SIST-TS CEN/TS 17200:2019
(Main)Construction products - Assessment of release of dangerous substances - Analysis of inorganic substances in digests and eluates - Analysis by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)
Construction products - Assessment of release of dangerous substances - Analysis of inorganic substances in digests and eluates - Analysis by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)
This Technical Specification specifies a method on the basis of Inductive Coupled Plasma - Mass Spectrometry (ICP-MS) for the analysis of inorganic substances in digests from aqua regia digestion of construction products and eluates obtained from leaching tests performed on construction products. This TS covers aluminium, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, caesium, calcium, cerium, chromium, cobalt, copper, dysprosium, erbium, europium, gadolinium, gallium, germanium, gold, hafnium, holmium, indium, iridium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, palladium, phosphorus, platinum, potassium, praseodymium, rubidium, rhenium, rhodium, ruthenium, samarium, scandium, selenium, silicon, silver, sodium, strontium, sulphur, terbium, tellurium, thorium, thallium, thulium, tin, titanium, tungsten, uranium, vanadium, yttrium, ytterbium, zinc, and zirconium. NOTE This standard is part of a series. The other parts are Part 1: Analysis of ingornic substances by Inductive Coupled Plasma - Optical Emission Spectrometry (ICP-OES) Part 3: Analysis of anions by Ion Chromtography (IC)
Bauprodukte - Beurteilung der Freisetzung von gefährlichen Stoffen - Analyse von anorganischen Stoffen in Aufschlusslösungen und Eluaten - Analyse mit induktiv gekoppeltem Plasma - Massenspektrometrie (ICP-MS)
Diese Technische Spezifikation legt die Analysenverfahren für die Bestimmung von Haupt-, Neben- und Spurenelementen in Königswasser und Salpetersäureaufschlusslösungen sowie Eluaten von Bauprodukten durch Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP MS) fest. Sie bezieht sich auf die folgenden 67 Elemente:
Aluminium (Al), Antimon (Sb), Arsen (As), Barium (Ba), Beryllium (Be), Bismut (Bi), Bor (B), Cadmium (Cd), Calcium (Ca), Cer (Ce), Caesium (Cs), Chrom (Cr), Cobalt (Co), Kupfer (Cu), Dysprosium (Dy), Erbium (Er), Europium (Eu), Gadolinium (Gd), Gallium (Ga), Germanium (Ge), Gold (Au), Hafnium (Hf), Holmium (Ho), Indium (In), Iridium (Ir), Eisen (Fe), Lanthan (La), Blei (Pb), Lithium (Li), Lutetium (Lu), Magnesium (Mg), Mangan (Mn), Quecksilber (Hg), Molybdän (Mo), Neodym (Nd), Nickel (Ni), Palladium (Pd), Phosphor (P), Platin (Pt), Kalium (K), Praseodym (Pr), Rubidium (Rb), Rhenium (Re), Rhodium (Rh), Ruthenium (Ru), Samarium (Sm), Scandium (Sc), Selen (Se), Silicium (Si), Silber (Ag), Natrium (Na), Strontium (Sr), Schwefel (S), Tellur (Te), Terbium (Tb), Thallium (Tl), Thorium (Th), Thulium (Tm), Zinn (Sn), Titan (Ti), Wolfram (W), Uran (U), Vanadium (V), Ytterbium (Yb), Yttrium (Y), Zink (Zn) und Zirconium (Zr).
ANMERKUNG 1 Bauprodukte umfassen z. B. mineralische Produkte (S), bituminöse Produkte (B), Metalle (M), Holzprodukte (W), Kunststoffe und Gummi (P), Dichtstoffe und Kleber (A), Farben und Beschichtungen (C), siehe auch CEN/TR 16045 [1].
Der Arbeitsbereich hängt von der Matrix und den zu erwartenden Interferenzen ab.
ANMERKUNG 2 Die Nachweisgrenze der meisten Elemente wird durch deren natürliche Häufigkeit, Ionisationsverhalten, Häufigkeit von Isotop(en) frei von isobaren Interferenzen und durch Kontamination (z. B. durch Handhabung und Luft) beeinflusst. Handhabungsbedingte Kontaminationen sind in den meisten Fällen von größerer Bedeutung als luftgetragene Kontaminationen.
Die Nachweisgrenze wird höher ausfallen, wenn bei der Bestimmung Interferenzen möglich sind (siehe Abschnitt 4) oder Memoryeffekte auftreten (siehe z. B. EN ISO 17294 1:2006, 8.2).
Die in dieser Technischen Spezifikation beschriebenen Verfahren sind für Bauprodukte geeignet und für die in Anhang B aufgeführten Produkttypen validiert.
Produits de construction - Évaluation des émissions de substances dangereuses - Analyse des substances inorganiques dans les digestats et les éluats - Analyse par spectrométrie de masse avec plasma à couplage inductif
Gradbeni proizvodi - Ocenjevanje sproščanja nevarnih snovi - Analiza anorganskih snovi po razklopu in v izlužkih - Analiza z masno spektrometrijo z induktivno sklopljeno plazmo (ICP/MS)
Ta tehnična dokumentacija podaja metodo za določanje glavnih in stranskih elementov ter elementov v sledovih v zlatotopki in izvlečku dušikove kisline ter v izlužkih gradbenih proizvodov z masno spektrometrijo z induktivno sklopljeno plazmo (ICP/MS). Sklicuje se na naslednjih 67 elementov: aluminij (Al), antimon (Sb), arzen (As), barij (Ba), berilij (Be), bizmut (Bi), bor (B), kadmij (Cd), kalcij (Ca), cerij (Ce), cezij (Cs), krom (Cr), kobalt (Co), baker (Cu), disprozij (Dy), erbij (Er), evropij (Eu), gadolinij (Gd), galij (Ga), germanij (Ge), zlato (Au), hafnij (Hf), holmij (Ho), indij (In), iridij (Ir), železo (Fe), lantan (La), svinec (Pb), litij (Li), lutecij (Lu), magnezij (Mg), mangan (Mn), živo srebro (Hg), molibden (Mo), neodim (Nd), nikelj (Ni), paladij (Pd), fosfor (P), platina (Pt), kalij (K), prazeodim (Pr), rubidij (Rb), renij (Re), rodij (Rh), rutenij (Ru), samarij (Sm), skandij (Sc), selen (Se), silicij (Si), srebro (Ag), natrij (Na), stroncij (Sr), žveplo (S), telurij (Te), terbij (Tb), talij (Tl), torij (Th), tulij (Tm), kositer (Sn), titan (Ti), volfram (W), uran (U), vanadij (V), iterbij (Yb), itrij (Y), cink (Zn) in cirkonij (Zr).
OPOMBA 1: Gradbeni proizvodi vključujejo npr. mineralne proizvode (S), bitumenske proizvode (B), kovine (M), lesne proizvode (W), plastične mase in gume (P), tesnila in lepila (A), barve in premaze (C), glej tudi CEN/TR 16045 [1].
Delovni razpon je odvisen od matrice in motenj, ki se pojavijo.
OPOMBA 2: Na mejo detekcije za večino elementov bo vplival njihov delež v naravi, proces ionizacije ali delež izotopov brez izobaričnih interferenc ter onesnaženje (npr. pri ravnanju, v zraku). Onesnaženja pri ravnanju so v veliko primerih pomembnejše od onesnaženja v zraku.
Meja detekcije bo višja v primerih, ko obstaja možnost motnje določevanja (glej točko 4), ali v primeru spominskih učinkov (glej npr. EN ISO 17294-1:2006, 8.2).
Metoda v tej tehnični specifikaciji se uporablja pri gradbenih proizvodih in je potrjena za vrste proizvodov, navedene v dodatku B.
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
SIST-TS CEN/TS 17200:2019
01-januar-2019
*UDGEHQLSURL]YRGL2FHQMHYDQMHVSURãþDQMDQHYDUQLKVQRYL$QDOL]DDQRUJDQVNLK
VQRYLSRUD]NORSXLQYL]OXåNLK$QDOL]D]PDVQRVSHNWURPHWULMR]LQGXNWLYQR
VNORSOMHQRSOD]PR,&306
Construction products - Assessment of release of dangerous substances - Analysis of
inorganic substances in digests and eluates - Analysis by Inductively Coupled Plasma -
Mass Spectrometry (ICP-MS)
Bauprodukte - Beurteilung der Freisetzung von gefährlichen Stoffen - Analyse von
anorganischen Stoffen in Aufschlusslösungen und Eluaten - Analyse mit induktiv
gekoppeltem Plasma - Massenspektrometrie (ICP-MS)
Produits de construction - Évaluation des émissions de substances dangereuses -
Analyse des substances inorganiques dans les digestats et les éluats - Analyse par
spectrométrie de masse avec plasma à couplage inductif
Ta slovenski standard je istoveten z: CEN/TS 17200:2018
ICS:
13.020.99 Drugi standardi v zvezi z Other standards related to
varstvom okolja environmental protection
91.100.01 Gradbeni materiali na Construction materials in
splošno general
SIST-TS CEN/TS 17200:2019 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
---------------------- Page: 1 ----------------------
SIST-TS CEN/TS 17200:2019
---------------------- Page: 2 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200
TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
July 2018
TECHNISCHE SPEZIFIKATION
ICS 91.100.01
English Version
Construction products: Assessment of release of
dangerous substances - Analysis of inorganic substances in
digests and eluates - Analysis by Inductively Coupled
Plasma - Mass Spectrometry (ICP-MS)
Produits de construction: Évaluation des émissions de Bauprodukte: Beurteilung der Freisetzung von
substances dangereuses - Analyse des substances gefährlichen Stoffen - Analyse von anorganischen
inorganiques dans les digestats et les éluats - Analyse Stoffen in Aufschlusslösungen und Eluaten - Analyse
par spectrométrie de masse avec plasma à couplage mit induktiv gekoppeltem Plasma -
inductif Massenspektrometrie (ICP-MS)
This Technical Specification (CEN/TS) was approved by CEN on 2 April 2018 for provisional application.
The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to
submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.
CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS
available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in
parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2018 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TS 17200:2018 E
worldwide for CEN national Members.
---------------------- Page: 3 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 7
4 Symbols and abbreviations . 9
5 Principle . 9
6 Interferences . 9
6.1 General . 9
6.2 Spectral interferences . 9
6.2.1 Isobaric elemental interferences . 9
6.2.2 Isobaric molecular and doubly charged ion interferences . 10
6.3 Non spectral interferences . 10
7 Reagents . 10
8 Apparatus . 13
9 Procedure. 14
9.1 Test sample . 14
9.2 Test portion . 14
9.3 Instrument set up . 14
9.4 Calibration . 15
9.4.1 Calibration function . 15
9.4.2 Standard addition calibration . 15
9.4.3 Determination of correction factors . 16
9.4.4 Variable isotope ratio . 16
9.5 Sample measurement . 16
10 Calculation . 16
10.1 Calculation for digests of construction products . 16
10.2 Calculation for eluates of construction products . 17
11 Expression of results . 17
12 Performance characteristics . 17
12.1 General . 17
12.2 Blank . 17
12.3 Calibration check . 17
12.4 Internal standard response . 17
12.5 Interference . 17
12.6 Recovery . 17
12.7 Precision . 17
13 Test report . 18
2
---------------------- Page: 4 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
Annex A (informative) Method detection limit (MDL) and precision data for soil, sludge
and biowaste . 20
Annex B (informative) Validation results for construction products . 28
B.1 Introduction. 28
B.2 Performance data . 28
Bibliography . 29
3
---------------------- Page: 5 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
European foreword
This document (CEN/TS 17200:2018) has been prepared by Technical Committee CEN/TC 351
“Construction products - Assessment of release of dangerous substances”, the secretariat of which is
held by NEN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
A similar document has been developed for drinking water, surface water and waste water and
different types of waste respectively, see Annex A.
According to the CEN/CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia,
France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
4
---------------------- Page: 6 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
Introduction
Following an extended evaluation of available methods for content and eluate analysis in construction
products (CEN/TR 16045; [1]) it was concluded that multi element analysis methods have preference
over methods developed for single elements or small groups of elements. This implies that for inorganic
substances ICP methods are preferred for the analysis of extracts obtained from digestion or eluates
obtained from leaching.
This standard has been adopted from the work carried out in the context of CEN/TC 400 (project
HORIZONTAL) and is very similar to EN 16171, Sludge, treated biowaste and soil - Determination of
elements using inductively coupled plasma mass spectrometry (ICP-MS) [2].
This Technical Specification is part of a modular horizontal approach which was adopted in
CEN/TC 351. 'Horizontal' means that the methods can be used for a wide range of materials and
products with certain properties. 'Modular' means that a test standard developed in this approach
concerns a specific step in assessing a property and not the whole chain of measurement (from
sampling to analyses). Beneficial features of this approach are that modules can be replaced by better
ones without jeopardizing the standard chain and duplication of work of in different Technical
Committees for Products can be avoided as far as possible.
The modules that relate to the standards developed in CEN/TC 351 are specified in CEN/TR 16220,
Construction products: Assessment of release of dangerous substances – Complement to sampling [3]
which distinguishes between the modules. This Technical Specification belongs to the analytical step.
The use of modular horizontal standards implies the drawing of test schemes as well. Before executing a
test on a certain construction product to determine certain characteristics it is necessary to draw up a
protocol in which the adequate modules are selected and together form the basis for the entire test
procedure.
5
---------------------- Page: 7 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
1 Scope
This Technical Specification specifies the method for the determination of major, minor and trace
elements in aqua regia and nitric acid digests and in eluates of construction products by Inductively
Coupled Plasma - Mass Spectrometry (ICP-MS). It refers to the following 67 elements: Aluminium (Al),
antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd),
calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy),
erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf),
holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu),
magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni),
palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rubidium (Rb),
rhenium (Re), rhodium (Rh), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si),
silver (Ag), sodium (Na), strontium (Sr), sulphur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium
(Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb),
yttrium (Y), zinc (Zn), and zirconium (Zr).
NOTE 1 Construction products include e.g. mineral-based products (S); bituminous products (B); metals (M);
wood-based products (W); plastics and rubbers (P); sealants and adhesives (A); paints and coatings (C), see also
CEN/TR 16045 [1].
The working range depends on the matrix and the interferences encountered.
NOTE 2 The limit of detection of most elements will be affected by their natural abundance, ionization
behaviour, on abundance of isotope(s) free from isobaric interferences and by contamination (e.g. handling and
airborne). Handling contaminations are in many cases more important than airborne ones.
The limit of detection will be higher in cases where the determination is likely to be interfered (see
Clause 4) or in case of memory effects (see e.g. EN ISO 17294-1:2006, 8.2).
The method in this Technical Specification is applicable to construction products and validated for the
product types listed in Annex B.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
CEN/TS 16637-2, Construction products — Assessment of release of dangerous substances — Part 2:
Horizontal dynamic surface leaching test
CEN/TS 16637-3, Construction products — Assessment of release of dangerous substances — Part 3:
Horizontal up-flow percolation test
CEN/TS 17196, Construction products: Assessment of release of dangerous substances — Digestion by
aqua regia for subsequent analysis of the major, minor and trace elements
EN ISO 3696:1995, Water for analytical laboratory use — Specification and test methods (ISO 3696:1987)
EN ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
(ISO/IEC 17025)
EN ISO 17294-1:2006, Water quality — Application of inductively coupled plasma mass spectrometry
(ICP-MS) — Part 1: General guidelines (ISO 17294-1:2004)
6
---------------------- Page: 8 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
• IEC Electropedia: available at http://www.electropedia.org/
• ISO Online browsing platform: available at http://www.iso.org/obp
3.1
digest
solution resulting from acid digestion of a sample
[SOURCE: EN 16687:2015, 3.2.8]
3.2
eluate
solution obtained from a leaching test
[SOURCE: EN 16687:2015, 4.2.7]
3.3
analyte
determinand
element, ion or substance to be determined by an analytical method
[SOURCE: EN 16687:2015, 4.1.11]
3.4
sample
portion of material selected from a larger quantity of material
Note 1 to entry: The manner of selection of the sample should be prescribed in a sampling plan.
Note 2 to entry: The term “sample” is often accompanied by a prefix (e.g. laboratory sample, test sample)
specifying the type of sample and/or the specific step in the sampling process to which the obtained material
relates.
[SOURCE: EN 16687:2015, 3.1.5]
3.5
laboratory sample
sample or subsample(s) sent to or received by the laboratory
Note 1 to entry: When the laboratory sample is further prepared by subdividing, cutting, sawing, coring, mixing,
drying, grinding, and curing or by combinations of these operations, the result is the test sample. When no
preparation of the laboratory sample is required, the laboratory sample is the test sample. A test portion is
removed from the test sample for the performance of the test/analysis or for the preparation of a test specimen.
Note 2 to entry: The laboratory sample is the final sample from the point of view of sample collection but it is
the initial sample from the point of view of the laboratory.
[SOURCE: EN 16687:2015, 3.2.1]
7
---------------------- Page: 9 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
3.6
test sample
analytical sample
sample, prepared from the laboratory sample, from which test portions are removed for testing or for
analysis
[SOURCE: EN 16687:2015, 3.2.2]
3.7
test portion
analytical portion
amount of the test sample taken for testing/ analysis, usually of known weight or volume
EXAMPLE 1 A bag of aggregates is delivered to the laboratory (the laboratory sample). For test purposes a
certain amount of the aggregate is dried, the result is the test sample. Afterwards the column for a percolation test
is filled with a test portion of dried aggregate.
EXAMPLE 2 A piece of flooring is delivered to the laboratory (the laboratory sample). For the purpose of
digestion a certain amount is size reduced, the result is the test sample. From the size-reduced test sample a test
portion is taken to execute the digestion. If the digest is to be analysed afterwards e.g. by ICP-MS, the whole
amount of the digest is the laboratory sample again (and without any further treatment also the test sample), the
amount taken for the analytical procedure the test portion.
[SOURCE: EN 16687:2015, 3.2.3]
3.8
instrument detection limit
IDL
smallest analyte concentration that can be detected with a defined statistical probability using a
contaminant free instrument and a blank calibration solution
Note 1 to entry: Usually determined by three times the repeatability standard deviation (3 × Sr) calculated from
multiple measurements (n > 8) of a solution within a single run
[SOURCE: EN 16687:2015, 4.1.13]
3.9
limit of quantification
LOQ
lowest value of an analyte (determinant) that can be determined with an acceptable level of accuracy
and precision, generally determined as three times the limit of detection of the method
[SOURCE: EN 16687:2015, 4.1.14]
3.10
method detection limit
MDL
smallest analyte concentration that can be detected with a specified analytical method including sample
preparation with a defined statistical probability
Note 1 to entry: Usually determined by three times the repeatability standard deviation (3 × Sr) calculated from
multiple measurements (n > 8) on different days and in different matrix solutions which contain a low analyte
concentration.
8
---------------------- Page: 10 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
[SOURCE: EN 16687:2015, 4.1.12]
4 Symbols and abbreviations
FEP Hexafluoroethene propene
HDPE High-density polyethylene
ICP Inductively coupled plasma
ICS Interference check solution
IDL Instrumental detection limit
IEC Inter-element correction
LOQ Limit of quantification
MDL Method detection limit (limit of detection)
MS Mass spectrometry
OES Optical emission spectrometry
PFA Perfluoroalkoxy alkane
PTFE Polytetrafluorethylene
PVC Polyvinylchloride
5 Principle
This method describes the multi-elemental determination of analytes by ICP-MS in (diluted) nitric acid
or aqua regia digests. The method measures ions produced by a radio-frequency inductively coupled
plasma. Analyte species originating in a liquid are nebulized and the resulting aerosol is transported by
argon gas into the plasma. The ions produced by high temperatures of the plasma are entrained in the
plasma gas and introduced, by means of an interface, into a mass spectrometer, sorted according to
their mass-to-charge ratios and quantified with a detector (e.g. channel electron multiplier).
Interferences shall be assessed and valid corrections applied. Interference correction shall include
compensation for background ions contributed by the plasma gas, reagents, and constituents of the
sample matrix.
6 Interferences
6.1 General
Detailed information on spectral and non-spectral interferences is given in EN ISO 17294-1:2006, 6.1.
6.2 Spectral interferences
6.2.1 Isobaric elemental interferences
Isobaric elemental interferences are caused by isotopes of different elements of closely matched
nominal mass-to-charge ratio and which cannot be separated due to an insufficient resolution of the
114 114
mass spectrometer in use (e.g. Cd and Sn).
Element interferences from isobars may be corrected for taking into account the influence from the
interfering element. The isotopes used for correction shall be free of interference if possible. Correction
options are often included in the instrument software.
9
---------------------- Page: 11 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
6.2.2 Isobaric molecular and doubly charged ion interferences
Isobaric molecular and doubly-charged ion interferences in ICP-MS are caused by ions consisting of
40 35 + 40 35 +
more than one atom or charge, respectively. Examples include Ar Cl and Ca Cl ion on the
75 98 16 + 114 +
As signal and Mo O ions on the Cd signal. Natural isotope abundances are available from
the literature. However, the most precise coefficients for an instrument will be determined from the
ratio of the net isotope signals observed for a standard solution.
The accuracy of these types of equations is based upon the constancy of the observed isotopic ratios for
the interfering species. Corrections that presume a constant fraction of a molecular ion relative to the
"parent" ion have not been found to be reliable, e.g., oxide levels can vary with operating conditions. If a
correction for an oxide ion is based upon the ratio of parent-to-oxide ion intensities, the correction shall
be adjusted for the degree of oxide formation by the use of an appropriate oxide internal standard
previously demonstrated to form a similar level of oxide as the interferent.
Other possibilities to correct for isobaric and doubly charged ion interferences are the use of an
instrument with collision/reaction cell technology or high resolution ICP-MS.
The response of the analyte of interest shall be corrected for the contribution of isobaric molecular and
doubly charged interferences if their impact can be higher than three times the instrumental detection
limit or higher than half the lowest concentration to be reported.
6.3 Non spectral interferences
Physical interferences are associated with the sample nebulization and transport processes as well as
with ion-transmission efficiencies. Nebulization and transport processes can be affected if a matrix
component causes a change in surface tension or viscosity. Changes in matrix composition can cause
significant signal suppression or enhancement. Dissolved solids can deposit on the nebulizer tip of a
pneumatic nebulizer and on the cones.
It is recommended to keep the level of total dissolved solids below 0,2 % (2,000 mg/l) to minimize
deposition of solids in the sample introduction system of the plasma torch. An internal standard can be
used to correct for physical interferences if it is carefully matched to the analyte so that the two
elements are similarly affected by matrix changes. Other possibilities to minimize non spectral
interferences are matrix matching, particularly matching of the acid concentration, and standard
addition.
When intolerable physical interferences are present in a sample, a significant suppression of the
internal standard signals (to less than 30 % of the signals in the calibration solution) will be observed.
Dilution of the sample (e.g. fivefold) will usually eliminate the problem.
7 Reagents
7.1 General
For the determination of elements at trace and ultra trace level, the reagents shall be of adequate purity.
The concentration of the analyte or interfering substances in the reagents and the water should be
negligible compared to the lowest concentration to be determined.
7.2 Water, complying with grade 1 as defined in EN ISO 3696:1995 for all sample preparations and
dilutions.
7.3 Nitric acid, c(HNO3) = 16 mol/l, ρ ~ 1,4 kg/l.
10
---------------------- Page: 12 ----------------------
SIST-TS CEN/TS 17200:2019
CEN/TS 17200:2018 (E)
NOTE Nitric acid is available both as ρ(HNO ) = 1,40 g/ml (w(HNO ) = 650 g/kg) and ρ(HNO ) = 1,42 g/ml
3 3 3
(w(HNO ) = 690 g/kg). Both are suitable for use in this method provided they have a minimal content of the
3
analytes of interest.
7.4 Hydrochloric acid, c(HCl) = 12 mol/l, ρ ~ 1,18 kg/l.
7.5 Single element standard stock solutions
Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe,Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, K, La, Li, Lu,
Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, (total) S, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Te, Th, Ti, Tl,
Tm, U, V, W, Y, Yb, Zn, Zr, c = 10 mg/l - 10 000 mg/l each.
Preferably, nitric acid preservation should be applied in order to minimize interferences by polyatoms.
Bi, Hg, Hf, Mo, Sn, Sb, Te, W and Zr may need hydrochloric acid for preservation and digestion.
These solutions are considered to be stable for more than one year, but in reference to guaranteed
stability, the recommendations of the manufacturer should be considered.
Commercially available multi-element stock solution can be used for the same purpose.
7.6 Multi-element standard stock solutions
7.6.1 General
Depending on the scope, different multi-element calibration solutions may be necessary. In general,
when combining multi-element calibration solutions, their chemical compatibility and the possible
hydrolysis of the components shall be regarded. Care shall be taken to prevent chemical reactions (e.g.
precipitation).
NOTE 1 In multi element standards precipitation of Ag, Ba or Pb can occur; Ag is only stable in high
hydrochloric acid concentrations or nitric acid.
The multi-element calibration solutions are considered to be stable for several months, if stored in the
dark. This does not apply to multi-element calibration solutions that are prone to hydrolysis, in
particular solutions of Bi, Mo, Sn, Sb, Te, W, Hf and Zr.
Mercury standard solutions can be stabilized by adding 1 ppm Au in nitric acid or by adding
hydrochloric acid (up to 0,6 %).
NOTE 2 When Au is used as modifier the
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.