Geotechnical investigation and testing — Laboratory testing of soil — Part 3: Determination of particle density

ISO 17892-3:2015 specifies methods for the determination of the particle density of soils. ISO 17892-3:2015 is applicable to the laboratory determination of the particle density of soil within the scope of geotechnical investigations, and describes two methods, a pycnometer method by fluid displacement and a pycnometer method by gas displacement. The fluid pycnometer method described in this part of ISO 17892 applies to soil types with particle sizes under about 4 mm, or soils crushed to meet this requirement. Larger pycnometers are used for coarser materials. The particle size of soils suitable for testing in the gas pycnometer is limited by the dimensions of the specimen container of the particular gas pycnometer being used. NOTE 1 ISO 17892-3:2015 fulfils the requirements of the determination of particle density of soils for geotechnical investigation and testing in accordance with EN 1997-1 and EN 1997-2. NOTE 2 The presence of dissolved salts in the pore water can affect the results of these tests. Techniques for compensating for dissolved salts are available but are beyond the scope of this standard.

Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols — Partie 3: Détermination de la masse volumique des particules solides

Cette partie de l'ISO 17892 spécifie des méthodes de détermination de la masse volumique des grains des sols. La présente partie de l'ISO 17892 s'applique à la détermination en laboratoire de la masse volumique des grains dans le cadre d'investigations géotechniques, et décrit deux méthodes : une méthode avec un pycnomètre à déplacement de liquide et une méthode avec un pycnomètre à déplacement de gaz. La méthode du pycnomètre à déplacement de liquide décrite dans la présente partie de l'ISO 17892 s'applique aux sols dont la dimension des particules est inférieure à environ 4 mm, ou aux sols broyés pour répondre à cette exigence. Des pycnomètres de plus grande taille sont utilisés pour les matériaux plus grossiers. La taille des particules de sols qui convient pour les essais réalisés dans le pycnomètre à gaz est limitée par les dimensions du récipient du pycnomètre à gaz en question. NOTE 1 La présente partie de l'ISO 17892 satisfait aux exigences de détermination de la masse volumique des particules de sols à des fins de reconnaissance et d'essais géotechniques, conformément aux normes EN 1997-1 et EN 1997-2. NOTE 2 La présence de sels dissous dans l'eau interstitielle peut affecter les résultats de ces essais. Des techniques de compensation des sels dissous existent, mais elles n'entrent pas dans le domaine d'application de la présente norme.

General Information

Status
Published
Publication Date
24-Nov-2015
Technical Committee
Drafting Committee
Current Stage
9093 - International Standard confirmed
Completion Date
08-Mar-2021
Ref Project

Relations

Buy Standard

Standard
ISO 17892-3:2015 - Geotechnical investigation and testing -- Laboratory testing of soil
English language
12 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 17892-3:2015 - Geotechnical investigation and testing -- Laboratory testing of soil
English language
12 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 17892-3:2015 - Reconnaissance et essais géotechniques -- Essais de laboratoire sur les sols
French language
13 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 17892-3
First edition
2015-12-15
Corrected version
2015-12-15
Geotechnical investigation and
testing — Laboratory testing of soil —
Part 3:
Determination of particle density
Reconnaissance et essais géotechniques — Essais de laboratoire
sur les sols —
Partie 3: Détermination de la masse volumique des grains
Reference number
ISO 17892-3:2015(E)
©
ISO 2015

---------------------- Page: 1 ----------------------
ISO 17892-3:2015(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2015 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 17892-3:2015(E)

Contents Page
Foreword .iv
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Apparatus . 1
4.1 Calibration requirements . 1
4.2 General . 2
4.3 Fluid displacement equipment . 2
4.4 Gas displacement equipment . 3
5 Test procedures . 4
5.1 Fluid pycnometer method . 4
5.1.1 General. 4
5.1.2 Reference measurements . 4
5.1.3 Specimen requirements . 4
5.1.4 Test execution . 5
5.2 Gas pycnometer method . 6
5.2.1 General. 6
5.2.2 Reference measurements . 6
5.2.3 Specimen requirements . 6
5.2.4 Test execution . 6
6 Test results . 7
6.1 Fluid pycnometer method . 7
6.1.1 Dry mass of specimen . . 7
6.1.2 Density of solid particles . 7
6.2 Gas pycnometer method . 8
6.2.1 Dry mass of specimen . . 8
6.2.2 Volume of the specimen . 8
6.2.3 Density of solid particles . 9
7 Test report . 9
Annex A (normative) Calibration, maintenance, and checks .10
Bibliography .12
© ISO 2015 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 17892-3:2015(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information.
ISO 17892-3 was prepared by the European Committee for standardization (CEN) TC 341 Geotechnical
investigation and testing, in collaboration with ISO/TC 182 Geotechnics, Subcommittee SC 1 Geotechnical
investigation and testing, in accordance with the Agreement on technical cooperation between ISO and
CEN (Vienna Agreement).
This International Standard cancels and replaces ISO/TS 17892-3:2004, which has been technically
revised. It also incorporates the Technical Corrigendum ISO/TS 17892-3:2004/Cor.1:2006.
ISO 17892 consists of the following parts, under the general title Geotechnical investigation and testing
— Laboratory testing of soil:
— Part 1: Determination of water content
— Part 2: Determination of bulk density
— Part 3: Determination of particle density
— Part 4: Determination of particle size distribution
— Part 5: Incremental loading oedometer test
— Part 6: Fall cone test
— Part 7: Unconfined compression test
— Part 8: Unconsolidated undrained triaxial test
— Part 9: Consolidated triaxial compression tests
— Part 10: Direct shear tests
— Part 11: Permeability tests
— Part 12: Determination of liquid and plastic limits
iv © ISO 2015 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 17892-3:2015(E)

This corrected version of ISO 17892-3:2015 incorporates the following corrections plus other minor
editorial modifications.
Foreword: It has been clarified that this is a first edition of an International Standard that is replacing a
Technical Specification.
3.1: The word ‘dry’ has been added to the definition.
4.3.2: A temperature range has been specified.
Figure 2: Labels V and V have been removed.
s r
5.2.4.3: An alternative method to determine the volume of the specimen has been added.
6.1.2: A temperature has been specified for ρ
L.
6.2.2: A note has been added.
-6 6
Formula (7): Formula has been modified with a factor of 10 instead of 10 .
© ISO 2015 – All rights reserved v

---------------------- Page: 5 ----------------------
ISO 17892-3:2015(E)

Introduction
This part of ISO 17892 covers areas in the international field of geotechnical engineering never
previously standardized internationally. It is intended that this part of ISO 17892 presents broad
good practice and significant differences with national documents is not anticipated. It is based on
international practice (see Reference [1]).
vi © ISO 2015 – All rights reserved

---------------------- Page: 6 ----------------------
INTERNATIONAL STANDARD ISO 17892-3:2015(E)
Geotechnical investigation and testing — Laboratory
testing of soil —
Part 3:
Determination of particle density
1 Scope
This part of ISO 17892 specifies methods for the determination of the particle density of soils.
This part of ISO 17892 is applicable to the laboratory determination of the particle density of soil within
the scope of geotechnical investigations, and describes two methods, a pycnometer method by fluid
displacement and a pycnometer method by gas displacement.
The fluid pycnometer method described in this part of ISO 17892 applies to soil types with particle
sizes under about 4 mm, or soils crushed to meet this requirement. Larger pycnometers are used for
coarser materials. The particle size of soils suitable for testing in the gas pycnometer is limited by the
dimensions of the specimen container of the particular gas pycnometer being used.
NOTE 1 This part of ISO 17892 fulfils the requirements of the determination of particle density of soils for
geotechnical investigation and testing in accordance with EN 1997-1 and EN 1997-2.
NOTE 2 The presence of dissolved salts in the pore water can affect the results of these tests. Techniques for
compensating for dissolved salts are available but are beyond the scope of this standard.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 17892–1, Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination
of water content
ISO 14688–1, Geotechnical investigation and testing — Identification and classification of soil — Part 1:
Identification and description
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
density of solid particles
ρ
s
dry mass of the particles divided by their volume
4 Apparatus
4.1 Calibration requirements
See Annex A for calibration requirements of the following equipment.
© ISO 2015 – All rights reserved 1

---------------------- Page: 7 ----------------------
ISO 17892-3:2015(E)

4.2 General
4.2.1 Balance, shall have an accuracy of 0,01 g or 0,1 % of the weighed soil mass, whichever is greater.
4.2.2 Dessicator, shall be of suitable size and contain dry, self-indicating desiccant such as silica gel. It
is not required if test specimen containers with close-fitting lids are used.
NOTE The purpose of the desiccator is to prevent absorption of moisture from air.
4.2.3 Riffle box, should be used to obtain a representative part of the specimen. Distribution by hand
(quartering) is also acceptable if this results in a representative part of the specimen.
4.2.4 Drying oven, of the forced-draught type and shall be capable of maintaining a uniform
temperature throughout the drying chamber. Any air circulation shall not be so strong that any transport
of particles can take place.
4.2.5 Sample crushing equipment, a mortar and soft-ended pestle (e.g. a pestle with a rubber or
wooden tip) shall be used to break up dried soil specimens. More substantial sample crushing equipment
may be required to crush gravel sized rock particles.
4.3 Fluid displacement equipment
4.3.1 Fluid pycnometer, shall have a volume of at least 50 ml, a glass stopper which has been ground
to fit precisely, and a capillary rising tube (see Figure 1).
12
Key
1 pycnometer with capillary and thermometer
2 pycnometer with capillary
Figure 1 — Examples of fluid pycnometers
4.3.2 Water bath or temperature-controlled enclosure or cabinet, thermostatically-controlled
water bath, or a temperature-controlled room or cabinet, operating in the range 10 to 30 °C and with
temperature variation not exceeding ±0,5 °C during the test shall be used.
2 © ISO 2015 – All rights reserved

---------------------- Page: 8 ----------------------
ISO 17892-3:2015(E)

4.3.3 Temperature measurement, temperature measuring device accurate to 0,1 °C shall be used.
The temperature measuring device should preferably be included in the glass stopper of the pycnometer.
Alternatively, a temperature measuring device may be placed in the water bath or in the temperature-
controlled enclosure/room, as close to the pycnometer as possible.
4.3.4 Apparatus to remove trapped air, vacuum pump or water aspirator that is capable of producing
a partial vacuum should be used to remove air from the sample during the test.
4.3.5 Control liquid, of known or measured density is required to fill the pycnometer bottle. Distilled,
demineralized, or deionized water is often the most suitable liquid. Alternatively, a suitable organic
solvent such as hexane or kerosene may be used. Control liquids with a surface tension lower than that of
water might be found to be preferable to rapidly saturate fine soils.
NOTE Use of liquids other than water can cause health or safety hazards, or contravene national laws.
4.4 Gas displacement equipment
4.4.1 Gas pycnometer, with sample and expansion chambers, isolation valves and a pressure gauge
shall be used (see Figure 2).
4.4.1.1 Other equipment arrangements are permitted, with pressure measurement being on either
chamber. The pressure in the specimen chamber may either be increased or decreased on opening the
isolation valve.
4.4.1.2 The chambers and valves shall be pressure-tight at the instrument’s working pressures.
4.4.1.3 The system shall be fitted with a pressure gauge with an accuracy of 0,1 kPa or 0,1 % of the
working pressure of the gas pycnometer, whichever value is greater.
4.4.1.4 For improved accuracy, the sample chamber should have a volume not more than two times that
of the sample, and the volumes of the sample and expansion chambers should not differ by more than a
factor of three.
35
2
7
14 6
Key
1 fill valve 5 expansion chamber
2 pressure indicator 6 vent valve
3 sample chamber 7 gas inlet
4 isolation valve
Figure 2 — Schematic diagram of a typical gas pycnometer
© ISO 2015 – All rights reserved 3

---------------------- Page: 9 ----------------------
ISO 17892-3:2015(E)

4.4.2 Compressed gas
Helium is preferred as the measurement gas. Other gasses that give good diffusion into soil pores may
be used, but this should be stated in the report. Unless otherwise specified as being acceptable by the
gas pycnometer equipment manufacturer, research grade (>99,5 % purity) helium should be used in
conjunction with the instrument.
5 Test procedures
5.1 Fluid pycnometer method
5.1.1 General
The fluid pycnometer method is based on the determination of the difference in the volume of liquid
required to fill the pycnometer with and without the sample being present. The density of solid particles
is calculated from the dry mass of the soil particles and the volume difference.
5.1.2 Reference measurements
5.1.2.1 Determine the dry mass of the clean and dry pycnometer to the nearest 0,01 g or 0,1 % of the
weighed soil mass, whichever is the greater (m ).
0
5.1.2.2 Fill the pycnometer with th
...

DRAFT INTERNATIONAL STANDARD
ISO/DIS 17892-3
ISO/TC 182/SC 1 Secretariat: DIN
Voting begins on: Voting terminates on:
2014-06-05 2014-11-05
Geotechnical investigation and testing — Laboratory
testing of soil —
Part 3:
Determination of particle density
Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols —
Partie 3: Détermination de la masse volumique des grains
ICS: 13.080.20;93.020
ISO/CEN PARALLEL PROCESSING
This draft has been developed within the European Committee for Standardization
(CEN), and processed under the CEN lead mode of collaboration as defined in the
Vienna Agreement.
This draft is hereby submitted to the ISO member bodies and to the CEN member
bodies for a parallel five month enquiry.
Should this draft be accepted, a final draft, established on the basis of comments
received, will be submitted to a parallel two-month approval vote in ISO and
THIS DOCUMENT IS A DRAFT CIRCULATED
formal vote in CEN.
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
To expedite distribution, this document is circulated as received from the
IN ADDITION TO THEIR EVALUATION AS
committee secretariat. ISO Central Secretariat work of editing and text
BEING ACCEPTABLE FOR INDUSTRIAL,
composition will be undertaken at publication stage.
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 17892-3:2014(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2014

---------------------- Page: 1 ----------------------
ISO/DIS 17892-3:2014(E)

Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract
from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
ii © ISO 2014 – All rights reserved

---------------------- Page: 2 ----------------------
EN ISO 17892-3:2013(E)
Contents
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 5
4 Equipment . 5
5 Test procedures . 9
5.1 Fluid pycnometer method . 9
5.2 Gas pycnometer method . 9
6 Test results . 11
6.1 Fluid pycnometer method . 11
6.2 Gas pycnometer method . 11
7 Test report . 13
Annex A (normative)…Calibration, maintenance and checks . 14
Bibliography . 16

Figures
Figure 1 — Examples of fluid pycnometers . 6

Tables
Table 1 — Density of deaired water at various temperatures, corrected for uplift in air . 12

2

---------------------- Page: 3 ----------------------
EN ISO 17892-3:2013(E)
Foreword
This document (EN ISO 17892-3:2013) has been prepared by Technical Committee CEN/TC 341 “Geotechnical
investigation and testing”, the secretariat of which is held by BSI, in collaboration with Technical Committee
ISO/TC 182 “Geotechnics”.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to announce this Technical Specification: Austria, Belgium, Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom.
CEN ISO 17892 consists of the following parts, under the general title “Geotechnical investigation and testing —
Laboratory testing of soil”:
 Part 1: Determination of water content
 Part 2: Determination of bulk density
 Part 3: Determination of particle density
 Part 4: Determination of particle size distribution
 Part 5: Incremental loading oedometer test
 Part 6: Fall cone test
 Part 7: Unconfined compression tests
 Part 8: Unconsolidated undrained triaxial tests
 Part 9: Consolidated triaxial compression tests
 Part 10: Direct shear tests
 Part 11: Permeability tests
 Part 12: Determination of liquid and plastic limits


3

---------------------- Page: 4 ----------------------
EN ISO 17892-3:2013(E)
Introduction
This document covers areas in the international field of geotechnical engineering never previously standardised
internationally. It is intended that this document presents broad good practice throughout the world and significant
differences with national documents is not anticipated. It is based on international practice (see [1]).
4

---------------------- Page: 5 ----------------------
EN ISO 17892-3:2013(E)
1 Scope
This International Standard specifies methods for the determination of the particle density in soils.
This International Standard is applicable to the laboratory determination of the particle density of soil within the
scope of geotechnical investigations, and describes two methods, a pycnometer method by fluid displacement and
a pycnometer method by gas displacement.
The fluid pycnometer method is based on the determination of the difference in the volume of liquid required to fill
the pycnometer with and without the sample being present. The density of solid particles is calculated from the dry
mass of the soil particles and the volume difference. The described fluid pycnometer method applies to soil types
with particle sizes under about 4 mm, or soils crushed to meet this requirement. Larger pycnometers are used for
coarser materials.
The gas pycnometer method is based on the determination of the difference in the change in gas pressure, within
the apparatus, between tests with the sample present and a reference test without a sample. The pressure
difference is converted to a volume difference using Boyle’s Law. The density of the particles is calculated from the
dry mass of the sample and the volume difference. Particle size is limited by the dimensions of the specimen
container of the particular gas pycnometer being used.
NOTE This document fulfils the requirements of the determination of particle density of soils for geotechnical
investigation and testing in accordance with EN 1997-1 and EN 1997-2.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable
for its application. For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments) applies.
EN ISO 17892-1: Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination of
water content.
EN ISO 14688-1: Geotechnical investigation and testing - identification and classification of soil. Part 1:
identification and description.
ISO 386: Liquid in glass thermometers – principles of design, construction and use.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
density of solid particles
ρ
s
mass of the particles divided by their volume.
4 Equipment
See Annex A for calibration requirements of the following equipment.
4.1 General
4.1.1 Balance
The balance shall have an accuracy of 0,01 g or 0,1% of the weighed soil mass, whichever is the greater.
5

---------------------- Page: 6 ----------------------
EN ISO 17892-3:2013(E)
4.1.2 Dessicator
The desiccator, if used, shall be of suitable size and contain dry, self indicating desiccant such as silica gel. It is
not required if test specimen containers with close-fitting lids are used.
NOTE The purpose of the desiccator is to prevent absorption of moisture from air

4.1.3 Riffle box
A riffle box should be used to obtain a representative part of the specimen. Distribution by hand (quartering) is
also acceptable, if this results in a representative part of the specimen.
4.1.4 Drying oven
The drying oven should be of the forced-draft type and shall be capable of maintaining a uniform temperature
throughout the drying chamber. Any air circulation shall not be so strong that any transport of particles can take
place.
4.1.5 Sample crushing equipment
A mortar and soft-ended pestle (eg a pestle with a rubber or wooden tip) shall be used to break up dried soil
specimens. More substantial sample crushing equipment may be required to crush gravel sized rock particles.
4.2 Fluid displacement equipment
4.2.1 Fluid pycnometer
A fluid pycnometer shall have a volume of at least 50 ml, a glass stopper which has been ground to fit precisely,
and a capillary rising tube (see Figure 1).

Key
1 Pycnometer with capillary and thermometer
2 Pycnometer with capillary
Figure 1 — Examples of fluid pycnometers
6

---------------------- Page: 7 ----------------------
EN ISO 17892-3:2013(E)

4.2.2 Water bath or temperature controlled enclosure or cabinet
A thermostatically controlled water bath, or a temperature controlled room or cabinet, with temperature variation
not exceeding ±0,5°C during the test shall be used.
4.2.3 Temperature measurement
A temperature measuring device accurate to 0,1°C shall be used. The temperature measuring device should
preferably be included in the glass stopper of the pycnometer. Alternatively, a temperature measuring device
may be placed in the water bath or in the temperature controlled enclosure/ room, as close to the pycnometer
as possible.
4.2.4 Apparatus to remove entrapped air
A vacuum pump or water aspirator that is capable of producing a partial vacuum may be used to remove air
from the sample during the test.
4.2.5 Control liquid
A control liquid of known or measured density is required to fill the pycnometer bottle. Distilled, demineralised or
deionised water is often the most suitable liquid. Alternatively a suitable organic solvent such as hexane or
kerosene may be used. Control liquids with a surface tension lower than that of water may be found to be
preferable to rapidly saturate fine soils.
NOTE Use of liquids other than water may cause health or safety hazards, or contravene national laws.
4.3 Gas displacement equipment
4.3.1 Gas pycnometer
A gas pycnometer system with sample and expansion chambers, isolation valves and a pressure gauge (see
Figure 2). Other equipment arrangements are permitted, with pressure measurement being on either chamber.
The pressure in the specimen chamber may be either increased or decreased on opening the isolation valve.
The chambers and valves shall be pressure-tight at the instrument’s working pressures.
The system shall be fitted with a pressure gauge with an accuracy of 0,1 kPa or 0,1% of the working pressure of
the gas pycnometer, whichever value is the greater.
For improved accuracy the sample chamber should have a volume not more than about two times that of the
sample, and the volumes of the sample and expansion chambers should not differ by more than a factor of
about three.


7

---------------------- Page: 8 ----------------------
EN ISO 17892-3:2013(E)



Key
1. Fill valve
2. Pressure indicator
3. Sample chamber
4. Isolation valve
5. Expansion chamber
6. Vent valve

Figure 2 — Schematic diagram of a typical gas pycnometer
4.3.2 Compressed gas
Helium is preferred as the measurement gas. Other gasses that give good diffusion into soil pores may be used,
but this should be stated in the report. Unless otherwise specified as being acceptable by the gas pycnometer
equipment manufacturer, research grade (>99,5% purity) helium should be used in conjunction with the
instrument.
8

---------------------- Page: 9 ----------------------
EN ISO 17892-3:2013(E)
5 Test procedures
5.1 Fluid pycnometer method
5.1.1 Reference measurements
5.1.1.1 Determine the dry mass of the clean and dry pycnometer to the nearest 0,01 g or 0,1% of the
weighed soil mass, whichever is the greater (m ).
0
5.1.1.2 Fill the pycnometer with the control fluid so that no air shall be left in the pycnometer or capillary
tube.
5.1.1.3 Place the pycnometer in the water bath, or in the temperature controlled room or cabinet. Record
the temperature. If using a water bath, only the neck, the stopper and the capillary rising tube of the
pycnometer should emerge above the surface of the water in the bath. Leave the pycnometer in the water
bath until the control fluid temperature has become equal to that of the water bath – a minimum of 1 hour
should be allowed. If a temperature controlled room or cabinet is used, a much longer period will be required
for temperature equilibration – a minimum of 16 hours should be allowed.
5.1.1.4 Check the level of the control fluid in the pycnometer and add or remove fluid when necessary.
Depending on the type of pycnometer, the level of the fluid should be at the calibration mark, or at the top of
the capillary.
5.1.1.5 If using a water bath, take the pycnometer out and immediately dry its external surfaces.
5.1.1.6 Without delay, determine the total mass of the pycnometer filled with control fluid, to the nearest
0,01 g or 0,1% of the weighed soil mass whichever is the greater (m ).
1
NOTE Excessive time delay or excessive handling once the pycnometer is removed from the temperature
controlled environment may result in a significant loss of fluid due to thermal expansion.
5.1.2 Specimen requirements
5.1.2.1 The specimen may be oven-dried, or may be tested moist. If oven-dried, the sample should be dried
according to EN ISO 17892-1.
5.1.2.2 The selected specimen shall be representative of the soil, shall have a dry mass of at least 10 g and
shall pass a 4 mm sieve (or nearest equivalent) if using a 50 m
...

NORME ISO
INTERNATIONALE 17892-3
Première édition
2015-12-15
Reconnaissance et essais
géotechniques — Essais de laboratoire
sur les sols —
Partie 3:
Détermination de la masse volumique
des particules solides
Geotechnical investigation and testing — Laboratory testing of soil —
Part 3: Determination of particle density
Numéro de référence
ISO 17892-3:2015(F)
©
ISO 2015

---------------------- Page: 1 ----------------------
ISO 17892-3:2015(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2015
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2015 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 17892-3:2015(F)

Sommaire Page
Avant-propos .iv
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Appareillage . 2
4.1 Exigences d’étalonnage . 2
4.2 Généralités . 2
4.3 Appareil à déplacement de liquide . 3
4.4 Appareil à déplacement de gaz . 4
5 Procédures d’essai . 5
5.1 Méthode du pycnomètre à liquide . 5
5.1.1 Généralités . 5
5.1.2 Mesures de référence . 5
5.1.3 Exigences relatives à l’éprouvette . 5
5.1.4 Mode opératoire d’essai . 6
5.2 Méthode du pycnomètre à gaz . 7
5.2.1 Généralités . 7
5.2.2 Mesures de référence . 7
5.2.3 Exigences relatives à l’éprouvette . 7
5.2.4 Mode opératoire d’essai . 7
6 Résultats des essais . 8
6.1 Méthode du pycnomètre à liquide . 8
6.1.1 Masse sèche de l’éprouvette . 8
6.1.2 Masse volumique des particules solides . 8
6.2 Méthode du pycnomètre à gaz . 9
6.2.1 Masse sèche de l’éprouvette . 9
6.2.2 Volume de l’éprouvette . 9
6.2.3 Masse volumique des particules solides .10
7 Rapport d’essai .10
Annexe A (normative) Étalonnage, maintenance et contrôles .11
Bibliographie .13
© ISO 2015 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 17892-3:2015(F)

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO, participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction définies dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/patents).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à
l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes
de l’OMC concernant les obstacles techniques au commerce (OTC), voir le lien suivant : Avant-propos -
Informations supplémentaires.
L’ISO 17892-3 a été élaborée par le comité technique du Comité européen de normalisation CEN/
TC 341, Reconnaissance et essais géotechniques, en collaboration avec le Comité technique ISO/TC 182,
Géotechnique, Sous-comité SC 1 Reconnaissance et essais géotechniques, conformément à l’accord de
coopération technique entre l’ISO et le CEN (accord de Vienne).
La présente Norme internationale annule et remplace l’ISO/TS 17892-3:2004, qui a fait l’objet d’une
révision technique. Elle intègre également le rectificatif technique ISO/TS 17892-3:2004/Cor.1:2006.
L’ISO 17892 comporte plusieurs parties, sous le titre général Reconnaissance et essais géotechniques —
Essai de laboratoire sur les sols :
— Partie 1 : détermination de la teneur en eau
— Partie 2 : détermination de la masse volumique d’un sol fin
— Partie 3 : détermination de la masse volumique des particules solides
— Partie 4 : Détermination de la distribution granulométrique des particules
— Partie 5 : essai de chargement par paliers à l’œdomètre
— Partie 6 : essai de pénétration de cône
— Partie 7 : essai de compression uniaxiale
— Partie 8 : essai triaxial non consolidé non drainé
— Partie 9 : essais en compression à l’appareil triaxial sur sols saturés consolidés
iv © ISO 2015 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 17892-3:2015(F)

— Partie 10 : essais de cisaillement direct
— Partie 11 : essais de perméabilité
— Partie 12 : détermination des limites de liquidité et de plasticité
Cette version corrigée de l’ISO 17892-3:2015 inclut les corrections suivantes, ainsi que des modifications
rédactionnelles mineures.
Avant-propos : Il a été précisé qu’il s’agit de la première édition d’une Norme internationale destinée à
remplacer une Spécification technique.
3.1 : le mot « sèche » a été ajouté à la définition.
4.3.2 : une plage de température a été spécifiée.
Figure 2 : les éléments V et V ont été supprimés.
s r
5.2.4.3 : une méthode alternative de détermination du volume de l’éprouvette a été ajoutée.
6.1.2 : une température a été spécifiée pour ρ
L.
6.2.2 : une note a été ajoutée.
-6 6
Formule (7) : la formule a été modifiée avec un facteur de 10 au lieu de 10 .
© ISO 2015 – Tous droits réservés v

---------------------- Page: 5 ----------------------
ISO 17892-3:2015(F)

Introduction
Cette partie de l’ISO 17892 couvre des sujets n’ayant jusqu’alors pas été normalisés au niveau
international dans le domaine de la géotechnique. L’objectif de la présente partie de l’ISO 17892 est de
présenter la pratique généralement appliquée et il n’est pas indiqué les différences significatives avec
les documents nationaux. Celle-ci s’appuie sur une pratique internationale (voir la référence [1]).
vi © ISO 2015 – Tous droits réservés

---------------------- Page: 6 ----------------------
NORME INTERNATIONALE ISO 17892-3:2015(F)
Reconnaissance et essais géotechniques — Essais de
laboratoire sur les sols —
Partie 3:
Détermination de la masse volumique des particules solides
1 Domaine d’application
Cette partie de l’ISO 17892 spécifie des méthodes de détermination de la masse volumique des grains
des sols.
La présente partie de l’ISO 17892 s’applique à la détermination en laboratoire de la masse volumique
des grains dans le cadre d’investigations géotechniques, et décrit deux méthodes : une méthode avec un
pycnomètre à déplacement de liquide et une méthode avec un pycnomètre à déplacement de gaz.
La méthode du pycnomètre à déplacement de liquide décrite dans la présente partie de l’ISO 17892
s’applique aux sols dont la dimension des particules est inférieure à environ 4 mm, ou aux sols broyés
pour répondre à cette exigence. Des pycnomètres de plus grande taille sont utilisés pour les matériaux
plus grossiers. La taille des particules de sols qui convient pour les essais réalisés dans le pycnomètre à
gaz est limitée par les dimensions du récipient du pycnomètre à gaz en question.
NOTE 1 La présente partie de l’ISO 17892 satisfait aux exigences de détermination de la masse volumique des
particules de sols à des fins de reconnaissance et d’essais géotechniques, conformément aux normes EN 1997-1 et
EN 1997-2.
NOTE 2 La présence de sels dissous dans l’eau interstitielle peut affecter les résultats de ces essais. Des
techniques de compensation des sels dissous existent, mais elles n’entrent pas dans le domaine d’application de la
présente norme.
2 Références normatives
Les documents de référence suivants, dans leur version intégrale ou partielle, ont un caractère normatif
et sont indispensables pour l’application du présent document. Pour les références datées, seule l’édition
citée s’applique. Pour les références non datées, la dernière édition du document de référence s’applique
(y compris les éventuels amendements).
ISO 17892-1, Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols — Partie 1:
Détermination de la teneur en eau
ISO 14688-1, Reconnaissance et essais géotechniques — Identification et classification des sols — Partie 1:
Identification et description
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
masse volumique des particules solides
ρ
s
masse sèche des grains divisée par leur volume
© ISO 2015 – Tous droits réservés 1

---------------------- Page: 7 ----------------------
ISO 17892-3:2015(F)

4 Appareillage
4.1 Exigences d’étalonnage
Voir l’Annexe A pour les exigences d’étalonnage des appareils suivants.
4.2 Généralités
4.2.1 Balance, présentant une exactitude de 0,01 g ou 0,1 % de la masse de sol pesée, la valeur la plus
élevée étant retenue.
4.2.2 Dessiccateur, de dimension appropriée et contenant un dessiccant auto-indicateur tel qu’un
gel de silice. L’utilisation d’un dessiccateur n’est pas exigée si les récipients utilisés pour conserver les
éprouvettes sont pourvus de couvercles hermétiques.
NOTE La fonction du dessiccateur est d’empêcher l’absorption de l’humidité présente dans l’air.
4.2.3 Échantillonneur, pouvant être utilisé pour obtenir une partie représentative de l’échantillon. La
répartition manuelle (quartage) est également acceptable si elle conduit à une division de l’échantillon
en parts représentatives.
4.2.4 Étuve de séchage, de type à tirage forcé, capable de maintenir une température homogène dans
l’ensemble de la chambre de séchage. La circulation d’air ne doit toutefois pas être forte au point de
pouvoir déplacer les particules.
4.2.5 Matériel de broyage des échantillons, de type mortier et pilon à extrémité souple (par ex.
pilon à embout en caoutchouc ou en bois), utilisé pour broyer les échantillons de sol séchés. Un matériel
de concassage plus conséquent peut être nécessaire pour concasser les particules de roche d’une taille
similaire au gravier.
2 © ISO 2015 – Tous droits réservés

---------------------- Page: 8 ----------------------
ISO 17892-3:2015(F)

4.3 Appareil à déplacement de liquide
4.3.1 Pycnomètre à liquide, dont le volume doit être de 50 ml au minimum, et muni d’un bouchon en
verre rodé pour un ajustage précis et d’un tube capillaire (voir la Figure 1).
12
Légende
1 pycnomètre avec tube capillaire et thermomètre
2 pycnomètre avec tube capillaire
Figure 1 — Exemples de pycnomètres à liquide
4.3.2 Bain-marie ou enceinte / armoire thermorégulée : on utilisera un bain-marie à régulation
thermostatique, ou une salle ou armoire thermorégulée, dont la plage de fonctionnement se situe entre
10 et 30 °C, avec une variation de température ne dépassant pas ± 0,5 °C pendant l’essai.
4.3.3 Mesure de la température : un instrument de mesure de la température d’une exactitude de
0,1 °C doit être utilisé.
L’instrument sera de préférence inséré dans le bouchon en verre du pycnomètre. En variante, il peut
être placé dans le bain-marie ou dans la salle / armoire thermorégulée, aussi près que possible du
pycnomètre.
4.3.4 Appareil d’évacuation de l’air piégé, de type pompe à vide ou aspirateur d’eau, capable de
produire un vide partiel et pouvant être utilisé pour évacuer l’air de l’éprouvette pendant l’essai.
4.3.5 Liquide d’essai, de masse volumique connue ou mesurée, nécessaire pour remplir le flacon du
pycnomètre. L’eau distillée, déminéralisée ou déionisée est souvent le liquide qui convient le mieux. En
variante, un solvant organique approprié tel que l’hexane ou le kérosène peut être utilisé. Les liquides
d’essai dont la tension superficielle est inférieure à celle de l’eau peuvent s’avérer préférables pour
saturer rapidement les sols fins.
NOTE L’utilisation de liquides autres que l’eau peut présenter des risques pour la santé ou la sécurité, ou
aller à l’encontre des lois nationales.
© ISO 2015 – Tous droits réservés 3

---------------------- Page: 9 ----------------------
ISO 17892-3:2015(F)

4.4 Appareil à déplacement de gaz
4.4.1 Pycnomètre à gaz, avec chambres à échantillons et d’expansion, robinets d’isolement et
manomètre (voir la Figure 2).
4.4.1.1 D’autres modes de montage de l’appareil sont autorisés, la mesure de la pression se faisant
dans l’une ou l’autre des chambres. Il est possible d’augmenter ou de réduire la pression dans la chambre
à échantillon en ouvrant ou en fermant le robinet d’isolement.
4.4.1.2 Les chambres et les robinets doivent être étanches aux pressions de service de l’instrument.
4.4.1.3 Le système doit être équipé d’un manomètre ayant une exactitude de 0,1 kPa ou 0,1 % de la
pression de service du pycnomètre à gaz, la valeur la plus élevée étant retenue.
4.4.1.4 Pour améliorer l’exactitude, le volume de la chambre à échantillons ne devrait pas être
supérieur à deux fois celui de l’éprouvette, et les volumes des chambres à échantillons et d’expansion ne
devraient pas différer d’un facteur de plus de trois.
35
2
7
14 6
Légende
1 robinet de remplissage 5 chambre d’expansion
2 manomètre 6 robinet de mise à l’air libre
3 chambre à échantillons 7 entrée du gaz
4 robinet d’isolement
Figure 2 — Schéma d’un pycnomètre à gaz typique
4.4.2 Gaz comprimé
On privilégiera l’hélium comme gaz de mesure. D’autres gaz qui assurent une bonne diffusion dans
les pores du sol peuvent être utilisés, mais ils devront être indiqués dans le rapport. Sauf indication
contraire du fabricant du pycnomètre à gaz, de l’hélium de qualité (pureté> 99,5%) devrait être utilisé
avec cet instrument.
4 © ISO 2015 – Tous droits réservés

---------------------- Page: 10 ----------------------
ISO 17892-3:2015(F)

5 Procédures d’essai
5.1 Méthode du pycnomètre à liquide
5.1.1 Généralités
La méthode du pycnomètre à liquide est basée sur la détermination de la différence de volume de liquide
nécessaire pour remplir le pycnomètre avec et sans l’éprouvette. La masse volumique des particules
solides est calculée à partir de la masse sèche des particules de sol et de la différence de volume.
5.1.2 Mesures de référence
5.1.2.1 Déterminer la masse sèche du pycnomètre propre et sec à 0,01 g près ou à 0,1 % de la masse de
sol pesée, la valeur la plus élevée étant retenue (m ).
0
5.1.2.2 Remplir le pycnomètre avec le liquide d’essai de sorte qu’il ne reste pas d’air dans le pycnomètre
ou dans le tube capillaire.
5.1.2.3 Placer le pycnomètre dans le bain-marie, ou dans la salle ou l’armoire thermorégulée.
Enregistrer la température. Si un bain-marie est utilisé, il convient que seuls le col, le bouchon et le
tube capillaire du pycnomètre émergent de la surface de l’eau du bain. Laisser le pycnomètre dans le
bain-marie jusqu’à ce que la température du liquide d’essai soit égale à celle du bain-marie. Il convient
de prévoir au
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.