire
Drugi standardi v zvezi z linearnimi in kotnimi meritvami
General Information
Frequently Asked Questions
ICS 17.040.99 is a classification code in the International Classification for Standards (ICS) system. It covers "Other standards related to linear and angular measurements". The ICS is a hierarchical classification system used to organize international, regional, and national standards, facilitating the search and identification of standards across different fields.
There are 22 standards classified under ICS 17.040.99 (Other standards related to linear and angular measurements). These standards are published by international and regional standardization bodies including ISO, IEC, CEN, CENELEC, and ETSI.
The International Classification for Standards (ICS) is a hierarchical classification system maintained by ISO to organize standards and related documents. It uses a three-level structure with field (2 digits), group (3 digits), and sub-group (2 digits) codes. The ICS helps users find standards by subject area and enables statistical analysis of standards development activities.
SIGNIFICANCE AND USE
5.1 Pose measurement systems are used in a wide range of fields including manufacturing, material handling, construction, medicine, and aerospace. The use of pose measurement systems could, for example, replace the need to fix the poses of objects of interest by mechanical means.
5.2 Potential users have difficulty comparing pose measurement systems because of the lack of standard performance specifications and test methods, and must rely on the specifications of a vendor regarding the system’s performance, capabilities, and suitability for a particular application. This standard makes it possible for a user to assess and compare the performance of candidate pose measurement systems, and allows the user to determine if the measured performance results are within the vendor’s claimed specifications with regard to the user’s application. This standard also facilitates the improvement of pose measurement systems by providing a common set of metrics to evaluate system performance.
5.3 The intent of this test method is to allow a user to determine the performance of a vendor’s system under conditions specific to the user’s application, and to determine whether the system still performs in accordance with the vendor’s specifications under those conditions. The intention of this test method is not to validate a vendor’s claims; although, under specific situations, this test method may be adapted for this purpose.
SCOPE
1.1 Purpose—In this test method, metrics and procedures for collecting and analyzing data to determine the performance of a pose measurement system in computing the pose (position and orientation) of a rigid object are provided.
1.2 This test method applies to the situation in which both the object and the pose measurement system are static with respect to each other when measurements are performed. Vendors may use this test method to establish the performance limits for their six degrees of freedom (6DOF) pose measurement systems. The vendor may use the procedures described in 9.2 to generate the test statistics, then apply an appropriate margin or scaling factor as desired to generate the performance specifications. This test method also provides a uniform way to report the relative or absolute pose measurement capability of the system, or both, making it possible to compare the performance of different systems.
1.3 Test Location—The methodology defined in this test method shall be performed in a facility in which the environmental conditions are within the pose measurement system’s rated conditions and meet the user’s requirements.
1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
- Standard18 pagesEnglish languagesale 15% off
- Standard18 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 The coefficient of linear thermal expansion, α, between temperatures T1 and T2 for a specimen whose length is L0 at the reference temperature, is given by the following equation:
Where L1 and L2 are the specimen lengths at temperatures T1 and T2, respectively. α is, therefore, obtained by dividing the linear expansion per unit length by the change in temperature.
5.2 The nature of most plastics and the construction applications for which plastic lumber and plastic lumber shapes are used, make –30 to 140°F (–34.4 to 60°C) a practical temperature range for linear thermal expansion measurements. Where testing outside of this temperature range or when linear thermal expansion characteristics of a particular plastic are not known through this temperature range, particular attention shall be paid to the factors mentioned in 1.2 and it is possible that special preliminary investigations by thermo-mechanical analysis, such as what is prescribed in Practice D4065 for the location of transition temperatures, will be required, in order to avoid excessive error. If such a transition point is located, a separate coefficient of expansion for a temperature range below and above the transition point shall be determined. For specification and comparison purposes (provided it is known that no transition exists in this range), the range from –30 to 140°F (–34.4 to 60°C) shall be used. (For reference, glass transition and melting point temperatures of typical resins used in plastic lumber products are given in Appendix X2 of this test method.)
SCOPE
1.1 This test method covers the determination of the coefficient of linear thermal expansion for plastic lumber and plastic lumber shapes to two significant figures. The determination is made by taking measurements with a caliper at three discrete temperatures. At the test temperatures and under the stresses imposed, the plastic lumber shall have a negligible creep or elastic strain rate, or both, insofar as these properties would significantly affect the accuracy of the measurements.
1.1.1 This test method details the determination of the linear coefficient of thermal expansion of plastic lumber and plastic lumber shapes in their “as manufactured” form. As such, this is a test method for evaluating the properties of plastic lumber or shapes as a product and not a material property test method.
1.2 The thermal expansion of plastic lumber and shapes is composed of a reversible component on which it is possible to superimpose changes in length due to changes in moisture content, curing, loss of plasticizer or solvents, release of stresses, phase changes, voids, inclusions, and other factors. This test method is intended to determine the coefficient of linear thermal expansion under the exclusion of non-linear factors as far as possible. In general, it will not be possible to exclude the effect of these factors completely. For this reason, the test method can be expected to give a reasonable approximation but not necessarily precise determination of the linear coefficient of thermal expansion.
1.3 Plastic lumber and plastic lumber shapes are currently made predominately with recycled plastics where the product is non-homogeneous in the cross-section. However, it is possible that this test method will also be applicable to similar manufactured plastic products made from virgin resins or other plastic composite materials.
1.4 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.
1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.
Note 1: There is no known ISO equivalent to this standard.
1.6 This internation...
- Standard5 pagesEnglish languagesale 15% off
- Standard5 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
5.1 An appropriately developed, documented, and executed guide is essential for the proper collection and application of gamma logs. This guide is to be used in conjunction with Guide D5753.
5.2 The benefits of its use include improving selection of gamma logging methods and equipment, gamma log quality and reliability, and usefulness of the gamma log data for subsequent display and interpretation.
5.3 This guide applies to commonly used gamma logging methods for geotechnical applications.
5.4 It is essential that personnel (see the Personnel section of Guide D5753) consult up-to-date textbooks and reports on the gamma technique, application, and interpretation methods.
SCOPE
1.1 This guide covers the general procedures necessary to conduct gamma, natural gamma, total count gamma, or gamma ray (hereafter referred to as gamma) logging of boreholes, wells, access tubes, caissons, or shafts (hereafter referred to as boreholes) as commonly applied to geologic, engineering, groundwater, and environmental (hereafter referred to as geotechnical) investigations. Spectral gamma and logging where gamma measurements are made in conjunction with a nuclear source are excluded (for example, neutron activation and gamma-gamma density logs). Gamma logging for minerals or petroleum applications are excluded.
1.2 This guide defines a gamma log as a record of gamma activity of the formation adjacent to a borehole with depth (See Fig. 1 and Fig. 2).
FIG. 1 Example of a Gamma Log From Near the South Rim of the Grand Canyon in the USA (in cps)
Note 1: This figure demonstrates how the log can be used to identify specific formations, illustrating scale wrap-around for a local gamma peak, and showing how the contact between two formations is picked to coincide with the half-way point of the transition between the gamma activities of the two formations.
FIG. 2 Example of a Gamma Log for the Hydrologic Observation Well KGS #1 Braun located near Hays, Kansas in the USA (in API units whereby SGR reflects the derived total gamma ray log (the sum of all the radiation contributions), and CGR reflects the computed gamma ray log (the sum of the potassium and thorium responses, leaving out the contribution from uranium).
1.2.1 Gamma logs are commonly used to delineate lithology, correlate measurements made on different logging runs, and define stratigraphic correlation between boreholes (See Fig. 3).
FIG. 3 Example of Gamma Logs From Two Boreholes
Note 1: From a study site showing how the gamma logs can be used to identify where beds intersect each of the individual boreholes, demonstrating lateral continuity of the subsurface geology.
1.3 This guide is restricted to gamma logging with nuclear counters consisting of scintillation detectors (crystals coupled with photomultiplier tubes), which are the most common gamma measurement devices used in geotechnical applications.
1.4 This guide provides an overview of gamma logging including general procedures, specific documentation, calibration and standardization, and log quality and interpretation.
1.5 This guide is to be used in conjunction with Guide D5753.
1.6 Gamma logs should be collected by an operator that is trained in geophysical logging procedures. Gamma logs should be interpreted by a professional experienced in log analysis.
1.7 The values stated in either SI units or inch-pound units [given in brackets] are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.
1.7.1 The gamma log is typically recorded in units of counts per second (cps) or American Petroleum Institute (API) units. The gamma ray API unit is defined as 1/20...
- Guide12 pagesEnglish languagesale 15% off
- Guide12 pagesEnglish languagesale 15% off
SIGNIFICANCE AND USE
4.1 This standard provides a test method for obtaining the point-to-point distance measurement errors for medium-range 3D imaging systems. The results from this test method may be used to evaluate or to verify the point-to-point distance measurement performance of medium-range 3D imaging systems. The results from this test method may also be used to compare performance among different instruments.
4.2 The purpose of this document is to provide test procedures that are sensitive to instrument error sources. The point-to-point distance measurement performance of the IUT obtained by the application of this test method may be different from the point-to-point distance measurement performance of the IUT under some real-world conditions. For example, object geometry, texture, surface reflectance factor, and temperature, as well as particulate matter, thermal gradients, atmospheric pressure, humidity, ambient lighting in the environment, mechanical vibrations, and wind induced test setup instability will affect the point-to-point distance measurement performance (see Appendix X10 for a discussion on thermal effects). A derived-point such as the center of a suitable sphere or plate target that meets the requirements described in Section 7 provides a reliable point in space that is minimally impacted by target-related properties such as geometry, surface texture, color, and reflectivity. Additional tests not described in this standard may be required to assess the contribution of these influence factors on point-to-point distance measurements.
4.3 The test may be carried out for instrument acceptance, warranty or contractual purposes by mutual agreement between the manufacturer and the user. The IUT is tested in accordance with manufacturer-supplied specifications, rated conditions, and technical documentation.
4.4 For the purposes of understanding the behavior of the IUT and without warranty implications, this test may be modified as necessary to evaluate the point...
SCOPE
1.1 This test method covers the performance evaluation of laser-based, scanning, time-of-flight, single-detector 3D imaging systems in the medium-range and provides a basis for comparisons among such systems. This standard best applies to spherical coordinate 3D imaging systems that are capable of producing a point cloud representation of an object of interest. In particular, this standard establishes requirements and test procedures for evaluating the derived-point to derived-point distance measurement performance throughout the work volume of these systems. Although the tests described in this standard may be used for non-spherical coordinate 3D imaging systems, the test method may not necessarily be sensitive to the error sources within those instruments.
1.2 System performance is evaluated by comparing measured distance errors between pairs of derived-points to the manufacturer-specified, maximum permissible errors (MPEs). In this standard, a derived-point is a point computed using multiple measured points on the target surface (such as the center of a sphere). In the remainder of this standard, the term point-to-point distance refers to the distance between two derived-points.
1.3 The term “medium-range” refers to systems that are capable of operating within at least a portion of the ranges from 2 m to 150 m. The term “time-of-flight systems” includes phase-based, pulsed, and chirped systems. The word “standard” in this document refers to a documentary standard in accordance with Terminology E284.
1.4 This test method may be used once to evaluate the Instrument Under Test (IUT) for a given set of conditions or it may be used multiple times to assess the performance of the IUT for various conditions (for example, surface reflectance factors, environmental conditions).
1.5 SI units are used for all calculations and results in this standard.
1.6 This test method is not intended to replace more in-depth m...
- Standard38 pagesEnglish languagesale 15% off