ISO 11665-9:2019
(Main)Measurement of radioactivity in the environment — Air: Radon-222 — Part 9: Test methods for exhalation rate of building materials
Measurement of radioactivity in the environment — Air: Radon-222 — Part 9: Test methods for exhalation rate of building materials
This document specifies a method for the determination of the free radon exhalation rate of a batch of mineral based building materials. This document only refers to 222Rn exhalation determination using two test methods: liquid Scintillation Counting (LSC) and gamma ray spectrometry (see Annex A and Annex B). The exhalation of thoron (220Rn) does not affect the test result when applying the determination methods described in this document.
Mesurage de la radioactivité dans l'environnement — Air: Radon 222 — Partie 9: Méthode de détermination du flux d'exhalation des matériaux de construction
Le présent document spécifie une méthode pour la détermination du flux d'exhalation du radon libre d'un lot de matériaux de construction à base de minéraux. Le présent document ne se rapporte qu'à la détermination de l'exhalation du 222Rn à l'aide de deux méthodes d'essai: le comptage par scintillation liquide (CSL) et la spectrométrie gamma (voir Annexe A et Annexe B). L'exhalation de thoron (220Rn) n'affecte pas le résultat d'essai lors de l'application des méthodes de détermination décrites dans le présent document.
General Information
Relations
Buy Standard
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 11665-9
Second edition
2019-05
Measurement of radioactivity in the
environment — Air: Radon-222 —
Part 9:
Test methods for exhalation rate of
building materials
Mesurage de la radioactivité dans l'environnement — Air: Radon
222 —
Partie 9: Méthode de détermination du flux d'exhalation des
matériaux de construction
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and symbols . 1
3.1 Terms and definitions . 1
3.2 Symbols . 2
4 Principle . 4
5 Reagents and equipment . 4
5.1 Reagents. 4
5.2 Equipment for sample preparation . 5
5.3 Equipment for procedure . 5
5.4 Test bench . 6
6 Building material test sample preparation . 7
6.1 General . 7
6.2 Number and dimensions . 8
6.2.1 General. 8
6.2.2 End product . 8
6.2.3 Fluid intermediate materials . 8
6.3 Conditioning . 8
6.3.1 End products . 8
6.3.2 Fluid intermediate materials . 9
7 Measurement . 9
7.1 General . 9
7.2 Set up of test bench . 9
7.2.1 Choice of volume flow rate . 9
7.2.2 Determination of amount of adsorbent material . .10
7.2.3 Determination of minimum desorption duration .10
7.2.4 LSC procedure .10
7.3 Measurement procedure .11
8 Expression of results .13
8.1 General .13
8.2 Free exhalation rate .13
8.3 Standard uncertainty .13
8.4 Decision threshold .14
8.5 Detection limit .15
9 Test report .15
Annex A (informative) Method for determination of free radon exhalation rate of mineral-
based building materials — Total count determination using gamma-ray spectrometry .16
Annex B (informative) Method for determination of free radon exhalation rate of mineral-
based building materials — Determination by nuclide-specific gamma-ray
spectrometry .26
Annex C (informative) Performance characteristics .38
Bibliography .39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
This document was prepared by ISO/TC 85, Nuclear energy, nuclear technologies, and radiological
protection, Subcommittee SC 2, Radiological protection.
This second edition cancels and replaces the first edition (ISO 11665-9:2016), which has been
technically revised.
A list of all the parts in the ISO 11665 series can be found on the ISO website
iv © ISO 2019 – All rights reserved
Introduction
Radon isotopes 222, 219 and 220 are radioactive gases produced by the disintegration of radium
isotopes 226, 223 and 224, which are decay products of uranium-238, uranium-235 and thorium-232
respectively, and are all found in the earth's crust. Solid elements, also radioactive, followed by stable
[1]
lead are produced by radon disintegration .
When disintegrating, radon emits alpha particles and generates solid decay products, which are also
radioactive (polonium, bismuth, lead, etc.). The potential effects on human health of radon lie in its solid
decay products rather than the gas itself. Whether or not they are attached to atmospheric aerosols,
radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths
according to their size.
[2]
Radon is today considered to be the main source of human exposure to natural radiation. UNSCEAR
suggests that, at the worldwide level, radon accounts for around 52 % of global average exposure to
natural radiation. The radiological impact of isotope 222 (48 %) is far more significant than isotope 220
(4 %), while isotope 219 is considered negligible. For this reason, references to radon in this document
refer only to radon-222.
Radon activity concentration can vary from one to more orders of magnitude over time and space.
Exposure to radon and its decay products varies tremendously from one area to another, as it depends
on the amount of radon emitted by the soil, weather conditions, and on the degree of containment in the
areas where individuals are exposed.
As radon tends to concentrate in enclosed spaces like houses, the main part of the population exposure
is due to indoor radon. Soil gas is recognized as the most important source of residential radon through
infiltration pathways. Other sources are described in other parts of ISO 11665 and ISO 13164 (all parts)
[3]
for water .
Radon enters into buildings via diffusion mechanism caused by the all-time existing difference between
radon activity concentrations in the underlying soil and inside the building, and via convection
mechanism inconstantly generated by a difference in pressure between the air in the building and the
air contained in the underlying soil. Indoor radon activity concentration depends on radon activity
concentration in the underlying soil, the building structure, the equipment (chimney, ventilation
systems, among others), the environmental parameters of the building (temperature, pressure, etc.)
and the occupants’ lifestyle.
−3
To limit the risk to individuals, a national reference level of 100 Bq·m is recommended by the World
[4] -3
Health Organization . Wherever this is not possible, this reference level should not exceed 300 Bq·m .
This recommendation was endorsed by the European Community Member States that shall establish
national reference levels for indoor radon activity concentrations. The reference levels for the annual
−3[5]
average activity concentr
...
INTERNATIONAL ISO
STANDARD 11665-9
Second edition
2019-05
Measurement of radioactivity in the
environment — Air: Radon-222 —
Part 9:
Test methods for exhalation rate of
building materials
Mesurage de la radioactivité dans l'environnement — Air: Radon
222 —
Partie 9: Méthode de détermination du flux d'exhalation des
matériaux de construction
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and symbols . 1
3.1 Terms and definitions . 1
3.2 Symbols . 2
4 Principle . 4
5 Reagents and equipment . 4
5.1 Reagents. 4
5.2 Equipment for sample preparation . 5
5.3 Equipment for procedure . 5
5.4 Test bench . 6
6 Building material test sample preparation . 7
6.1 General . 7
6.2 Number and dimensions . 8
6.2.1 General. 8
6.2.2 End product . 8
6.2.3 Fluid intermediate materials . 8
6.3 Conditioning . 8
6.3.1 End products . 8
6.3.2 Fluid intermediate materials . 9
7 Measurement . 9
7.1 General . 9
7.2 Set up of test bench . 9
7.2.1 Choice of volume flow rate . 9
7.2.2 Determination of amount of adsorbent material . .10
7.2.3 Determination of minimum desorption duration .10
7.2.4 LSC procedure .10
7.3 Measurement procedure .11
8 Expression of results .13
8.1 General .13
8.2 Free exhalation rate .13
8.3 Standard uncertainty .13
8.4 Decision threshold .14
8.5 Detection limit .15
9 Test report .15
Annex A (informative) Method for determination of free radon exhalation rate of mineral-
based building materials — Total count determination using gamma-ray spectrometry .16
Annex B (informative) Method for determination of free radon exhalation rate of mineral-
based building materials — Determination by nuclide-specific gamma-ray
spectrometry .26
Annex C (informative) Performance characteristics .38
Bibliography .39
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information
This document was prepared by ISO/TC 85, Nuclear energy, nuclear technologies, and radiological
protection, Subcommittee SC 2, Radiological protection.
This second edition cancels and replaces the first edition (ISO 11665-9:2016), which has been
technically revised.
A list of all the parts in the ISO 11665 series can be found on the ISO website
iv © ISO 2019 – All rights reserved
Introduction
Radon isotopes 222, 219 and 220 are radioactive gases produced by the disintegration of radium
isotopes 226, 223 and 224, which are decay products of uranium-238, uranium-235 and thorium-232
respectively, and are all found in the earth's crust. Solid elements, also radioactive, followed by stable
[1]
lead are produced by radon disintegration .
When disintegrating, radon emits alpha particles and generates solid decay products, which are also
radioactive (polonium, bismuth, lead, etc.). The potential effects on human health of radon lie in its solid
decay products rather than the gas itself. Whether or not they are attached to atmospheric aerosols,
radon decay products can be inhaled and deposited in the bronchopulmonary tree to varying depths
according to their size.
[2]
Radon is today considered to be the main source of human exposure to natural radiation. UNSCEAR
suggests that, at the worldwide level, radon accounts for around 52 % of global average exposure to
natural radiation. The radiological impact of isotope 222 (48 %) is far more significant than isotope 220
(4 %), while isotope 219 is considered negligible. For this reason, references to radon in this document
refer only to radon-222.
Radon activity concentration can vary from one to more orders of magnitude over time and space.
Exposure to radon and its decay products varies tremendously from one area to another, as it depends
on the amount of radon emitted by the soil, weather conditions, and on the degree of containment in the
areas where individuals are exposed.
As radon tends to concentrate in enclosed spaces like houses, the main part of the population exposure
is due to indoor radon. Soil gas is recognized as the most important source of residential radon through
infiltration pathways. Other sources are described in other parts of ISO 11665 and ISO 13164 (all parts)
[3]
for water .
Radon enters into buildings via diffusion mechanism caused by the all-time existing difference between
radon activity concentrations in the underlying soil and inside the building, and via convection
mechanism inconstantly generated by a difference in pressure between the air in the building and the
air contained in the underlying soil. Indoor radon activity concentration depends on radon activity
concentration in the underlying soil, the building structure, the equipment (chimney, ventilation
systems, among others), the environmental parameters of the building (temperature, pressure, etc.)
and the occupants’ lifestyle.
−3
To limit the risk to individuals, a national reference level of 100 Bq·m is recommended by the World
[4] -3
Health Organization . Wherever this is not possible, this reference level should not exceed 300 Bq·m .
This recommendation was endorsed by the European Community Member States that shall establish
national reference levels for indoor radon activity concentrations. The reference levels for the annual
−3[5]
average activity concentr
...
NORME ISO
INTERNATIONALE 11665-9
Deuxième édition
2019-05
Mesurage de la radioactivité dans
l'environnement — Air: Radon 222 —
Partie 9:
Méthode de détermination du flux
d'exhalation des matériaux de
construction
Measurement of radioactivity in the environment — Air:
Radon-222 —
Part 9: Test methods for exhalation rate of building materials
Numéro de référence
©
ISO 2019
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes, définitions et symboles . 1
3.1 Termes et définitions . 1
3.2 Symboles . 2
4 Principe . 4
5 Réactifs et équipement . 5
5.1 Réactifs . 5
5.2 Équipement pour la préparation des échantillons . 5
5.3 Équipement pour le mode opératoire . 5
5.4 Banc d’essai . 6
6 Préparation de l’échantillon d’essai de matériau de construction . 7
6.1 Généralités . 7
6.2 Nombre et dimensions . 8
6.2.1 Généralités . 8
6.2.2 Produit fini . 9
6.2.3 Matériaux intermédiaires fluides . 9
6.3 Conditionnement . 9
6.3.1 Produits finis . 9
6.3.2 Matériaux intermédiaires fluides . 9
7 Mesurage. 9
7.1 Généralités . 9
7.2 Configuration du banc d’essai .10
7.2.1 Choix du débit volumique .10
7.2.2 Détermination de la quantité de matériau adsorbant .10
7.2.3 Détermination de la durée minimale de désorption.11
7.2.4 Mode opératoire de CSL .11
7.3 Mode opératoire de mesure .12
8 Expression des résultats.13
8.1 Généralités .13
8.2 Flux d’exhalation libre .14
8.3 Incertitude-type .14
8.4 Seuil de décision .15
8.5 Limite de détection .16
9 Rapport d’essai .16
Annexe A (informative) Méthode pour la détermination du flux d’exhalation du radon libre
des matériaux de construction à base de minéraux — Détermination du comptage
total par spectrométrie gamma .18
Annexe B (informative) Méthode pour la détermination du flux d’exhalation du radon
libre des matériaux de construction à base de minéraux — Détermination par
spectrométrie gamma spécifique aux nucléides .28
Annexe C (informative) Caractéristiques de performance .41
Bibliographie .43
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/iso/fr/avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 85, Énergie nucléaire, technologies
nucléaires, et radioprotection, sous-comité SC 2, Radioprotection.
Cette deuxième édition annule et remplace la première édition (ISO 11665-9:2016), qui a fait l’objet
d’une révision technique.
Une liste de toutes les parties de la série ISO 11665 se trouve sur le site web de l’ISO.
iv © ISO 2019 – Tous droits réservés
Introduction
Les isotopes 222, 219 et 220 du radon sont des gaz radioactifs produits par la désintégration des
isotopes 226, 223 et 224 du radium, lesquels sont respectivement des descendants de l’uranium-238,
de l’uranium-235 et du thorium-232, et sont tous présents dans l’écorce terrestre. Des éléments solides,
[1]
eux aussi radioactifs, suivis par du plomb stable, sont produits par la désintégration du radon .
Lorsqu’il se désintègre, le radon émet des particules alpha et génère des descendants solides qui sont
eux aussi radioactifs (par exemple polonium, bismuth, plomb, etc.). Les effets potentiels du radon sur
la santé humaine sont liés aux descendants plutôt qu’au gaz lui-même. Qu’ils soient ou non attachés à
des aérosols atmosphériques, les descendants du radon peuvent être inhalés et se déposer dans l’arbre
broncho-pulmonaire à différentes profondeurs, suivant leur taille.
Le radon est aujourd’hui considéré comme la principale source d’exposition de l’homme au rayonnement
[2]
naturel. L’UNSCEAR suggère qu’au niveau mondial, le radon intervient pour environ 52 % de
l’exposition moyenne globale au rayonnement naturel. L’impact radiologique de l’isotope 222 (48 %) est
nettement plus important que celui de l’isotope 220 (4 %) et l’isotope 219 est quant à lui considéré
comme négligeable. Pour cette raison, les références au radon dans le présent document désignent
exclusivement le radon-222.
L’activité volumique du radon peut varier d’un à plusieurs ordres de grandeur dans le temps et l’espace.
L’exposition au radon et à ses descendants varie considérablement d’un lieu à l’autre. Elle dépend
de la quantité de radon émise par le sol en ces lieux, des conditions météorologiques et du degré de
confinement dans les lieux où sont exposées les personnes.
Comme le radon a tendance à se concentrer dans les espaces clos tels que les maisons, la majeure partie
de l’exposition de la population provient du radon présent dans l’atmosphère intérieure des bâtiments.
Le gaz issu du sol est reconnu comme étant la plus importante source de radon résidentiel via des voies
d’infiltration. D’autres sources sont décrites dans d’autres parties de l’ISO 11665 et dans l’ISO 13164
[3]
(toutes les parties) pour l’eau .
Le radon pénètre dans les bâtiments par un mécanisme de diffusion dû à la différence permanente
entre l’activité volumique du radon dans le sol sous-jacent et celle existant à l’intérieur du bâtiment,
et par un mécanisme de convection généré par intermittence par une différence de pression entre l’air
...
NORME ISO
INTERNATIONALE 11665-9
Deuxième édition
2019-05
Mesurage de la radioactivité dans
l'environnement — Air: Radon 222 —
Partie 9:
Méthode de détermination du flux
d'exhalation des matériaux de
construction
Measurement of radioactivity in the environment — Air:
Radon-222 —
Part 9: Test methods for exhalation rate of building materials
Numéro de référence
©
ISO 2019
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes, définitions et symboles . 1
3.1 Termes et définitions . 1
3.2 Symboles . 2
4 Principe . 4
5 Réactifs et équipement . 5
5.1 Réactifs . 5
5.2 Équipement pour la préparation des échantillons . 5
5.3 Équipement pour le mode opératoire . 5
5.4 Banc d’essai . 6
6 Préparation de l’échantillon d’essai de matériau de construction . 7
6.1 Généralités . 7
6.2 Nombre et dimensions . 8
6.2.1 Généralités . 8
6.2.2 Produit fini . 9
6.2.3 Matériaux intermédiaires fluides . 9
6.3 Conditionnement . 9
6.3.1 Produits finis . 9
6.3.2 Matériaux intermédiaires fluides . 9
7 Mesurage. 9
7.1 Généralités . 9
7.2 Configuration du banc d’essai .10
7.2.1 Choix du débit volumique .10
7.2.2 Détermination de la quantité de matériau adsorbant .10
7.2.3 Détermination de la durée minimale de désorption.11
7.2.4 Mode opératoire de CSL .11
7.3 Mode opératoire de mesure .12
8 Expression des résultats.13
8.1 Généralités .13
8.2 Flux d’exhalation libre .14
8.3 Incertitude-type .14
8.4 Seuil de décision .15
8.5 Limite de détection .16
9 Rapport d’essai .16
Annexe A (informative) Méthode pour la détermination du flux d’exhalation du radon libre
des matériaux de construction à base de minéraux — Détermination du comptage
total par spectrométrie gamma .18
Annexe B (informative) Méthode pour la détermination du flux d’exhalation du radon
libre des matériaux de construction à base de minéraux — Détermination par
spectrométrie gamma spécifique aux nucléides .28
Annexe C (informative) Caractéristiques de performance .41
Bibliographie .43
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/iso/fr/avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 85, Énergie nucléaire, technologies
nucléaires, et radioprotection, sous-comité SC 2, Radioprotection.
Cette deuxième édition annule et remplace la première édition (ISO 11665-9:2016), qui a fait l’objet
d’une révision technique.
Une liste de toutes les parties de la série ISO 11665 se trouve sur le site web de l’ISO.
iv © ISO 2019 – Tous droits réservés
Introduction
Les isotopes 222, 219 et 220 du radon sont des gaz radioactifs produits par la désintégration des
isotopes 226, 223 et 224 du radium, lesquels sont respectivement des descendants de l’uranium-238,
de l’uranium-235 et du thorium-232, et sont tous présents dans l’écorce terrestre. Des éléments solides,
[1]
eux aussi radioactifs, suivis par du plomb stable, sont produits par la désintégration du radon .
Lorsqu’il se désintègre, le radon émet des particules alpha et génère des descendants solides qui sont
eux aussi radioactifs (par exemple polonium, bismuth, plomb, etc.). Les effets potentiels du radon sur
la santé humaine sont liés aux descendants plutôt qu’au gaz lui-même. Qu’ils soient ou non attachés à
des aérosols atmosphériques, les descendants du radon peuvent être inhalés et se déposer dans l’arbre
broncho-pulmonaire à différentes profondeurs, suivant leur taille.
Le radon est aujourd’hui considéré comme la principale source d’exposition de l’homme au rayonnement
[2]
naturel. L’UNSCEAR suggère qu’au niveau mondial, le radon intervient pour environ 52 % de
l’exposition moyenne globale au rayonnement naturel. L’impact radiologique de l’isotope 222 (48 %) est
nettement plus important que celui de l’isotope 220 (4 %) et l’isotope 219 est quant à lui considéré
comme négligeable. Pour cette raison, les références au radon dans le présent document désignent
exclusivement le radon-222.
L’activité volumique du radon peut varier d’un à plusieurs ordres de grandeur dans le temps et l’espace.
L’exposition au radon et à ses descendants varie considérablement d’un lieu à l’autre. Elle dépend
de la quantité de radon émise par le sol en ces lieux, des conditions météorologiques et du degré de
confinement dans les lieux où sont exposées les personnes.
Comme le radon a tendance à se concentrer dans les espaces clos tels que les maisons, la majeure partie
de l’exposition de la population provient du radon présent dans l’atmosphère intérieure des bâtiments.
Le gaz issu du sol est reconnu comme étant la plus importante source de radon résidentiel via des voies
d’infiltration. D’autres sources sont décrites dans d’autres parties de l’ISO 11665 et dans l’ISO 13164
[3]
(toutes les parties) pour l’eau .
Le radon pénètre dans les bâtiments par un mécanisme de diffusion dû à la différence permanente
entre l’activité volumique du radon dans le sol sous-jacent et celle existant à l’intérieur du bâtiment,
et par un mécanisme de convection généré par intermittence par une différence de pression entre l’air
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.