Soil quality - Sampling - Part 204: Guidance on sampling of soil gas

ISO 18400-204:2017 contains guidance on soil gas sampling using
- active sampling (adsorbents, filters, air containers), and
- passive sampling
applied at permanent or temporary monitoring wells or other installations in soils or underneath buildings (sub-slab).
It provides guidance on:
- development of a sampling plan;
- construction of monitoring installations;
- transport, packaging and storage soil gas samples;
- quality assurance.
ISO 18400-204:2017 also gives basic information about
- soil gas dynamics, and
- identification of soil gas sources
relevant to permanent or temporary boreholes in soils or underneath buildings (sub‑slab).
The compounds covered by this document are:
. volatile organic compounds (VOCs);
. inorganic volatile compounds (e.g. mercury, HCN);
. permanent gases (i.e. CO2, N2, O2, CH4).
ISO 18400-204:2017 does not give guidance on:
- risk evaluation and characterization;
- selection and design of protective measures;
- the verification of protective measures, although the site investigation methodologies described can be used when appropriate;
- the sampling of atmospheric or indoor gases;
- the measurement of gases from the soil entering into the atmosphere;
- monitoring and sampling for radon.

Qualité du sol - Échantillonnage - Partie 204: Lignes directrices pour l'échantillonnage des gaz de sol

L'ISO 18400-204:2017 donne des lignes directrices sur l'échantillonnage des gaz du sol, au moyen de
- prélèvement actif (ou échantillonnage actif) (adsorbants, filtres, réservoirs d'air); et
- prélèvement passif (ou échantillonnage passif)
appliqués sur des puits de surveillance permanents ou temporaires ou autres installations en sous-sol ou sous des bâtiments (sous-dalle).
Il fournit des lignes directrices sur:
- l'élaboration d'un plan d'échantillonnage;
- la construction d'ouvrages de prélèvement / surveillance;
- le transport, le conditionnement et le stockage des échantillons de gaz du sol;
- l'assurance de la qualité.
L'ISO 18400-204:2017 fournit également des informations essentielles concernant
- la dynamique des gaz de sol; et
- l'identification des sources de gaz de sol
se rapportant à des ouvrages de prélèvements permanents ou temporaires des gaz du sol installés dans les sols ou sous des bâtiments (ouvrages de prélèvements d'air sous-dalle).
Les composés couverts par le présent document sont:
- les composés organiques volatils (COV);
- les composés inorganiques volatils (par exemple mercure, HCN);
- les gaz permanents (c'est-à-dire CO2, N2, O2, CH4).
L'ISO 18400-204:2017 ne fournit pas des lignes directrices concernant:
- l'appréciation et la caractérisation du risque;
- la sélection et la conception de mesures de protection;
- la vérification de mesures de protection, bien que les méthodes d'investigation du site décrites puissent être utilisées en fonction des besoins;
- l'échantillonnage de l'air ambiant ou intérieur;
- le mesurage des gaz du sol entrant dans l'atmosphère;
- la surveillance et l'échantillonnage du radon.

Kakovost tal - Vzorčenje - 204. del: Navodilo za vzorčenje plinov iz tal

Ta dokument vsebuje navodila za vzorčenje plinov v prsti z uporabo
– aktivnega vzorčenja (adsorbenti, filtri, zračne posode) in
– pasivnega vzorčenja, ki se izvaja na stalnih ali začasnih nadzornih vrtinah ali drugih inštalacijah v prsti ali pod stavbami (pod temelji).
Podaja smernice za:
– pripravo načrta vzorčenja;
– izgradnjo nadzornih inštalacij;
– prevoz, pakiranje in shranjevanje vzorcev plinov v prsti;
– zagotavljanje kakovosti.
Ta dokument podaja tudi osnovne informacije o
– dinamiki plinov v prsti in
– ugotavljanju virov plinov v prsti
v povezavi s stalnimi ali začasnimi vrtinami v prsti ali pod stavbami (pod temelji).
V tem dokumentu so zajete naslednje spojine:
– hlapne organske spojine (VOC);
– hlapne anorganske spojine (npr. živo srebro, HCN);
– stalni plini (npr. CO2, N2, O2, CH4).
Ta dokument ne podaja navodil za:
– ocenjevanje in opredelitev tveganj;
– izbiranje in oblikovanje zaščitnih ukrepov;
– preverjanje zaščitnih ukrepov, vendar pa se lahko uporabljajo opisane metodologije za preiskovanje območja, kadar je to primerno;
– vzorčenje atmosferskih plinov in plinov v zaprtih prostorih;
– meritve plinov, prisotnih v prsti, ki prehajajo v ozračje;
– spremljanje in vzorčenje radona.

General Information

Status
Published
Public Enquiry End Date
14-Mar-2018
Publication Date
14-Jun-2018
Technical Committee
Current Stage
6060 - National Implementation/Publication (Adopted Project)
Start Date
08-May-2018
Due Date
13-Jul-2018
Completion Date
15-Jun-2018

Relations

Standard
SIST ISO 18400-204:2018
English language
59 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 18400-204:2017 - Soil quality -- Sampling
English language
52 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 18400-204:2017 - Qualité du sol -- Échantillonnage
French language
56 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


SLOVENSKI STANDARD
01-julij-2018
1DGRPHãþD
SIST ISO 10381-7:2006
.DNRYRVWWDO9]RUþHQMHGHO1DYRGLOR]DY]RUþHQMHSOLQRYL]WDO
Soil quality - Sampling - Part 204: Guidance on sampling of soil gas
Qualité du sol - Échantillonnage - Partie 204: Lignes directrices pour l'échantillonnage
des gaz de sol
Ta slovenski standard je istoveten z: ISO 18400-204:2017
ICS:
13.080.05 Preiskava tal na splošno Examination of soils in
general
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 18400-204
First edition
2017-01
Soil quality — Sampling —
Part 204:
Guidance on sampling of soil gas
Qualité du sol — Échantillonnage —
Partie 204: Lignes directrices pour l’échantillonnage des gaz de sol
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Preliminary items to be considered . 5
5 Basic principles . 6
5.1 Physical and chemical principles . 6
5.1.1 Permanent gases . 6
5.1.2 Volatile organic compounds . 7
5.2 Environmental conditions . 7
5.3 Soil gas dynamics . 9
5.4 Identifying the source of soil gas . 9
6 Requirements for sampling plan .10
6.1 General considerations for sampling plan .10
6.1.1 Objectives and general recommendations .10
6.1.2 Initial explorations (field screening) .12
6.1.3 Known contamination centre .12
6.1.4 Determination of the contamination hot spots (areas showing highest
concentrations) and gas monitoring wells location .12
6.1.5 Determination of horizontal and vertical distribution of VOCs .13
6.1.6 Observation of spatial distribution of VOCs in the course of time .13
6.1.7 Evaluation of soil gases contribution to ambient, indoor and/or outdoor air .13
6.2 Working ranges of measurement methods .13
6.3 Monitoring well options .14
6.4 Sampling plan.17
6.4.1 Horizontal location of sampling devices .17
6.4.2 Monitoring depths .18
6.4.3 Timing and frequency of monitoring .19
6.4.4 Sample volumes and sampling rates .20
7 Construction of monitoring installations .21
7.1 General .21
7.1.1 Environmental conditions .21
7.1.2 Instruments .21
7.2 Soil gas sampling devices .21
7.2.1 Passive soil gas sampling .21
7.2.2 Sub-slab .22
7.2.3 Driven probes .22
7.2.4 Gas-monitoring standpipe in a borehole .23
8 Sampling .26
8.1 Generic consideration .26
8.2 Preparation of the monitoring installations .29
8.2.1 Preparation of the sampling point .29
8.2.2 Leakage test . .29
8.2.3 Purge .29
8.3 Active sampling .30
8.3.1 General.30
8.3.2 Sorbent tubes or filters.31
8.3.3 Sample containers — Sampling bags .34
8.3.4 Sparging .35
8.3.5 Sample containers — Pressurized containers .35
8.4 Passive sampling .35
8.5 Sampling for on-site measurements .36
9 Identification, packaging and transport of samples for laboratory analysis .37
9.1 Identification .37
9.2 Packaging and transport .37
10 Sampling report.37
11 Quality assurance .38
11.1 General .38
11.2 Quality control samples . .39
11.2.1 General.39
11.2.2 Blind replicate samples .40
11.2.3 Split samples .40
11.2.4 Trip blanks .40
11.2.5 Field blanks .40
11.2.6 Other quality control samples .40
11.2.7 Evaluation of quality control sample results .40
11.2.8 Chain of custody .41
11.2.9 Equipment .41
11.3 Interferences .42
11.3.1 General.42
11.3.2 Large sample volume .42
11.3.3 Cohesive soils .42
11.3.4 Soil moisture . . .42
11.3.5 Low ambient temperatures .42
11.3.6 Heterogeneous stratigraphy .42
11.3.7 Seepage front .42
11.3.8 Perched water table horizon .43
11.3.9 Contamination .43
11.3.10  Breakthrough .43
11.4 Interpretation of soil gas analyses for VOCs .43
Annex A (informative) Standard equipment and instruments used for soil gas sampling
for VOCs .44
Annex B (informative) Portable equipment to measure gases.46
Annex C (informative) Equipment to measure flow rates and borehole pressure .48
Annex D (informative) Example of sampling sheet .50
Bibliography .52
iv © ISO 2017 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 2,
Sampling.
This first edition of ISO 18400-204 cancels and replaces ISO 10381-7:2005, which has been technically
and structurally revised. The ISO 18400 series is based on a modular structure and cannot be compared
to ISO 10381-7 clause by clause.
A list of all parts in the ISO 18400 series can be found on the ISO website.
Introduction
This document is one of a group of International Standards to be used in conjunction with each other
where necessary. The ISO 18400 series deals with sampling procedures for the various purposes of soil
investigation. The roles/positions of the individual standards within the total investigation programme
are shown in Figure 1. The stated soil gas and landfill-gas measurements do not give any quantitative
statement of the total quantity of material detected in soil gas or soil. The measurement results can be
influenced by, e.g. temperature, humidity, air pressure, minimum extraction depth, etc.
The general terminology used is in accordance with that established in ISO/TC 190 and, more
particularly, with the vocabulary given in ISO 11074.
Toxic, asphyxiating and explosive soil gases can enter buildings and other built development on
and below ground and variously pose potential risks to occupants and users and to the structures
themselves.
Such gases might be present in the ground naturally, or be present as a result of contamination of the
ground, or arise from buried wastes. In addition to the main components found in air (nitrogen and
oxygen), soil gas can contain volatile organic compounds (VOCs), inorganic vapours (e.g. mercury) and a
wide range of other gases (e.g. methane, carbon dioxide, carbon monoxide, hydrogen sulfide, ammonia,
helium, neon, argon, xenon, radon, etc.).
These gases can have several origins such as: landfilled wastes; contaminated soils on a brownfield
site; plume of contaminated groundwater; spill or leakage of chemicals products, leaks of mains gas
(natural gas); sewer gas, etc.
In order to complete an assessment of the risks posed by the presence of permanent and other soil gases
like VOCs, it is necessary to understand and characterize the potential sources of gas in and around a site.
Guidance on installations for soil gas sampling (equipment and instruments, methods of sampling,
requirements of controls, etc.) and other relevant information (e.g. on environmental conditions) are
provided in this document.
vi © ISO 2017 – All rights reserved

Figure 1 — Links between the essential elements of an investigation programme
NOTE 1 The numbers in circles in Figure 1 define the key elements (1 to 7) of the investigation programme.
NOTE 2 Figure 1 displays a generic process which can be amended when necessary.
INTERNATIONAL STANDARD ISO 18400-204:2017(E)
Soil quality — Sampling —
Part 204:
Guidance on sampling of soil gas
1 Scope
This document contains guidance on soil gas sampling using
— active sampling (adsorbents, filters, air containers), and
— passive sampling
applied at permanent or temporary monitoring wells or other installations in soils or underneath
buildings (sub-slab).
It provides guidance on:
— development of a sampling plan;
— construction of monitoring installations;
— transport, packaging and storage soil gas samples;
— quality assurance.
This document also gives basic information about
— soil gas dynamics, and
— identification of soil gas sources
relevant to permanent or temporary boreholes in soils or underneath buildings (sub-slab).
The compounds covered by this document are:
— volatile organic compounds (VOCs);
— inorganic volatile compounds (e.g. mercury, HCN);
— permanent gases (i.e. CO , N , O , CH ).
2 2 2 4
This document does not give guidance on:
— risk evaluation and characterization;
— selection and design of protective measures;
— the verification of protective measures, although the site investigation methodologies described
can be used when appropriate;
— the sampling of atmospheric or indoor gases;
— the measurement of gases from the soil entering into the atmosphere;
— monitoring and sampling for radon.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 11074, Soil quality — Vocabulary
ISO 18400-107, Soil quality — Sampling — Part 107: Recording and reporting
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
active soil gas sampling
sampling by extracting a certain volume of soil gas
3.2
breakthrough
detection of an adsorbent control section of one or more compounds having a mass greater than 5 % of
the mass quantified on the measuring section
3.3
dead volume
volume which is present between the suction opening of the soil gas probe and the sampling vial,
including the volume of the sampling vial or of the adsorption tube
3.4
dense non aqueous phase liquid
DNAPL
liquid of a group of organic substances which is relatively insoluble in the water and denser than the water
3.5
direct method
direct measuring method
method of analysis where the soil gas sample (aliquot) is directly introduced into a suitable equipment
without first being concentrated and subjected to analysis
3.6
direct-reading detecting tube
glass tube filled with reagents which, after drawing through certain gaseous compounds, show
concentration-dependent chromophoric reactions and which are thus used for qualitative and semi-
quantitative analyses as well
Note 1 to entry: It is important that attention be paid to cross-sensitivities.
3.7
gas migration
movement of gas from the source through the ground to the adjoining strata or to emit to atmosphere
Note 1 to entry: Examples of sources include e.g. wastes within a landfill or spill of hydrocarbons.
2 © ISO 2017 – All rights reserved

3.8
gas monitoring well
standpipe suitably installed inside a borehole from which gas samples can be taken to measure soil gas
concentrations and to monitor changes in composition of soil gas or soil gas migration (3.7)
3.9
gas sampling
collection of a volume of soil gas contained in the pore space of the soil
3.10
landfill
deposition of waste into or onto the land as a means of disposal
3.11
landfill gas
mixture of permanent gases (main components), dominated by methane and carbon dioxide, formed by
the decomposition of degradable wastes within landfill sites
Note 1 to entry: It can also include a large number of VOCs (trace components).
3.12.1
lower explosive limit
LEL
lowest percentage (volume fraction) of a mixture of flammable gas with air which will propagate an
explosion in a confined space at 25 °C and atmospheric pressure
3.12.2
upper explosive limit
UEL
uppermost percentage (volume fraction) of a mixture of flammable gas with air which will propagate
an explosion in a confined space at 25 °C and atmospheric pressure
3.13
light non aqueous phase liquid
LNAPL
liquid of a group of organic substances which is relatively insoluble in the water and less dense than
the water
3.14
method by adsorption
method in which substances to be determined are concentrated adsorptively on an adsorbent,
subsequently desorbed and analysed
Note 1 to entry: The adsorbent can be e.g. activated charcoal or XAD-4 resin.
3.15
monitoring installation
permanent or temporary device used for soil gas sampling
EXAMPLE Sub-slab, soil gas probe.
3.16
non aqueous phase liquid
NAPL
liquid of a group of organic substances which is relatively insoluble in the water
3.17
one-stage soil gas sampling
sampling of soil gas directly from a soil gas probe placed in soil, without pre-drilling
3.18
passive soil gas sampling
sampling based on the adsorption of gases of the ground on an adsorbent placed in the ground, without
using artificially reduced pressure
3.19
permanent gas
element or compound that is a gas at all ambient temperatures likely to be encountered on the surface
of the earth
EXAMPLE Gas like mine and landfill gases.
Note 1 to entry: Permanent gas can also be defined as “element or compound that is a gas at all ambient
temperatures likely to be encountered on the surface of the earth”; see ISO 11074:2015, 3.6.11.
3.20
soil gas
gas and vapour in the pore spaces of soils
3.21
soil gas monitoring device
borehole finished with suitable material for stabilisation of the borehole wall and/or for limiting the
sampling area
Note 1 to entry: Depending on the type and stability of fitting, a distinction is made between temporary (for single
or short-term repeated soil sampling) and stationary and semi-permanent or permanent soil gas monitoring
points (for long-term observation).
3.22
soil gas probe
soil gas sampling probe
probe, generally a tube, which is installed directly into soil (one-stage soil gas sampling), or in a borehole
(two-stage soil gas sampling) to take soil gas samples
Note 1 to entry: By applying a negative pressure to the upper end of the soil gas probe (head), the soil gas at
the lower end (tip) is drawn through the suction opening(s) and transferred to a gas collecting equipment and
online measurement equipment (direct measuring method) or to an absorbent (concentration method), which
are installed either in or at the head of the soil gas probe or subsequently used.
3.23
soil gas sample volume
volume of soil gas taken to form the sample
3.24
continuous soil gas sampling
sampling from a monitoring well over a controlled longer period of time (mostly several hours up to
days) to observe the variations over time of the gas concentrations and of the pressure distribution in
the soil
3.25
sub-slab
soil gas sampling location just below the foundation slab of a building, within the unsaturated zone
3.26
subsoil
layer of soil beneath the surface soil and overlying the bedrock (called also “undersoil”)
3.27
two-stage soil gas sampling
sampling done firstly through installation of a borehole with the aid of a drilling instrument or by small
boring, and secondly by sampling of soil gas from a soil gas probe installed in the borehole
4 © ISO 2017 – All rights reserved

3.28
volatile organic compound
VOC
organic compound that is volatile under normal environmental/atmospheric conditions, although it can
be found in the ground in the solid, liquid and dissolved phase form as well as in gaseous phase
Note 1 to entry: VOC can also be defined as “organic compound” which is liquid at room temperature (20 °C),
which generally has a boiling point below 180 °C”; see ISO 11074:2015, 6.1.24.
Note 2 to entry: Examples include single-ring aromatic hydrocarbons and other low boiling halogenated
hydrocarbons, which are used as solvents or fuels, and some degradation products.
4 Preliminary items to be considered
Soil vapour monitoring is a faster and cheaper method to detect contamination of VOCs in soils and/or
in groundwater and for mapping the plumes than soil boreholes and/or the installation of groundwater
monitoring wells. The method permits establishment of a much denser network of soil gas monitoring
points than is usually possible for groundwater monitoring wells and soil boreholes.
The choice of sampling technique should be consistent with the requirements of the investigation
(including subsequent analytical procedures, conceptual site model, investigation objectives, etc.).
Consideration should also be given to the nature of ground under investigation, as well as the nature
and distribution of contamination, the geology and the hydrogeology. Every effort should be made to
avoid cross-contamination and creation of preferential pathways to avoid contamination of underlying
aquifers.
Before intrusive works begin, a comprehensive check should be made of the ground to ensure that
no services or structures are at risk and no hazards are present (for more information on sampling
techniques and safety, see ISO 18400-102 and ISO 18400-103).
When sampling soil gas close to the surface, the effect of ambient air penetration needs to be considered.
The sampling depth is determined by the presence of impermeable cover over the ground surface, the
soil type (porosity, clay content, etc.) and the depth of bedrock.
NOTE 1 A preliminary condition for soil gas sampling and monitoring is the prior recording of the geological
soil profiles/pedological layers. For some sites, this can be done whilst taking soil samples from borings.
Cold conditions make soil gas sampling difficult in many ways. Ground frost greatly limits the mobility
of gas in soil and should be considered in planning and carrying out sampling as well as in interpreting
the measurements results. Water saturation (total or partial) of unsaturated layer (e.g. after rainfall)
can significantly reduce the soil gas emission rates, limit soil gas mobility, and lead to high levels of
humidity can severely reduce the adsorption capacity of some sorbents.
The main problem with soil gas sampling below the frozen ground is the loss of air-filled porosity due to
the high moisture content in the zone between frozen and unfrozen parts of the ground. Consequently,
the samples should be taken from greater depths (but compatible with investigation objectives).
All buildings constructed on unfrozen ground act as pathways or barriers for upwards soil gas
migration. Lower pressures and differences in concentration in the buildings can also assist gases to
penetrate the basements of buildings.
NOTE 2 Causes of differential pressure effects include the rise of warm air within buildings and the operation
of air-conditioning systems. Gas can enter through:
—  cracks and openings in concrete ground slabs such as cracks due to shrinkage;
—  construction joints/openings, e.g. at wall/foundation interface with ground slab;
—  cracks in walls below ground level present due for example to shrinkage or movement;
—  gaps and openings in suspended concrete or timber floors;
—  gaps around service pipes and ducts;
—  cavity walls;
—  staircases, elevator shaft.
Gas migration into other structures also needs to be considered, especially below ground structures
such as manholes, culverts, lift pits, mine shafts, access to underground services, etc.
This document specifically deals with the sampling of soil gas. Related exhaust or interference sources
in ambient air (industrial or more generally anthropogenic activities) are not considered apart from the
constitution of a field blank.
Pressure effects caused by the rise of warm air within buildings can assist the entry of gases into
buildings.
Some organic pollutants in the gas phase in soil and subsoil can present toxicological risks of varying
severity. Due to this possibility, personnel should be provided with appropriate gas detection equipment
and should be equipped, according to the potential toxicity (assumed or measured), with suitable
personnel protective equipment (PPE).
Certain organic fumes (as well as methane, for example) can form explosive mixtures with air
(explosivity limits and self-ignition temperatures should be taken into account). It is therefore
appropriate to use electrical equipment and tools which are suitable for use in explosive atmospheres.
Health and safety issues should be considered at all times. Training should be given to ensure that
personnel understand the necessary precautions (for more information on safety, see ISO 18400-103).
5 Basic principles
5.1 Physical and chemical principles
5.1.1 Permanent gases
Potentially hazardous permanent gases (see 3.19) such as methane and carbon dioxide occur most
commonly in “landfill gas” and “mine gases”.
Wherever biodegradable material is present in landfill sites or within the soil matrix of the ground
beneath a brownfield site, microbial activity will produce methane and/or carbon dioxide. These gases
can similarly be produced in alluvial deposits and by degrading natural organic material. Landfill gas
consists primarily of methane and carbon dioxide (at a ratio of approximately 60:40). Depending on
microbial activity, this ratio can change. A number of additional trace gases can be present.
Mine gas, also called coal mine methane (CMM), is a set of various vapours produced during mine
operations. It is a mix of methane (essentially, more than 90 %) and carbon dioxide (nearly 10 %).
Some minor gases are also present: carbon monoxide (product of incomplete combustion of carbon),
hydrogen sulfide and nitrogen.
Abandoned mine methane (AMM) refers to mine gas after exploitation, which is trapped in the former
galleries, boosted and propelled to the surface throughout the flooding of the mine. It usually contains
less methane and more air than CMM (50 % to 60 % of methane, depending on the sealing of the mining
voids and former works).
Permanent gases can also originate from coal deposits, peat, natural deposits (e.g. chalk and alluvial
deposits), from leaks of mains gas (natural gas) and from sewer gas. Information on techniques for
identifying the origin of gas can be found in 5.4.
Methane is explosive at concentrations of between 5 % and 15 % (volume fraction) in air; below 5 %
[the lower explosive limit (LEL)] there is insufficient gas to support combustion and above 15 % [the
6 © ISO 2017 – All rights reserved

upper explosive limit (UEL)] there is insufficient oxygen to support combustion. These both explosive
limits are changed by the presence of other gases (e.g. carbon dioxide).
Carbon dioxide is an asphyxiant and also toxic. It can cause adverse health effects in concentrations
greater than about 0,5 % (volume fraction).
The LEL of a mixture of explosive gas is equal to the lowest LEL among the components of the gaseous
mixture. In the same way, the UEL of a mixture of explosive gas is equal to the highest UEL among
the components of the gaseous mixture. Thus, other alkanes concentration (ethane, notably) should be
considered in the calculation of LEL/UEL.
Landfill gas is usually saturated with moisture and is corrosive. It can cause vegetation to die back due
to the elimination of oxygen from the plant’s root zone or to the presence of phytotoxic compounds. Its
density depends upon the ratio of carbon dioxide to methane: the higher the ratio of carbon dioxide, the
greater the density.
Gas pressure within the subsurface is dependent on the gas generation rate, the atmospheric pressure,
the permeability of the waste mass and the surrounding strata, changes in the level of leachate or
groundwater within the site and the temperature.
Depending upon site engineering and local geology, gas can migrate considerable distances and can
present a hazard to nearby developments.
In the particular case of mine gas, the cessation of water pumping leads to a rise in water table
levels which increases the gas pressure in mine voids, and consequently increases the probability of
surface gas emissions, through the ground or former mine works. It is, therefore, important to gain an
understanding of gas concentrations and flow rates to establish the potential for gas migration off-site
or atmospheric emissions. Usually, decompression boreholes are drilled to avoid this phenomenon.
They are good monitoring and sampling points to monitor mine gas composition, pressure, flow and
water level.
5.1.2 Volatile organic compounds
Depending on the pressure and temperature conditions, VOCs enter into soil pore space as either a
liquid or a gaseous phase. They are present in soil as gaseous and liquid phases, dissolved in soil water,
adsorbed on solid (organic and inorganic) soil particles or enclosed in capillary cavities.
Dynamic distribution equilibriums are established according to the prevailing conditions and bound
forms of the pollutants. Owing to the diversity of the possible substance distributions and the time-
dependent effects on the equilibrium, each determination of the contaminant concentration can provide
only a “point-in-time” description of the status. Every interference, with the soil and/or groundwater,
affects the distribution equilibrium in a different way, which is difficult to assess.
A saturation equilibrium between the liquid and gaseous phases is established in the contaminated
zone independent of the amount of substance present. A soil gas saturation concentration of a VOC
develops in the immediate surroundings of the polluted area, irrespective of whether it is a very small
drop of the substance or a large deposit. The concentrations measured in the soil gas should not be used
as an index of the actual amount of substance present in the soil. VOCs disperse in soil gas by convection
(i.e. in the direction of the pressure gradient) and diffusively (i.e. in the direction of the concentration
gradient). VOCs in the soil can be transported as flowing non-aqueous-phase liquids (NAPLs and/or
DNAPLs), or together with another flowing liquid phase (e.g. groundwater, or dissolved in mineral oil),
from which they can be transferred back into the soil gas.
5.2 Environmental conditions
It is important that atmospheric conditions, before and during the sampling, be recorded. It will
generally be sufficient to record the conditions about a week prior to sampling, but rainfall up to a
couple of weeks before may affect soil gas sampling, depending on, e.g. temperature, soil type and
sampling depth. Local climatic conditions at the time of monitoring should also be recorded. This
information can help in the interpretation of the data. The most important parameters to record are:
— atmospheric pressure:
due to the pressure difference between soil pores and atmosphere, rapid falling atmospheric pressure
increases soil gas emission rates. Rapid rising atmospheric pressure can have the opposite effect. The
magnitude of this effect depends upon the soil permeability and the rate at which the pressure changes.
It is also considered that atmospheric pressure under 1 013 hPa (depression condition) will increase
emission rates;
— rainfall:
a long or a strong period of rainfall can lead to accumulation of soil gas under the water front. Gas can
be dissolved in water and the sampling, even with pumping device, will not be enough to free the gas.
The measurement will not also be representative;
after rainfall, a water logging effect will occur in the unsaturated layer and change the ground’s water
saturation, reduce the movement and reduce emission rates of soil gas.
Other useful parameters are:
— outdoor temperature:
outdoor temperature have a significant effect on evaporation, which in turn will affect the infiltration
and percolation of water and thus the mobility and concentration of soil gas;
soil temperature also affects the concentration of gases e.g. biological production of CO (and
consumption of O ) through root and microbial respiration is higher at higher temperature especially
in well vegetated areas. Other gas producing reactions may also be temperature dependent;
temperature influences volatility of chemicals. High temperature will raise the volatile potential of
chemicals and increase emission rates;
NOTE 1 The temperature in the soil tends to remain relatively consistent, until near sub-surface (1,0 m to
1,5 m depending on climate and of the soil nature). At this depth, outdoor temperature has low or no influence on
the volatilisation in the subsurface and emission of VOCs.
— indoor temperature:
when a building is heated, if the indoor temperature is higher than outdoor temperature, a “chimney
effect” can occur, leading to a reduction in pressure re
...


INTERNATIONAL ISO
STANDARD 18400-204
First edition
2017-01
Soil quality — Sampling —
Part 204:
Guidance on sampling of soil gas
Qualité du sol — Échantillonnage —
Partie 204: Lignes directrices pour l’échantillonnage des gaz de sol
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Preliminary items to be considered . 5
5 Basic principles . 6
5.1 Physical and chemical principles . 6
5.1.1 Permanent gases . 6
5.1.2 Volatile organic compounds . 7
5.2 Environmental conditions . 7
5.3 Soil gas dynamics . 9
5.4 Identifying the source of soil gas . 9
6 Requirements for sampling plan .10
6.1 General considerations for sampling plan .10
6.1.1 Objectives and general recommendations .10
6.1.2 Initial explorations (field screening) .12
6.1.3 Known contamination centre .12
6.1.4 Determination of the contamination hot spots (areas showing highest
concentrations) and gas monitoring wells location .12
6.1.5 Determination of horizontal and vertical distribution of VOCs .13
6.1.6 Observation of spatial distribution of VOCs in the course of time .13
6.1.7 Evaluation of soil gases contribution to ambient, indoor and/or outdoor air .13
6.2 Working ranges of measurement methods .13
6.3 Monitoring well options .14
6.4 Sampling plan.17
6.4.1 Horizontal location of sampling devices .17
6.4.2 Monitoring depths .18
6.4.3 Timing and frequency of monitoring .19
6.4.4 Sample volumes and sampling rates .20
7 Construction of monitoring installations .21
7.1 General .21
7.1.1 Environmental conditions .21
7.1.2 Instruments .21
7.2 Soil gas sampling devices .21
7.2.1 Passive soil gas sampling .21
7.2.2 Sub-slab .22
7.2.3 Driven probes .22
7.2.4 Gas-monitoring standpipe in a borehole .23
8 Sampling .26
8.1 Generic consideration .26
8.2 Preparation of the monitoring installations .29
8.2.1 Preparation of the sampling point .29
8.2.2 Leakage test . .29
8.2.3 Purge .29
8.3 Active sampling .30
8.3.1 General.30
8.3.2 Sorbent tubes or filters.31
8.3.3 Sample containers — Sampling bags .34
8.3.4 Sparging .35
8.3.5 Sample containers — Pressurized containers .35
8.4 Passive sampling .35
8.5 Sampling for on-site measurements .36
9 Identification, packaging and transport of samples for laboratory analysis .37
9.1 Identification .37
9.2 Packaging and transport .37
10 Sampling report.37
11 Quality assurance .38
11.1 General .38
11.2 Quality control samples . .39
11.2.1 General.39
11.2.2 Blind replicate samples .40
11.2.3 Split samples .40
11.2.4 Trip blanks .40
11.2.5 Field blanks .40
11.2.6 Other quality control samples .40
11.2.7 Evaluation of quality control sample results .40
11.2.8 Chain of custody .41
11.2.9 Equipment .41
11.3 Interferences .42
11.3.1 General.42
11.3.2 Large sample volume .42
11.3.3 Cohesive soils .42
11.3.4 Soil moisture . . .42
11.3.5 Low ambient temperatures .42
11.3.6 Heterogeneous stratigraphy .42
11.3.7 Seepage front .42
11.3.8 Perched water table horizon .43
11.3.9 Contamination .43
11.3.10  Breakthrough .43
11.4 Interpretation of soil gas analyses for VOCs .43
Annex A (informative) Standard equipment and instruments used for soil gas sampling
for VOCs .44
Annex B (informative) Portable equipment to measure gases.46
Annex C (informative) Equipment to measure flow rates and borehole pressure .48
Annex D (informative) Example of sampling sheet .50
Bibliography .52
iv © ISO 2017 – All rights reserved

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www . i so .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 2,
Sampling.
This first edition of ISO 18400-204 cancels and replaces ISO 10381-7:2005, which has been technically
and structurally revised. The ISO 18400 series is based on a modular structure and cannot be compared
to ISO 10381-7 clause by clause.
A list of all parts in the ISO 18400 series can be found on the ISO website.
Introduction
This document is one of a group of International Standards to be used in conjunction with each other
where necessary. The ISO 18400 series deals with sampling procedures for the various purposes of soil
investigation. The roles/positions of the individual standards within the total investigation programme
are shown in Figure 1. The stated soil gas and landfill-gas measurements do not give any quantitative
statement of the total quantity of material detected in soil gas or soil. The measurement results can be
influenced by, e.g. temperature, humidity, air pressure, minimum extraction depth, etc.
The general terminology used is in accordance with that established in ISO/TC 190 and, more
particularly, with the vocabulary given in ISO 11074.
Toxic, asphyxiating and explosive soil gases can enter buildings and other built development on
and below ground and variously pose potential risks to occupants and users and to the structures
themselves.
Such gases might be present in the ground naturally, or be present as a result of contamination of the
ground, or arise from buried wastes. In addition to the main components found in air (nitrogen and
oxygen), soil gas can contain volatile organic compounds (VOCs), inorganic vapours (e.g. mercury) and a
wide range of other gases (e.g. methane, carbon dioxide, carbon monoxide, hydrogen sulfide, ammonia,
helium, neon, argon, xenon, radon, etc.).
These gases can have several origins such as: landfilled wastes; contaminated soils on a brownfield
site; plume of contaminated groundwater; spill or leakage of chemicals products, leaks of mains gas
(natural gas); sewer gas, etc.
In order to complete an assessment of the risks posed by the presence of permanent and other soil gases
like VOCs, it is necessary to understand and characterize the potential sources of gas in and around a site.
Guidance on installations for soil gas sampling (equipment and instruments, methods of sampling,
requirements of controls, etc.) and other relevant information (e.g. on environmental conditions) are
provided in this document.
vi © ISO 2017 – All rights reserved

Figure 1 — Links between the essential elements of an investigation programme
NOTE 1 The numbers in circles in Figure 1 define the key elements (1 to 7) of the investigation programme.
NOTE 2 Figure 1 displays a generic process which can be amended when necessary.
INTERNATIONAL STANDARD ISO 18400-204:2017(E)
Soil quality — Sampling —
Part 204:
Guidance on sampling of soil gas
1 Scope
This document contains guidance on soil gas sampling using
— active sampling (adsorbents, filters, air containers), and
— passive sampling
applied at permanent or temporary monitoring wells or other installations in soils or underneath
buildings (sub-slab).
It provides guidance on:
— development of a sampling plan;
— construction of monitoring installations;
— transport, packaging and storage soil gas samples;
— quality assurance.
This document also gives basic information about
— soil gas dynamics, and
— identification of soil gas sources
relevant to permanent or temporary boreholes in soils or underneath buildings (sub-slab).
The compounds covered by this document are:
— volatile organic compounds (VOCs);
— inorganic volatile compounds (e.g. mercury, HCN);
— permanent gases (i.e. CO , N , O , CH ).
2 2 2 4
This document does not give guidance on:
— risk evaluation and characterization;
— selection and design of protective measures;
— the verification of protective measures, although the site investigation methodologies described
can be used when appropriate;
— the sampling of atmospheric or indoor gases;
— the measurement of gases from the soil entering into the atmosphere;
— monitoring and sampling for radon.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 11074, Soil quality — Vocabulary
ISO 18400-107, Soil quality — Sampling — Part 107: Recording and reporting
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 11074 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http:// www .electropedia .org/
— ISO Online browsing platform: available at http:// www .iso .org/ obp
3.1
active soil gas sampling
sampling by extracting a certain volume of soil gas
3.2
breakthrough
detection of an adsorbent control section of one or more compounds having a mass greater than 5 % of
the mass quantified on the measuring section
3.3
dead volume
volume which is present between the suction opening of the soil gas probe and the sampling vial,
including the volume of the sampling vial or of the adsorption tube
3.4
dense non aqueous phase liquid
DNAPL
liquid of a group of organic substances which is relatively insoluble in the water and denser than the water
3.5
direct method
direct measuring method
method of analysis where the soil gas sample (aliquot) is directly introduced into a suitable equipment
without first being concentrated and subjected to analysis
3.6
direct-reading detecting tube
glass tube filled with reagents which, after drawing through certain gaseous compounds, show
concentration-dependent chromophoric reactions and which are thus used for qualitative and semi-
quantitative analyses as well
Note 1 to entry: It is important that attention be paid to cross-sensitivities.
3.7
gas migration
movement of gas from the source through the ground to the adjoining strata or to emit to atmosphere
Note 1 to entry: Examples of sources include e.g. wastes within a landfill or spill of hydrocarbons.
2 © ISO 2017 – All rights reserved

3.8
gas monitoring well
standpipe suitably installed inside a borehole from which gas samples can be taken to measure soil gas
concentrations and to monitor changes in composition of soil gas or soil gas migration (3.7)
3.9
gas sampling
collection of a volume of soil gas contained in the pore space of the soil
3.10
landfill
deposition of waste into or onto the land as a means of disposal
3.11
landfill gas
mixture of permanent gases (main components), dominated by methane and carbon dioxide, formed by
the decomposition of degradable wastes within landfill sites
Note 1 to entry: It can also include a large number of VOCs (trace components).
3.12.1
lower explosive limit
LEL
lowest percentage (volume fraction) of a mixture of flammable gas with air which will propagate an
explosion in a confined space at 25 °C and atmospheric pressure
3.12.2
upper explosive limit
UEL
uppermost percentage (volume fraction) of a mixture of flammable gas with air which will propagate
an explosion in a confined space at 25 °C and atmospheric pressure
3.13
light non aqueous phase liquid
LNAPL
liquid of a group of organic substances which is relatively insoluble in the water and less dense than
the water
3.14
method by adsorption
method in which substances to be determined are concentrated adsorptively on an adsorbent,
subsequently desorbed and analysed
Note 1 to entry: The adsorbent can be e.g. activated charcoal or XAD-4 resin.
3.15
monitoring installation
permanent or temporary device used for soil gas sampling
EXAMPLE Sub-slab, soil gas probe.
3.16
non aqueous phase liquid
NAPL
liquid of a group of organic substances which is relatively insoluble in the water
3.17
one-stage soil gas sampling
sampling of soil gas directly from a soil gas probe placed in soil, without pre-drilling
3.18
passive soil gas sampling
sampling based on the adsorption of gases of the ground on an adsorbent placed in the ground, without
using artificially reduced pressure
3.19
permanent gas
element or compound that is a gas at all ambient temperatures likely to be encountered on the surface
of the earth
EXAMPLE Gas like mine and landfill gases.
Note 1 to entry: Permanent gas can also be defined as “element or compound that is a gas at all ambient
temperatures likely to be encountered on the surface of the earth”; see ISO 11074:2015, 3.6.11.
3.20
soil gas
gas and vapour in the pore spaces of soils
3.21
soil gas monitoring device
borehole finished with suitable material for stabilisation of the borehole wall and/or for limiting the
sampling area
Note 1 to entry: Depending on the type and stability of fitting, a distinction is made between temporary (for single
or short-term repeated soil sampling) and stationary and semi-permanent or permanent soil gas monitoring
points (for long-term observation).
3.22
soil gas probe
soil gas sampling probe
probe, generally a tube, which is installed directly into soil (one-stage soil gas sampling), or in a borehole
(two-stage soil gas sampling) to take soil gas samples
Note 1 to entry: By applying a negative pressure to the upper end of the soil gas probe (head), the soil gas at
the lower end (tip) is drawn through the suction opening(s) and transferred to a gas collecting equipment and
online measurement equipment (direct measuring method) or to an absorbent (concentration method), which
are installed either in or at the head of the soil gas probe or subsequently used.
3.23
soil gas sample volume
volume of soil gas taken to form the sample
3.24
continuous soil gas sampling
sampling from a monitoring well over a controlled longer period of time (mostly several hours up to
days) to observe the variations over time of the gas concentrations and of the pressure distribution in
the soil
3.25
sub-slab
soil gas sampling location just below the foundation slab of a building, within the unsaturated zone
3.26
subsoil
layer of soil beneath the surface soil and overlying the bedrock (called also “undersoil”)
3.27
two-stage soil gas sampling
sampling done firstly through installation of a borehole with the aid of a drilling instrument or by small
boring, and secondly by sampling of soil gas from a soil gas probe installed in the borehole
4 © ISO 2017 – All rights reserved

3.28
volatile organic compound
VOC
organic compound that is volatile under normal environmental/atmospheric conditions, although it can
be found in the ground in the solid, liquid and dissolved phase form as well as in gaseous phase
Note 1 to entry: VOC can also be defined as “organic compound” which is liquid at room temperature (20 °C),
which generally has a boiling point below 180 °C”; see ISO 11074:2015, 6.1.24.
Note 2 to entry: Examples include single-ring aromatic hydrocarbons and other low boiling halogenated
hydrocarbons, which are used as solvents or fuels, and some degradation products.
4 Preliminary items to be considered
Soil vapour monitoring is a faster and cheaper method to detect contamination of VOCs in soils and/or
in groundwater and for mapping the plumes than soil boreholes and/or the installation of groundwater
monitoring wells. The method permits establishment of a much denser network of soil gas monitoring
points than is usually possible for groundwater monitoring wells and soil boreholes.
The choice of sampling technique should be consistent with the requirements of the investigation
(including subsequent analytical procedures, conceptual site model, investigation objectives, etc.).
Consideration should also be given to the nature of ground under investigation, as well as the nature
and distribution of contamination, the geology and the hydrogeology. Every effort should be made to
avoid cross-contamination and creation of preferential pathways to avoid contamination of underlying
aquifers.
Before intrusive works begin, a comprehensive check should be made of the ground to ensure that
no services or structures are at risk and no hazards are present (for more information on sampling
techniques and safety, see ISO 18400-102 and ISO 18400-103).
When sampling soil gas close to the surface, the effect of ambient air penetration needs to be considered.
The sampling depth is determined by the presence of impermeable cover over the ground surface, the
soil type (porosity, clay content, etc.) and the depth of bedrock.
NOTE 1 A preliminary condition for soil gas sampling and monitoring is the prior recording of the geological
soil profiles/pedological layers. For some sites, this can be done whilst taking soil samples from borings.
Cold conditions make soil gas sampling difficult in many ways. Ground frost greatly limits the mobility
of gas in soil and should be considered in planning and carrying out sampling as well as in interpreting
the measurements results. Water saturation (total or partial) of unsaturated layer (e.g. after rainfall)
can significantly reduce the soil gas emission rates, limit soil gas mobility, and lead to high levels of
humidity can severely reduce the adsorption capacity of some sorbents.
The main problem with soil gas sampling below the frozen ground is the loss of air-filled porosity due to
the high moisture content in the zone between frozen and unfrozen parts of the ground. Consequently,
the samples should be taken from greater depths (but compatible with investigation objectives).
All buildings constructed on unfrozen ground act as pathways or barriers for upwards soil gas
migration. Lower pressures and differences in concentration in the buildings can also assist gases to
penetrate the basements of buildings.
NOTE 2 Causes of differential pressure effects include the rise of warm air within buildings and the operation
of air-conditioning systems. Gas can enter through:
—  cracks and openings in concrete ground slabs such as cracks due to shrinkage;
—  construction joints/openings, e.g. at wall/foundation interface with ground slab;
—  cracks in walls below ground level present due for example to shrinkage or movement;
—  gaps and openings in suspended concrete or timber floors;
—  gaps around service pipes and ducts;
—  cavity walls;
—  staircases, elevator shaft.
Gas migration into other structures also needs to be considered, especially below ground structures
such as manholes, culverts, lift pits, mine shafts, access to underground services, etc.
This document specifically deals with the sampling of soil gas. Related exhaust or interference sources
in ambient air (industrial or more generally anthropogenic activities) are not considered apart from the
constitution of a field blank.
Pressure effects caused by the rise of warm air within buildings can assist the entry of gases into
buildings.
Some organic pollutants in the gas phase in soil and subsoil can present toxicological risks of varying
severity. Due to this possibility, personnel should be provided with appropriate gas detection equipment
and should be equipped, according to the potential toxicity (assumed or measured), with suitable
personnel protective equipment (PPE).
Certain organic fumes (as well as methane, for example) can form explosive mixtures with air
(explosivity limits and self-ignition temperatures should be taken into account). It is therefore
appropriate to use electrical equipment and tools which are suitable for use in explosive atmospheres.
Health and safety issues should be considered at all times. Training should be given to ensure that
personnel understand the necessary precautions (for more information on safety, see ISO 18400-103).
5 Basic principles
5.1 Physical and chemical principles
5.1.1 Permanent gases
Potentially hazardous permanent gases (see 3.19) such as methane and carbon dioxide occur most
commonly in “landfill gas” and “mine gases”.
Wherever biodegradable material is present in landfill sites or within the soil matrix of the ground
beneath a brownfield site, microbial activity will produce methane and/or carbon dioxide. These gases
can similarly be produced in alluvial deposits and by degrading natural organic material. Landfill gas
consists primarily of methane and carbon dioxide (at a ratio of approximately 60:40). Depending on
microbial activity, this ratio can change. A number of additional trace gases can be present.
Mine gas, also called coal mine methane (CMM), is a set of various vapours produced during mine
operations. It is a mix of methane (essentially, more than 90 %) and carbon dioxide (nearly 10 %).
Some minor gases are also present: carbon monoxide (product of incomplete combustion of carbon),
hydrogen sulfide and nitrogen.
Abandoned mine methane (AMM) refers to mine gas after exploitation, which is trapped in the former
galleries, boosted and propelled to the surface throughout the flooding of the mine. It usually contains
less methane and more air than CMM (50 % to 60 % of methane, depending on the sealing of the mining
voids and former works).
Permanent gases can also originate from coal deposits, peat, natural deposits (e.g. chalk and alluvial
deposits), from leaks of mains gas (natural gas) and from sewer gas. Information on techniques for
identifying the origin of gas can be found in 5.4.
Methane is explosive at concentrations of between 5 % and 15 % (volume fraction) in air; below 5 %
[the lower explosive limit (LEL)] there is insufficient gas to support combustion and above 15 % [the
6 © ISO 2017 – All rights reserved

upper explosive limit (UEL)] there is insufficient oxygen to support combustion. These both explosive
limits are changed by the presence of other gases (e.g. carbon dioxide).
Carbon dioxide is an asphyxiant and also toxic. It can cause adverse health effects in concentrations
greater than about 0,5 % (volume fraction).
The LEL of a mixture of explosive gas is equal to the lowest LEL among the components of the gaseous
mixture. In the same way, the UEL of a mixture of explosive gas is equal to the highest UEL among
the components of the gaseous mixture. Thus, other alkanes concentration (ethane, notably) should be
considered in the calculation of LEL/UEL.
Landfill gas is usually saturated with moisture and is corrosive. It can cause vegetation to die back due
to the elimination of oxygen from the plant’s root zone or to the presence of phytotoxic compounds. Its
density depends upon the ratio of carbon dioxide to methane: the higher the ratio of carbon dioxide, the
greater the density.
Gas pressure within the subsurface is dependent on the gas generation rate, the atmospheric pressure,
the permeability of the waste mass and the surrounding strata, changes in the level of leachate or
groundwater within the site and the temperature.
Depending upon site engineering and local geology, gas can migrate considerable distances and can
present a hazard to nearby developments.
In the particular case of mine gas, the cessation of water pumping leads to a rise in water table
levels which increases the gas pressure in mine voids, and consequently increases the probability of
surface gas emissions, through the ground or former mine works. It is, therefore, important to gain an
understanding of gas concentrations and flow rates to establish the potential for gas migration off-site
or atmospheric emissions. Usually, decompression boreholes are drilled to avoid this phenomenon.
They are good monitoring and sampling points to monitor mine gas composition, pressure, flow and
water level.
5.1.2 Volatile organic compounds
Depending on the pressure and temperature conditions, VOCs enter into soil pore space as either a
liquid or a gaseous phase. They are present in soil as gaseous and liquid phases, dissolved in soil water,
adsorbed on solid (organic and inorganic) soil particles or enclosed in capillary cavities.
Dynamic distribution equilibriums are established according to the prevailing conditions and bound
forms of the pollutants. Owing to the diversity of the possible substance distributions and the time-
dependent effects on the equilibrium, each determination of the contaminant concentration can provide
only a “point-in-time” description of the status. Every interference, with the soil and/or groundwater,
affects the distribution equilibrium in a different way, which is difficult to assess.
A saturation equilibrium between the liquid and gaseous phases is established in the contaminated
zone independent of the amount of substance present. A soil gas saturation concentration of a VOC
develops in the immediate surroundings of the polluted area, irrespective of whether it is a very small
drop of the substance or a large deposit. The concentrations measured in the soil gas should not be used
as an index of the actual amount of substance present in the soil. VOCs disperse in soil gas by convection
(i.e. in the direction of the pressure gradient) and diffusively (i.e. in the direction of the concentration
gradient). VOCs in the soil can be transported as flowing non-aqueous-phase liquids (NAPLs and/or
DNAPLs), or together with another flowing liquid phase (e.g. groundwater, or dissolved in mineral oil),
from which they can be transferred back into the soil gas.
5.2 Environmental conditions
It is important that atmospheric conditions, before and during the sampling, be recorded. It will
generally be sufficient to record the conditions about a week prior to sampling, but rainfall up to a
couple of weeks before may affect soil gas sampling, depending on, e.g. temperature, soil type and
sampling depth. Local climatic conditions at the time of monitoring should also be recorded. This
information can help in the interpretation of the data. The most important parameters to record are:
— atmospheric pressure:
due to the pressure difference between soil pores and atmosphere, rapid falling atmospheric pressure
increases soil gas emission rates. Rapid rising atmospheric pressure can have the opposite effect. The
magnitude of this effect depends upon the soil permeability and the rate at which the pressure changes.
It is also considered that atmospheric pressure under 1 013 hPa (depression condition) will increase
emission rates;
— rainfall:
a long or a strong period of rainfall can lead to accumulation of soil gas under the water front. Gas can
be dissolved in water and the sampling, even with pumping device, will not be enough to free the gas.
The measurement will not also be representative;
after rainfall, a water logging effect will occur in the unsaturated layer and change the ground’s water
saturation, reduce the movement and reduce emission rates of soil gas.
Other useful parameters are:
— outdoor temperature:
outdoor temperature have a significant effect on evaporation, which in turn will affect the infiltration
and percolation of water and thus the mobility and concentration of soil gas;
soil temperature also affects the concentration of gases e.g. biological production of CO (and
consumption of O ) through root and microbial respiration is higher at higher temperature especially
in well vegetated areas. Other gas producing reactions may also be temperature dependent;
temperature influences volatility of chemicals. High temperature will raise the volatile potential of
chemicals and increase emission rates;
NOTE 1 The temperature in the soil tends to remain relatively consistent, until near sub-surface (1,0 m to
1,5 m depending on climate and of the soil nature). At this depth, outdoor temperature has low or no influence on
the volatilisation in the subsurface and emission of VOCs.
— indoor temperature:
when a building is heated, if the indoor temperature is higher than outdoor temperature, a “chimney
effect” can occur, leading to a reduction in pressure relative to atmospheric pressure outside and
consequently induce a flow of soil gas into the building;
— humidity (ambient air and soil gas or sub-slab gas):
humidity can severely reduce the adsorption capacity of some sorbents;
— wind speed/direction:
depending the direction and intensity of the wind, it can lead to a reduction in pressure relative to
atmospheric pressure outside and consequently induce a flow of soil gas into the building;
wind passing over the soil surface lowers the gas pressure in the upper reaches of the soil creating
a gradient for gas flow toward the surface. The extent to which this occurs depends on a variety of
factors, including whether the surface is “sealed” by freezing or water logging;
— water table depth and any hydrogeological perturbation nearby (e.g. groundwater pumping,
excavation, tide influence):
8 © ISO 2017 – All rights reserved

a water table rising (e.g. caused by rainfall, tide effect), can put the gas under pressure and force it to the
surface; however, it can also block migration pathways. The saturation of superficial soils can restrict
the venting of soil gas to atmos
...


NORME ISO
INTERNATIONALE 18400-204
Première édition
2017-01
Qualité du sol — Échantillonnage —
Partie 204:
Lignes directrices pour
l’échantillonnage des gaz de sol
Soil quality — Sampling —
Part 204: Guidance on sampling of soil gas
Numéro de référence
©
ISO 2017
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2017, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – Tous droits réservés

Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 2
3 Termes et définitions . 2
4 Points préliminaires à prendre en compte . 5
5 Principes fondamentaux . 7
5.1 Principes physiques et chimiques . 7
5.1.1 Gaz permanents . 7
5.1.2 Composés organiques volatils . 8
5.2 Conditions environnementales . 8
5.3 Dynamique des gaz de sol .10
5.4 Identification de la source du gaz de sol .10
6 Exigences relatives au plan d’échantillonnage .11
6.1 Considérations générales relatives au plan d’échantillonnage .11
6.1.1 Objectifs et recommandations générales .11
6.1.2 Explorations initiales (criblage sur le terrain).13
6.1.3 Zone de contamination connue .13
6.1.4 Détermination des emplacements des points chauds de contamination
(zones présentant les concentrations les plus élevées) et des puits de
surveillance des gaz.14
6.1.5 Détermination de la distribution horizontale et verticale des COV .14
6.1.6 Observation de la répartition spatiale des COV dans le temps .14
6.1.7 Évaluation de la contribution des gaz du sol à l’air ambiant, intérieur et/
ou extérieur .14
6.2 Zones de travail des méthodes de mesure .15
6.3 Options relatives aux puits de surveillance .15
6.4 Plan d’échantillonnage .18
6.4.1 Emplacement horizontal des dispositifs d’échantillonnage.18
6.4.2 Profondeurs de surveillance .19
6.4.3 Durée et fréquence de surveillance .21
6.4.4 Volumes d’échantillons et débits d’échantillonnage .21
7 Construction d’ouvrages de prélèvement des gaz du sol .22
7.1 Généralités .22
7.1.1 Conditions environnementales .22
7.1.2 Instruments de mesure .23
7.2 Dispositifs de surveillance des gaz du sol .23
7.2.1 Échantillonnage (ou prélèvement) passif des gaz du sol .23
7.2.2 Ouvrage de prélèvement d’air sous-dalle .23
7.2.3 Sondes contrôlées – cannes-gaz .24
7.2.4 Puits permanent de prélèvement des gaz du sol (piézair) .25
8 Échantillonnage .28
8.1 Considérations générales .28
8.2 Préparation des dispositifs de surveillance .31
8.2.1 Préparation du point d’échantillonnage .31
8.2.2 Essai d’étanchéité .31
8.2.3 Purge .32
8.3 Échantillonnage (ou prélèvement) actif .32
8.3.1 Généralités .32
8.3.2 Tubes ou filtres à adsorption .33
8.3.3 Sacs de prélèvement .37
8.3.4 Barbotage .37
8.3.5 Conteneurs en dépression .38
8.4 Échantillonnage (ou prélèvement) passif .38
8.5 Échantillonnage pour mesurages sur site .39
9 Identification, conditionnement et transport des échantillons pour l’analyse
en laboratoire .40
9.1 Identification .40
9.2 Conditionnement et transport .40
10 Rapport d’échantillonnage .40
11 Assurance de la qualité .42
11.1 Généralités .42
11.2 Échantillons de contrôle qualité .43
11.2.1 Généralités .43
11.2.2 Échantillons répétés aveugles .43
11.2.3 Échantillons fractionnés (doublons) .43
11.2.4 Blancs de transport.43
11.2.5 Blancs de terrain .43
11.2.6 Autres échantillons de contrôle qualité .44
11.2.7 Évaluation des résultats de contrôle qualité des échantillons .44
11.2.8 Chaîne de conservation .44
11.2.9 Équipements .45
11.3 Interférences .45
11.3.1 Généralités .45
11.3.2 Échantillon de grand volume .45
11.3.3 Sols compacts .45
11.3.4 Humidité du sol .45
11.3.5 Températures ambiantes faibles .46
11.3.6 Stratigraphie hétérogène .46
11.3.7 Front d’infiltration .46
11.3.8 Horizon de nappe d’eau perchée .46
11.3.9 Contamination .46
11.3.10  Claquage .46
11.4 Interprétation des analyses de gaz du sol pour les COV.47
Annexe A (informative) Équipement et instruments standard utilisés pour
l’échantillonnage des gaz du sol des COV .48
Annexe B (informative) Équipement portatif pour mesurer les gaz .50
Annexe C (informative) Équipement de mesurage de débits et de pression de sondages .52
Annexe D (informative) Exemple de fiche d’échantillonnage .54
Bibliographie .56
iv © ISO 2017 – Tous droits réservés

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’Organisation
mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir le lien
suivant: w w w . i s o .org/ iso/ fr/ avant -propos .html
Le présent document a été élaboré par le comité technique ISO/TC 190, Qualité des sols, sous-comité SC 2,
Échantillonnage.
Cette première édition de l’ISO 18400-204 annule et remplace l’ISO 10381-7:2005, qui a fait l’objet d’une
révision technique et structurelle. La série ISO 18400 est fondée sur une structure modulaire et ne peut
être comparée, article par article, à l’ISO 10381-7.
Une liste de toutes les parties de la série ISO 18400 peut être consultée sur le site de l’ISO.
Introduction
Le présent document fait partie d’une série de Normes internationales destinées à être utilisées
conjointement en fonction des besoins. La série ISO 18400 traite des modes opératoires
d’échantillonnage correspondant aux divers objectifs de l’étude du sol. Les rôles/positions des normes
individuelles dans l’ensemble du programme d’étude sont indiqué(e)s à la Figure 1. Les mesurages
indiqués pour les gaz du sol et les gaz de décharge ne fournissent aucune indication quantitative sur
la quantité totale de matériaux détectée dans les gaz du sol ou dans le sol. Les résultats des mesurages
peuvent être influencés notamment par la température, l’humidité, la pression de l’air, la profondeur
minimale d’extraction, etc.
La terminologie générale utilisée est conforme à celle établie par l’ISO/TC 190 et, plus précisément, au
vocabulaire présenté dans l’ISO 11074.
Des gaz de sol toxiques, asphyxiants et explosifs peuvent pénétrer dans des bâtiments et autres
constructions en surface et en sous-sol et peuvent présenter des risques potentiels pour la sécurité des
occupants et utilisateurs, ainsi que pour les structures proprement dites.
Ces gaz peuvent être présents naturellement dans le sol, apparaître suite à une contamination du sol,
ou encore provenir de déchets enterrés. Outre les principaux constituants observés dans l’air (azote
et oxygène), les gaz du sol peuvent contenir des composés organiques volatils (COV), des vapeurs
inorganiques (le mercure par exemple) et une large gamme d’autres gaz (par exemple méthane,
dioxyde de carbone, monoxyde de carbone, sulfure d’hydrogène, ammoniac, hélium, néon, argon,
xénon, radon, etc.).
Ces gaz peuvent avoir plusieurs origines telles que: déchets mis en décharge, sols contaminés sur
une friche industrielle, panache d’eaux souterraines contaminées, écoulement ou fuites de produits
chimiques, fuites dans le réseau de gaz distribué (gaz naturel), gaz d’égouts etc.
Afin de compléter une appréciation des risques posés par la présence de gaz de sols permanent ou
autres gaz de sol comme les composés organiques volatils (COV), il est nécessaire de comprendre et
caractériser les sources potentielles de gaz dans et autour du site.
Le présent document fournit des lignes directrices relatives aux installations d’échantillonnage de gaz
de sol (matériel et instruments, méthodes d’échantillonnage, exigences de contrôles, etc.) et autres
informations pertinentes (par exemple sur les conditions environnementales).
vi © ISO 2017 – Tous droits réservés

Figure 1 — Liens entre les éléments essentiels d’un programme d’investigation
NOTE 1 Les chiffres figurant dans les cercles de la Figure 1 définissent les éléments clés (1 à 7) du programme
d’investigation.
NOTE 2 La Figure 1 présente un processus générique qui peut être modifié si nécessaire.
NORME INTERNATIONALE ISO 18400-204:2017(F)
Qualité du sol — Échantillonnage —
Partie 204:
Lignes directrices pour l’échantillonnage des gaz de sol
1 Domaine d’application
Le présent document donne des lignes directrices sur l’échantillonnage des gaz du sol, au moyen de
— prélèvement actif (ou échantillonnage actif) (adsorbants, filtres, réservoirs d’air); et
— prélèvement passif (ou échantillonnage passif)
appliqués sur des puits de surveillance permanents ou temporaires ou autres installations en sous-sol
ou sous des bâtiments (sous-dalle).
Il fournit des lignes directrices sur:
— l’élaboration d’un plan d’échantillonnage;
— la construction d’ouvrages de prélèvement / surveillance;
— le transport, le conditionnement et le stockage des échantillons de gaz du sol;
— l’assurance de la qualité.
Le présent document fournit également des informations essentielles concernant
— la dynamique des gaz de sol; et
— l’identification des sources de gaz de sol
se rapportant à des ouvrages de prélèvements permanents ou temporaires des gaz du sol installés dans
les sols ou sous des bâtiments (ouvrages de prélèvements d’air sous-dalle).
Les composés couverts par le présent document sont:
— les composés organiques volatils (COV);
— les composés inorganiques volatils (par exemple mercure, HCN);
— les gaz permanents (c’est-à-dire CO , N , O , CH ).
2 2 2 4
Le présent document ne fournit pas des lignes directrices concernant:
— l’appréciation et la caractérisation du risque;
— la sélection et la conception de mesures de protection;
— la vérification de mesures de protection, bien que les méthodes d’investigation du site décrites
puissent être utilisées en fonction des besoins;
— l’échantillonnage de l’air ambiant ou intérieur;
— le mesurage des gaz du sol entrant dans l’atmosphère;
— la surveillance et l’échantillonnage du radon.
2 Références normatives
Les documents suivants cités dans le texte constituent, pour tout ou partie de leur contenu, des
exigences du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
ISO 11074, Qualité du sol — Vocabulaire
ISO 18400-107, Qualité du sol — Échantillonnage — Partie 107: Enregistrement et notification
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 11074 ainsi que les
suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— IEC Electropedia: http:// www .electropedia .org/
— ISO Online browsing platform: http:// www .iso .org/ obp
3.1
échantillonnage actif des gaz du sol
échantillonnage par extraction d’un certain volume de gaz du sol
3.2
claquage
détection par une section de contrôle adsorbante d’un ou plusieurs composés ayant une masse
supérieure à 5 % de la masse quantifiée sur la section de mesure
3.3
volume mort
volume présent entre l’ouverture d’aspiration de la sonde de gaz du sol et le flacon d’échantillonnage, y
compris le volume du flacon d’échantillonnage ou du tube d’absorption
3.4
liquides denses en phase non aqueuse
LDPNA
liquide d’un groupe de substances organiques, qui est relativement insoluble dans l’eau et dont la masse
volumique est supérieure à celle de l’eau
3.5
méthode directe
méthode de mesurage direct
méthode d’analyse dans laquelle l’échantillon de gaz du sol (aliquote) est introduit directement dans un
dispositif approprié, sans concentration préalable, puis est soumis à une analyse
3.6
tube de détection à lecture directe
tube de verre rempli de réactifs qui, après passage de certains composés gazeux, provoquent des
réactions entraînant des changements de couleur en fonction de la concentration; cet équipement est,
par conséquent, utilisé pour des analyses qualitatives et semi-quantitatives
Note 1 à l’article: Une attention particulière doit être portée aux interférences.
2 © ISO 2017 – Tous droits réservés

3.7
migration des gaz
mouvement des gaz issus de la source présente dans le sol vers les couches adjacentes, ou émission vers
l’atmosphère
Note 1 à l’article: Les exemples de sources comprennent des déchets dans le cas d’une décharge ou de COV dans le
cas de déversements de ces produits.
3.8
puits de surveillance des gaz
tubage installé de manière appropriée dans un sondage et permettant le prélèvement d’échantillons
de gaz du sol afin de mesurer les concentrations de gaz du sol et de surveiller les variations de la
composition des gaz du sol ou la migration des gaz (3.7)
3.9
échantillonnage des gaz du sol
prélèvement d’un volume de gaz du sol contenu dans les pores du sol
3.10
décharge
dépôts de déchets dans le sol ou sur le sol comme moyen d’élimination
3.11
gaz de décharge
mélange de gaz permanents (principaux constituants) dans lequel prédominent le méthane et le
dioxyde de carbone, issu de la décomposition des déchets dégradables dans les sites de décharge
Note 1 à l’article: Ce mélange peut également contenir de nombreux COV (à l’état de traces).
3.12.1
limite inférieure d’explosivité
LIE
pourcentage minimal (fraction volumique) d’un mélange de gaz inflammable et d’air entraînant une
explosion dans un espace confiné à une température de 25 °C et à la pression atmosphérique
3.12.2
limite supérieure d’explosivité
LSE
pourcentage maximal (fraction volumique) d’un mélange de gaz inflammable et d’air entraînant une
explosion dans un espace confiné à une température de 25 °C et à la pression atmosphérique
3.13
liquide léger en phase non aqueuse
LLPNA
liquide d’un groupe de substances organiques, qui est relativement insoluble dans l’eau et dont la masse
volumique est inférieure à celle de l’eau
3.14
méthode par adsorption
méthode dans laquelle des substances à déterminer sont concentrées par adsorption sur un adsorbant,
et sont ensuite soumises à une désorption et analysées
Note 1 à l’article: L’adsorbant peut être, par exemple, du charbon actif ou de la résine XAD-4.
3.15
dispositif de surveillance
dispositif permanent ou temporaire utilisé pour l’échantillonnage des gaz du sol
EXEMPLE Ouvrage de prélèvement d’air sous-dalle, sonde de gaz du sol.
3.16
liquide en phase non aqueuse
LPNA
liquide d’un groupe de substances organiques, qui est relativement insoluble dans l’eau
3.17
échantillonnage des gaz du sol en une étape
échantillonnage des gaz du sol réalisé directement à partir d’une sonde placée dans le sol, sans préforage
3.18
échantillonnage passif des gaz du sol
échantillonnage basé sur l’adsorption des gaz du sol sur un adsorbant placé dans le sol, sans utiliser de
pression réduite de façon artificielle
3.19
gaz permanent
élément ou composé présent sous forme de gaz à toutes les températures ambiantes susceptibles d’être
rencontrées à la surface de la terre
EXEMPLE Gaz de mine (grisou) et gaz de décharge.
Note 1 à l’article: Le gaz permanent peut également être défini comme un «élément ou composé présent sous
forme de gaz à toutes les températures ambiantes susceptibles d’être rencontrées à la surface de la terre»; voir
l’ISO 11074:2015, 3.6.11.
3.20
gaz du sol
gaz et vapeur présents dans la porosité des sols
3.21
dispositif de surveillance des gaz du sol
sondage dont la finition est réalisée avec un matériau approprié pour stabiliser la paroi du sondage
et/ou pour limiter la zone d’échantillonnage
Note 1 à l’article: Selon le type et la stabilité de l’assemblage, une distinction est faite entre les points de mesure
temporaires des gaz du sol (échantillonnage de sol unique ou répété à court terme) et les points de mesure fixes,
semi-permanents ou permanents (observations à long terme).
3.22
sonde de gaz du sol
sonde d’échantillonnage des gaz du sol
sonde, généralement un tube, installée directement dans le sol (échantillonnage des gaz du sol en une
étape) ou dans un sondage (échantillonnage des gaz du sol en deux étapes) en vue de prélever des
échantillons de gaz du sol
Note 1 à l’article: En appliquant une dépression à l’extrémité supérieure de la sonde (tête), les gaz du sol à
l’extrémité inférieure (bout) sont aspirés via la ou les ouvertures d’aspiration et transférés vers un équipement
de collecte des gaz et un équipement de mesure en ligne (méthode de mesure directe) ou vers un absorbant
(méthode par concentration), ces dispositifs étant installés dans ou au niveau de la tête de la sonde ou utilisés
ultérieurement.
3.23
volume d’échantillon des gaz du sol
volume des gaz du sol prélevé pour constituer l’échantillon
3.24
échantillonnage continu des gaz du sol
échantillonnage à partir d’un puits de surveillance pendant une période contrôlée plus longue (souvent
de plusieurs heures à plusieurs jours) en vue d’observer les variations temporelles de la concentration
des gaz et la distribution de pression dans le sol
4 © ISO 2017 – Tous droits réservés

3.25
prélèvement d’air sous-dalle
échantillonnage des gaz du sol sous-jacent à la dalle de fondation d’un bâtiment, dans la zone non saturée
3.26
sous-sol
couche du sol sous la surface du sol et surmontant le socle rocheux
3.27
échantillonnage des gaz du sol en deux étapes
échantillonnage impliquant dans un premier temps l’installation d’un sondage à l’aide d’un instrument
de forage ou au moyen d’un petit sondage, puis dans un deuxième temps l’échantillonnage des gaz du sol
à partir d’une sonde installée dans le sondage
3.28
composé organique volatil
COV
composé organique sous forme de gaz dans des conditions environnementales/atmosphériques
normales, mais pouvant être présent dans le sol sous forme de phase solide, liquide et dissoute, ainsi
qu’en phase gazeuse
Note 1 à l’article: Le COV peut également être défini comme un «composé organique liquide à température ambiante
(20 °C) et dont le point d’ébullition se situe généralement en dessous de 180 °C»; voir l’ISO 11074:2015, 6.1.24.
Note 2 à l’article: On peut citer comme exemple des hydrocarbures aromatiques monocycliques et autres
hydrocarbures halogénés à bas point d’ébullition, utilisés comme solvants ou carburants, ainsi que certains
produits de dégradation.
4 Points préliminaires à prendre en compte
La surveillance des gaz du sol est une méthode plus rapide et plus économique pour détecter des
contaminations des COV et cartographier des panaches dans les sols et/ou des eaux souterraines
que des sondages du sol et/ou l’installation des puits de surveillance des eaux souterraines. Cette
méthode permet d’établir un réseau de points de mesure des gaz du sol beaucoup plus dense qu’il n’est
généralement possible pour les puits de surveillance des eaux souterraines et sondages de sol.
Il convient que le choix de la technique d’échantillonnage soit conforme aux exigences des investigations
(y compris les méthodes d’analyse ultérieures, le schéma conceptuel du site, les objectifs de
l’investigation, etc.). Il convient également de prendre en compte la nature du terrain rencontrée au
cours d’investigations, la nature et la distribution de la contamination, la géologie et l’hydrogéologie. Il
convient que tout soit mis en œuvre pour prévenir tout risque de contamination croisée, créer des voies
de migration préférentielle et éviter la contamination de formations aquifères sous-jacentes.
Avant le début des travaux de sondage ou de forage, il convient d’effectuer un contrôle complet du sol
afin de garantir la sécurité des services ou structures présentes et l’absence totale de dangers (pour de
plus amples informations sur les techniques d’échantillonnage et sur la sécurité, voir l’ISO 18400-102 et
l’ISO 18400-103).
Lors d’un prélèvement de gaz du sol à proximité de la surface, l’effet de la pénétration de l’air ambiant
doit être pris en compte. La présence d’une couche imperméable à la surface du sol, le type de sol
(porosité, teneur en argile, etc.) et la profondeur du socle rocheux doivent être pris en compte lors de la
définition de la profondeur d’échantillonnage.
NOTE 1 Une condition préalable à l’échantillonnage et la surveillance des gaz du sol est l’enregistrement
préalable des profils géologiques du sol/couches pédologiques. Pour certains sites, cela peut être effectué lors du
prélèvement d’échantillons du sol par sondages.
Le froid rend difficile l’échantillonnage des gaz du sol à bien des égards. Le gel du sol limite sensiblement
la mobilité du gaz dans le sol et il convient d’en tenir compte lors de la planification et de la réalisation
du prélèvement d’échantillons ainsi que pour l’interprétation des résultats des mesurages. La saturation
(totale ou partielle) en eau d’une zone non saturée (par exemple, après la pluie) peut sensiblement
réduire les taux d’émission des gaz de sol, limiter la mobilité des gaz du sol et conduire à des niveaux
élevés d’humidité pouvant considérablement réduire la capacité d’adsorption de certains adsorbants.
Le principal problème de l’échantillonnage des gaz sous un sol gelé est la perte de pores remplis d’air
en raison de la forte teneur en humidité dans la zone comprise entre les parties gelées et les parties
non gelées du sol. Par conséquent, Il convient de prélever les échantillons plus en profondeur (mais
compatibles avec les objectifs de l’investigation).
Tous les bâtiments construits sur un sol non gelé jouent le rôle de voies ou de barrières pour la
migration ascendante des gaz du sol. Des pressions plus basses et des différences moins importantes
de concentration dans les bâtiments peuvent également favoriser la pénétration des gaz dans les
fondations des bâtiments.
NOTE 2 Parmi les causes des effets de pression différentielle figurent la montée en température de l’air chaud
au sein des bâtiments et le fonctionnement des systèmes de climatisation. Les gaz peuvent pénétrer par:
— des fissures et ouvertures dans les dalles de sol en béton telles que les fissures dues à la rétraction;
— des joints/ouvertures de construction, par exemple à l’interface paroi/fondation avec la dalle de sol;
— des fissures dans les parois au-dessous du niveau du sol, présentes par exemple suite à une rétraction ou un
mouvement de terrain;
— des interstices et ouvertures dans des planchers suspendus en béton ou en bois;
— des interstices autour de conduites et gaines techniques;
— des parois creuses;
— des cages d’escaliers, gaines d’ascenseurs.
La migration des gaz vers d’autres structures doit également être prise en compte, notamment les
structures situées au-dessous du niveau du sol comme les trous d’homme, ponceaux, cuvettes de gaine
d’ascenseur, galeries de mine, accès aux canalisations souterraines, etc.
Le présent document traite spécifiquement de l’échantillonnage des gaz du sol. Les sources connexes
d’évacuation ou d’interférence dans l’air ambiant (activités industrielles ou plus généralement
anthropiques) sont prises en compte dans la constitution d’un blanc de terrain.
Les effets de la pression provoqués par la montée en température de l’air chaud à l’intérieur des
bâtiments peuvent faciliter la pénétration des gaz dans les bâtiments.
Certains polluants organiques dans la phase gazeuse du sol et du sous-sol peuvent présenter des
risques toxicologiques plus ou moins graves. Par conséquent, il convient que le personnel dispose d’un
équipement de détection de gaz approprié et également, en fonction de la toxicité potentielle (supposée
ou mesurée), d’un équipement de protection adapté (EPI).
Certaines vapeurs organiques (comme le méthane par exemple) peuvent former des mélanges explosifs
au contact de l’air (il convient de prendre en compte les limites d’explosivité et la température d’auto-
inflammation). Par conséquent, il convient d’utiliser des équipements et outils électriques adaptés aux
atmosphères explosives.
Il convient que les problèmes liés à l’hygiène et à la sécurité soient constamment pris en compte. Il
convient que le personnel suive une formation lui permettant de bien comprendre les précautions à
prendre (pour de plus amples informations sur la sécurité, voir l’ISO 18400-103).
6 © ISO 2017 – Tous droits réservés

5 Principes fondamentaux
5.1 Principes physiques et chimiques
5.1.1 Gaz permanents
Les gaz permanents (voir 3.19) potentiellement dangereux, tels que le méthane et le dioxyde de carbone,
sont le plus souvent rencontrés dans les «gaz de décharge» et les «gaz de mine (ou grisou)».
Lorsque des matériaux biodégradables sont présents dans des décharges ou dans la matrice du sol sous
un site de friche industrielle, l’activité microbienne produit du méthane et/ou du dioxyde de carbone.
De même, ces gaz peuvent être émis dans des dépôts alluvionnaires avec la décomposition de la matière
organique naturelle. Les gaz de décharge sont principalement constitués de méthane et de dioxyde de
carbone (avec un rapport d’environ 60:40). Ce rapport peut varier en fonction de l’activité microbienne.
Un certain nombre d’éléments traces peuvent être présents.
Le gaz de mine (ou grisou), également appelé méthane des mines de charbon (CMM), est un ensemble
de vapeurs diverses produites lors d’exploitation de mines. C’est un mélange de méthane (prédominant,
plus de 90 %) et de dioxyde de carbone (près de 10 %). Un certain nombre de gaz mineurs sont
également présents: monoxyde de carbone (produit d’une combustion incomplète de carbone), sulfure
d’hydrogène et azote.
Le méthane de mines abandonnées (AMM) se rapporte au gaz de mine après exploitation, emprisonné
dans des anciennes galeries de mine, en état de surpression puis propulsé à la surface lors de
l’engorgement de la mine. Il contient généralement moins de méthane et plus d’air que le méthane des
mines de charbon (CMM) (50 % à 60 % de méthane, en fonction de l’étanchéité des cavités minières et
des travaux antérieurs).
Les gaz permanents peuvent également provenir de gisements de charbon, tourbe, dépôts naturels (par
exemple dépôts de craie et alluvionnaires), ou encore de fuites dans le réseau de gaz distribué (gaz
naturel) et de gaz d’égouts. Des informations sur les techniques permettant d’identifier l’origine des gaz
sont indiquées en 5.4.
Le méthane est explosif à des concentrations comprises entre 5 % et 15 % (fraction volumique) dans l’air;
en dessous de 5 %, [la limite inférieure d’explosivité (LIE)], la concentration de gaz n’est pas suffisante
pour entretenir la combustion et, au-dessus de 15 % [la limite supérieure d’explosivité (LSE)], l’oxygène
n’est pas suffisant pour entretenir la combustion. La présence d’autres gaz (par exemple, dioxyde de
carbone) peut avoir une incidence sur ces deux limites d’explosivité.
Le dioxyde de carbone est un asphyxiant également toxique. Il peut avoir des effets néfastes sur la santé
lorsque les concentrations sont supérieures à 0,5 % (fraction volumique).
La limite inférieure d’explosivité (LIE) d’un mélange de gaz explosifs est égale au pourcentage minimal
de la limite inférieure d’explosivité (LIE) parmi les constituants des mélanges gazeux. De la même
manière, la limite supérieure d’explosivité (LSE) d’un mélange de gaz explosifs est égale au pourcentage
maximal de la limite supérieure d’explosivité (LSE) parmi les constituants des mélanges gazeux. Par
conséquent, il convient de tenir compte de la concentration d’autres alcanes (notamment l’éthane) dans
le calcul de LIE/LSE.
Le gaz de décharge, généralement saturé en humidité, est corrosif. Il peut entraîner l’asphyxie de la
végétation en raison de l’élimination de l’oxygène dans les racines des plantes ou de la présence de
composés phytotoxiques. Sa densité dépend du rapport du dioxyde de carbone au méthane: plus la
concentration de dioxyde de carbone est élevée, plus la densité est grande.
La pression du gaz dans le sous-sol dépend du taux d’émission de gaz, de la pression atmosphérique, de
la perméabilité de la masse de déchets et des couches environnantes, ainsi que des variations du niveau
de lixiviat ou des eaux souterraines dans le site et la température.
En fonction de la conception du site et de la géologie locale, le gaz peut migrer sur des distances
considérables et représenter un danger pour les constructions environnantes.
Dans le cas particulier du gaz de mine, l’arrêt du pompage de l’eau conduit à une élévation du niveau de
la nappe phréatique, ce qui augmente la pression de gaz dans les cavités minières, et, par conséquent,
augmente la probabilité d’émissions de gaz en surface, à travers le sol ou d’anciens travaux de mines.
Par conséquent, il est important de connaître les concentrations de gaz et les débits afin d’évaluer le
potentiel de migration du gaz hors site ou d’émissions atmosphériques. En règle générale, les sondages
de décompression sont percés afin d’éviter ce phénomène. Il existe des points de surveillance et
d’échantillonnage efficaces pour surveiller la composition des gaz de mine, la pression, le débit et le
niveau de l’eau.
5.1.2 Composés organiques volatils
En fonction des conditions de pression et de température, les composés organiques volatils (COV)
pénètrent dans la porosité du sol sous une forme gazeuse ou liquide. Ils sont présents dans le sol en
phases liquide, gazeuse, dissous dans l’eau du sol, adsorbés sur des particules solides (organiques ou
inorganiques) du sol ou renfermés dans des cavités capillaires.
Les équilibres de distribution dynamique sont établis en fonction des conditions présentes et des
formes liées des polluants. En raison de la diversité des distributions possibles des substances et de
l’incidence du temps sur l’équilibre, chaque détermination de la concentration de polluants ne peut
fournir qu’une description «ponctuelle» de l’état des gaz du sol. Chaque interférence, avec le sol et/ou
eaux souterraines, perturbe l’équilibre de la distribution de différente manière, rendant difficile son
évaluation.
Un équilibre de saturation entre les phases liquide e
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...