ISO 27914:2017
(Main)Carbon dioxide capture, transportation and geological storage - Geological storage
Carbon dioxide capture, transportation and geological storage - Geological storage
ISO 27914:2017 a) establishes requirements and recommendations for the geological storage of CO2 streams, the purpose of which is to promote commercial, safe, long-term containment of carbon dioxide in a way that minimizes risk to the environment, natural resources, and human health, b) is applicable for both onshore and offshore geological storage within permeable and porous geological strata including hydrocarbon reservoirs where a CO2 stream is not being injected for the purpose of hydrocarbon production or for storage in association with CO2-EOR, c) includes activities associated with site screening and selection, characterization, design and development, operation of storage sites, and preparation for site closure, d) recognizes that site selection and management are unique for each project and that intrinsic technical risk and uncertainty will be dealt with on a site-specific basis, e) acknowledges that permitting and approval by regulatory authorities will be required throughout the project life cycle, including the closure period, although the permitting process is not included in ISO 27914:2017, f) provides requirements and recommendations for the development of management systems, community and other stakeholder engagement, risk assessment, risk management and risk communication, g) does not apply to, modify, interpret, or supersede any national or international regulations, treaties, protocols or instruments otherwise applicable to the activities addressed in ISO 27914:2017, and h) does not apply to or modify any property rights or interests in the surface or the subsurface (including mineral rights), or any pre-existing commercial contract or arrangement relating to such property. The life cycle of a CO2 geological storage project covers all aspects, periods, and stages of the project, from those that lead to the start of the project (including site screening, selection, characterization, assessment, engineering, permitting, and construction), through the start of injection and proceeding through subsequent operations until cessation of injection and culminating in the post-injection period, which includes a closure period. Figure 1 illustrates the limits of ISO 27914:2017.
Capture, transport et stockage géologique du dioxyde de carbone — Stockage géologique
L'ISO 27914:2017 a) établit les exigences et recommandations relatives au stockage géologique de flux de CO2, dont le but est de promouvoir le confinement à long terme et en toute sécurité du dioxyde de carbone à l'échelle commerciale, de manière à réduire le plus possible les risques pour l'environnement, les ressources naturelles et la santé humaine, b) s'applique aussi bien au stockage géologique à terre et en mer dans des strates géologiques perméables et poreuses, y compris les réservoirs d'hydrocarbures où un flux de CO2 n'est pas injecté aux fins de la production d'hydrocarbures ou en vue d'un stockage en association avec la RAH-CO2, c) englobe les activités liées au tri et à la sélection de site, la caractérisation, l'étude, le développement, l'exploitation des sites de stockage et la préparation en vue de leur fermeture, d) reconnaît que le choix et la gestion du site sont propres à chaque projet et que les risques techniques et incertitudes intrinsèques seront traités selon une approche spécifique à chaque site, e) reconnaît que des permis et des approbations devront être obtenus auprès des autorités de réglementation tout au long du cycle de vie d'un projet, période de fermeture incluse, bien que le présent document ne traite pas du processus de délivrance des permis, f) fournit des exigences et des recommandations pour l'élaboration de systèmes de management, la participation des collectivités et autres parties prenantes, l'appréciation du risque, le management et la communication sur les risques, g) ne s'applique pas à, ni ne modifie, interprète ou remplace, tout règlement, traité, protocole ou instrument national ou international par ailleurs applicable aux activités couvertes par le présent document, et h) ne s'applique pas aux, ni ne modifie les, droits de propriété ou les intérêts sur les biens en surface ou en subsurface (y compris les droits miniers), ou tout contrat commercial pré existant ou toute disposition afférant à cette propriété. Le cycle de vie d'un projet de stockage géologique de CO2 couvre tous les aspects, périodes et phases du projet, allant de son lancement (y compris le tri de site, la sélection, la caractérisation, l'évaluation, l'étude technique, l'obtention de permis et la construction), en passant par le début de l'injection et les opérations ultérieures jusqu'à l'arrêt de l'injection, et se terminant par la période de post-injection incluant une période de fermeture. La Figure 1 illustre le périmètre du présent document.
Zajetje, transport in geološko shranjevanje ogljikovega dioksida - Geološko shranjevanje
Standard ISO 27914:2017:
a) določa zahteve in priporočila za geološko shranjevanje tokov CO2 z namenom spodbujanja komercialnega, varnega in dolgoročnega shranjevanja ogljikovega dioksida na način, s katerim se zmanjša tveganje za okolje, naravne vire in zdravje ljudi;
b) se uporablja za geološko shranjevanje na kopnem in na morju v prepustnih oziroma poroznih geoloških plasteh, vključno z nahajališči ogljikovodikov, pri čemer se tok CO2 ne uporablja za namen proizvodnje ogljikovodikov ali za shranjevanje v povezavi s CO2-EOR;
c) vključuje dejavnosti, povezane s pregledom in izbiro lokacije, karakterizacijo, načrtovanjem in razvojem, delovanjem lokacije ter pripravo na zaprtje lokacije;
d) upošteva, da sta izbira in upravljanje lokacije edinstvena za posamezni projekt ter da bosta notranje tehnično tveganje in negotovost obravnavana na podlagi posamezne lokacije;
e) potrjuje, da bosta dovoljenje in odobritev s strani regulativnih organov potrebna v vseh fazah izvajanja projekta, vključno z obdobjem zaprtja lokacije, čeprav postopek izdajanja dovoljenj ni vključen v standard ISO 27914:2017;
f) podaja zahteve in priporočila za razvoj sistemov upravljanja, vključevanje skupnosti in drugih deležnikov, oceno tveganja, obvladovanje tveganj ter obveščanje o tveganjih;
g) se ne uporablja za nacionalne ali mednarodne predpise, pogodbe, protokole ali instrumente, ki se drugače uporabljajo za dejavnosti, obravnavane v standardu ISO 27914:2017, in jih ne spreminja, razlaga ali nadomešča; ter
h) se ne uporablja za lastninske pravice oziroma interese na površju ali pod njim (vključno s pravicami izkoriščanja mineralnih virov) ali katero koli že obstoječo poslovno pogodbo ali dogovor v zvezi s tako lastnino ter jih ne spreminja.
Življenjski cikel projekta geološkega shranjevanja CO2 zajema vse vidike, obdobja in faze projekta, od tistih na začetku projekta (vključno s pregledom in izbiro lokacije, karakterizacijo, oceno, inženiringom, izdajo dovoljenj in gradnjo), prek začetka vbrizgavanja in izvajanja nadaljnjih postopkov do prenehanja vbrizgavanja ter zaključka v obdobju po vbrizgavanju, ki vključuje obdobje zaprtja lokacije. Slika 1 prikazuje omejitve standarda ISO 27914:2017.
General Information
Relations
Overview
ISO 27914:2017 - Carbon dioxide capture, transportation and geological storage - Geological storage - establishes requirements and recommendations to enable safe, long‑term geological storage of CO2. The standard promotes commercial, safe containment of CO2 streams that minimizes risks to the environment, natural resources and human health. It applies to onshore and offshore storage in permeable, porous strata (including hydrocarbon reservoirs) except where CO2 injection is for hydrocarbon production or CO2‑EOR. ISO 27914:2017 covers the full project life cycle from site screening and selection through injection, operation, cessation of injection and the post‑injection (closure) period.
Key topics and technical requirements
ISO 27914:2017 covers both management and technical aspects. Main topic areas include:
- Management systems: project scope, roles and responsibilities, documentation, communication, resources and competence, stakeholder engagement.
- Site screening, selection and characterization: geological and hydrogeological evaluation, confining strata, baseline geochemical and geomechanical data, well characterization.
- Modelling: geostatistical models, flow, geochemical and geomechanical modelling to assess storage behaviour and capacity.
- Risk management: structured risk assessment, evaluation criteria, risk treatment plans, risk communication and consultation.
- Well infrastructure: materials selection, well design, cementing, groundwater protection, corrosion control, construction, completion and wellbore monitoring.
- Project boundaries and lifecycle: organizational, operational and project delineation, and closure planning.
- Stakeholder and community engagement: requirements and recommendations for transparent communication throughout the project life cycle.
The standard provides requirements and recommendations rather than prescriptive technical recipes; it acknowledges that site selection and management are project‑specific and that regulatory permitting is required though permitting processes are not included in the document.
Practical applications
ISO 27914:2017 is used to:
- Develop and document CO2 storage project management systems and technical plans.
- Guide site screening, characterization and modelling to support storage feasibility and design.
- Structure risk assessments, mitigation and communication strategies to protect health, safety and the environment.
- Define well integrity, materials and monitoring needs during construction, operation and closure.
- Support transparency with stakeholders and provide a framework aligned with best practices for long‑term containment.
Who should use it
- CO2 geological storage project operators and engineering teams
- Subsurface and reservoir geoscientists and modelers
- Drilling and well integrity engineers
- Environmental, health & safety and risk managers
- Regulators and permitting authorities (for reference)
- Consultants, auditors and investors evaluating storage projects
Limitations and relations
ISO 27914:2017 does not supersede national/international laws, treaties or property rights, nor does it cover permitting procedures. It should be used alongside applicable regulations and complementary standards for monitoring, measurement and verification.
Standards Content (Sample)
SLOVENSKI STANDARD
01-maj-2022
Zajetje, transport in geološko shranjevanje ogljikovega dioksida - Geološko
shranjevanje
Carbon dioxide capture, transportation and geological storage - Geological storage
Capture, transport et stockage géologique du dioxyde de carbone - Stockage géologique
Ta slovenski standard je istoveten z: ISO 27914:2017
ICS:
13.020.40 Onesnaževanje, nadzor nad Pollution, pollution control
onesnaževanjem in and conservation
ohranjanje
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
INTERNATIONAL ISO
STANDARD 27914
First edition
2017-10
Carbon dioxide capture,
transportation and geological
storage — Geological storage
Capture, transport et stockage géologique du dioxyde de carbone —
Stockage géologique
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .vi
Introduction .vii
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Management systems . 9
4.1 Scope of activities . 9
4.1.1 General. 9
4.1.2 Storage project operator’s roles and responsibilities . 9
4.1.3 Stakeholder identification and engagement .10
4.1.4 Storage project delineation .10
4.2 Project boundaries .11
4.2.1 Responsibility .11
4.2.2 Organizational boundaries .11
4.2.3 Operational boundaries .11
4.3 Management commitment to principles.11
4.3.1 General.11
4.3.2 Internal principles .12
4.3.3 External principles .12
4.3.4 Health, safety, and environmental principles .12
4.4 Planning and decision-making .13
4.4.1 General.13
4.4.2 Intellectual property . .13
4.5 Resources .13
4.5.1 General.13
4.5.2 Competence of personnel .13
4.5.3 Equipment management .13
4.6 Communications .13
4.6.1 General.13
4.6.2 Public communications .14
4.6.3 Internal communications .14
4.7 Documentation .14
4.7.1 General.14
4.7.2 Information management .14
5 Site screening, selection, and characterization .14
5.1 General .14
5.2 Site screening .15
5.3 Site selection .16
5.4 Site characterization and assessment .18
5.4.1 General.18
5.4.2 Geological and hydrogeological characterization of the storage unit .18
5.4.3 Characterization of confining strata .18
5.4.4 Baseline geochemical characterization .19
5.4.5 Baseline geomechanical characterization .19
5.4.6 Well characterization .20
5.5 Modelling .20
5.5.1 General.20
5.5.2 Geostatic model .20
5.5.3 Flow modelling .21
5.5.4 Geochemical modelling .22
5.5.5 Geomechanical modelling .24
6 Risk management .26
6.1 General .26
6.2 Objectives.26
6.3 Process .26
6.4 Context .27
6.4.1 General.27
6.4.2 Context elements .27
6.5 Risk evaluation criteria .27
6.6 Risk management plan .28
6.7 Risk assessment .28
6.7.1 General.28
6.7.2 Risk identification .29
6.7.3 Risk analysis .29
6.7.4 Risk evaluation .30
6.8 Risk treatment plan .31
6.9 Review and documentation .31
6.9.1 Review . .31
6.9.2 Documentation .32
6.10 Risk communication and consultation .33
6.10.1 General.33
6.10.2 Objectives .33
6.10.3 Scope of risk communication and consultation activities .33
6.10.4 Performance goals .34
7 Well infrastructure .34
7.1 General .34
7.1.1 Scope .34
7.1.2 Documentation .34
7.2 Materials .35
7.2.1 Conditions for use .35
7.2.2 Materials selection .35
7.2.3 Material requirements .35
7.3 Design .36
7.3.1 General.36
7.3.2 Safety .36
7.3.3 Wells .36
7.3.4 Tubulars .37
7.4 Construction and completions .38
7.4.1 General.38
7.4.2 Cementing .38
7.4.3 Groundwater protection .38
7.4.4 Post-cementing evaluation and remediation .39
7.4.5 Completion and stimulation .39
7.4.6 Wellbore monitoring requirements .39
7.5 Corrosion control .39
7.5.1 General.39
7.5.2 Well maintenance .39
7.5.3 Cathodic protection systems .40
7.5.4 Environmental compatibility .40
7.6 Evaluation of wells .40
7.6.1 General.40
7.6.2 Legacy wells .40
7.6.3 Inspection and testing .41
7.7 Recompletion and workover of wells .41
7.7.1 General.41
7.7.2 Conditions for recompletion and workover of wells .41
7.7.3 Wellbore integrity .41
7.8 Abandonment of wells .42
7.8.1 General.42
7.8.2 Evaluation of existing abandoned wells .42
iv © ISO 2017 – All rights reserved
7.8.3 Abandonment .42
8 CO storage site injection operations .42
8.1 General .42
8.1.1 Objectives .42
8.1.2 Scope of operations .43
8.2 Design of CO injection operations .43
8.2.1 General.43
8.2.2 Components of operations design .43
8.2.3 Injection design parameters .43
8.2.4 Storage facility design plan .44
8.3 Operations and maintenance plan .45
8.3.1 General.45
8.3.2 Operational protocols and maintenance schedules .45
8.3.3 Recording management of change .45
8.3.4 Communication plan .45
8.3.5 Safety plan .45
8.3.6 Security plan .46
8.4 Injection operations .46
8.4.1 General.46
8.4.2 Injection .46
8.4.3 Shutdown .47
8.5 Data acquisition, monitoring and testing .47
8.5.1 General.47
8.5.2 Surface equipment and injection line data .48
8.5.3 Wellbore monitoring .48
8.5.4 Well testing .49
8.5.5 Corrosion mitigation .50
8.6 Well intervention (workovers) .50
9 Monitoring and verification .50
9.1 Purpose .50
9.2 M&V program periods .51
9.2.1 General.51
9.2.2 Pre-injection period monitoring .51
9.2.3 Injection period monitoring .51
9.2.4 Closure period monitoring .51
9.3 M&V program objectives .52
9.4 M&V plan design .52
9.4.1 M&V program procedures and practices .52
9.4.2 M&V plan specifications .53
9.4.3 M&V program contingency monitoring .54
10 Site closure .54
10.1 General .54
10.2 Criteria for site closure .54
10.3 Closure plan .55
10.4 Closure qualification process .55
10.4.1 Process .55
10.4.2 Documentation .56
10.4.3 Related activities .56
Bibliography .57
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 265, Carbon dioxide capture,
transportation, and geological storage.
vi © ISO 2017 – All rights reserved
Introduction
Geological storage of carbon dioxide (CO ) is recognized as a key technology for abatement of CO
2 2
emissions to the atmosphere or ocean and is an essential component in the process of carbon dioxide
[1]
capture and storage (CCS) . The objective of this document is to provide recommendations for the safe
and effective storage of CO in subsurface geologic formations through all phases of a storage project
life cycle (see Figure 1). While CCS is a nascent industry, this document is supported by a wide range
of operational experiences in pilot to commercial scale carbon dioxide storage projects that have used
methods and technologies mostly developed and widely deployed by the oil and gas industry including
CO -enhanced oil recovery (EOR). This document applies to injection of CO into geologic units for the
2 2
sole purpose of storage and does not apply to CO injection for hydrocarbon recovery, or storage of
CO that occurs in association with carbon dioxide enhanced hydrocarbon recovery. [ISO 29716 is in
development to address carbon dioxide storage using enhanced oil recovery (CO -EOR)]. This document
is supplemented by recommended practice manuals for CO storage and numerous standards and
technical recommendations developed for the oil and gas industry. [See Bibliography for selected
references (References [1] to [12])].
INTERNATIONAL STANDARD ISO 27914:2017(E)
Carbon dioxide capture, transportation and geological
storage — Geological storage
1 Scope
This document
a) establishes requirements and recommendations for the geological storage of CO streams, the
purpose of which is to promote commercial, safe, long-term containment of carbon dioxide in a way
that minimizes risk to the environment, natural resources, and human health,
b) is applicable for both onshore and offshore geological storage within permeable and porous
geological strata including hydrocarbon reservoirs where a CO stream is not being injected for the
purpose of hydrocarbon production or for storage in association with CO -EOR,
c) includes activities associated with site screening and selection, characterization, design and
development, operation of storage sites, and preparation for site closure,
d) recognizes that site selection and management are unique for each project and that intrinsic
technical risk and uncertainty will be dealt with on a site-specific basis,
e) acknowledges that permitting and approval by regulatory authorities will be required throughout
the project life cycle, including the closure period, although the permitting process is not included
in this document,
f) provides requirements and recommendations for the development of management systems,
community and other stakeholder engagement, risk assessment, risk management and risk
communication,
g) does not apply to, modify, interpret, or supersede any national or international regulations, treaties,
protocols or instruments otherwise applicable to the activities addressed in this document, and
h) does not apply to or modify any property rights or interests in the surface or the subsurface
(including mineral rights), or any pre-existing commercial contract or arrangement relating to
such property.
The life cycle of a CO geological storage project covers all aspects, periods, and stages of the project,
from those that lead to the start of the project (including site screening, selection, characterization,
assessment, engineering, permitting, and construction), through the start of injection and proceeding
through subsequent operations until cessation of injection and culminating in the post-injection period,
which includes a closure period. Figure 1 illustrates the limits of this document.
NOTE 1 This document does not address any post-closure period or specify post-closure period requirements.
This document does not apply to
— the post-closure period,
— injection of CO for enhancing production of hydrocarbons or for storage associated with CO -EOR,
2 2
— disposal of other acid gases except as considered part of the CO stream,
— disposal of waste and other matter added for purpose of disposal,
— CO injection and storage in coal, basalt, shale and salt caverns, or
— underground storage using any form of buried container.
NOTE 2 This document may not be suitable for research projects, for example, those with a primary objective
to test technologies or methods of monitoring.
NOTE 3 The closure period in this document does overlap with the post-closure phase of the EU regulatory
definition. This document, however, is not concerned with transfer of liability.
Figure 1 — Entities involved in the storage project life cycle
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
abandonment
process and procedures used to permanently end the operation of a well
Note 1 to entry: Well abandonment is designed to eliminate the physical hazard of the well (the hole in the
ground), eliminate a pathway for migration of contamination, and prevent changes in the hydrogeologic system,
such as the changes in hydraulic head and the mixing of formation fluids between hydraulically distinct strata.
3.2
acceptable risk
risk (3.39) borne by the project operator (3.33) and others, having regard to legal obligations and
management policies
3.3
area of review
geographical area(s) of a storage project (3.56), or part of it, designated for assessment of the extent to
which a storage project, or part of it, could affect life and human health, the environment, competitive
development of other resources, or infrastructure
Note 1 to entry: The delineation of an area of review defines the outer perimeters on the land surface or seabed
and water surface within which assessments will be conducted as may be required by regulatory authorities.
3.4
baseline
reference basis for comparison against which project performance is monitored or measured
2 © ISO 2017 – All rights reserved
3.5
biosphere
realm of living organisms including the atmosphere, on the ground surface and in soils, in oceans and
seas, in surface waters such as rivers and lakes, and in the subsurface above the storage complex (3.54)
3.6
carbon dioxide (CO ) plume
region within geologic strata where CO is present in free phase
3.7
carbon dioxide (CO ) stream
stream consisting overwhelmingly of carbon dioxide
Note 1 to entry: The stream is a fluid mixture that may include any incidental associated substances derived
from the source materials or the capture process and any substances added to the stream to enable or improve
the injection process and/or trace substances added to assist in CO migration detection.
3.8
casing
pipe material placed inside a drilled hole to prevent the surrounding strata from collapsing into the hole
Note 1 to entry: There are many acceptable variations on casing design but typical types of casing in most
injection wells are:
a) surface casing, i.e. the outermost casing that extends from the surface to the base of the lowermost protected
groundwater (3.37);
b) intermediate casing is one or more strings of casing installed between the surface and long-string casing for
various design reasons;
c) long-string casing, which extends from the surface to or through protected groundwater to the bottom of
the well.
3.9
casing shoe
reinforcing steel collar that is screwed onto the bottom joint of the casing (3.8) to prevent abrasion or
distortion of the casing when it is forced past obstructions on the wall of the borehole
3.10
closure period
period between the cessation of injection and the demonstration of compliance with the criteria for site
closure (3.52)
3.11
containment
retention of CO and formation fluids within a storage complex (3.54)
3.12
corrective action
action taken to correct material irregularities or to contain breaches in order to prevent or minimize
damage to, or release of CO from, a storage complex (3.54)
Note 1 to entry: Corrective actions are implemented after an irregularity has occurred to help prevent or
minimize damage.
3.13
decommission
take an engineered system or component out of service, render it inoperative, dismantle and
decontaminate it
3.14
element of concern
valued element or objective for which risk (3.39) is evaluated and managed
3.15
elevated pressure zone
zone within a storage complex (3.54) where there is sufficient pressure to cause flow of formation
fluids through a pathway from the storage unit(s) (3.59) to outside the storage complex into economic
resources, protected groundwater (3.37), or the biosphere (3.5)
3.16
event
material occurrence or change in a particular set of circumstances
3.17
geological storage
long-term containment (3.11) of CO2 streams (3.7) in subsurface geological formations
Note 1 to entry: Long-term means the minimum period necessary for CO geological storage to be considered an
effective and environmentally safe climate change mitigation option.
Note 2 to entry: The term “sequestration” has been used by a number of countries and organizations instead of
“storage” (e.g. the international “Carbon Sequestration Leadership Forum”). The two terms are considered to be
synonymous, and only “storage” is used in this document.
Note 3 to entry: Within the context of this document, geological storage
a) is applicable to permeable and porous strata that do not contain protected groundwater (3.37),
b) is applicable to nonproducing hydrocarbon reservoirs, and
c) does not apply to
1) CO injection and storage in unmineable coal beds, basalt formations, shales, and salt caverns,
2) CO injection and storage in any formations containing producible hydrocarbons, and
3) underground storage in materials involving the use of any form of man-made containers.
3.18
geosphere
solid earth below the ground surface and bottom of rivers and other bodies of water on land, and below
the sea bottom offshore
3.19
injectivity
rate and pressure at which fluids can be pumped into the storage unit (3.59) without fracturing the
storage unit
3.20
leakage
unintended release of fluid out of a pre-defined containment (3.11)
Note 1 to entry: In this document, the pre-defined containment is the storage complex (3.54).
3.21
legacy well
pre-existing well within the area of review (3.3) of a CO storage project (3
...
INTERNATIONAL ISO
STANDARD 27914
First edition
2017-10
Carbon dioxide capture,
transportation and geological
storage — Geological storage
Capture, transport et stockage géologique du dioxyde de carbone —
Stockage géologique
Reference number
©
ISO 2017
© ISO 2017, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2017 – All rights reserved
Contents Page
Foreword .vi
Introduction .vii
1 Scope . 1
2 Normative references . 2
3 Terms and definitions . 2
4 Management systems . 9
4.1 Scope of activities . 9
4.1.1 General. 9
4.1.2 Storage project operator’s roles and responsibilities . 9
4.1.3 Stakeholder identification and engagement .10
4.1.4 Storage project delineation .10
4.2 Project boundaries .11
4.2.1 Responsibility .11
4.2.2 Organizational boundaries .11
4.2.3 Operational boundaries .11
4.3 Management commitment to principles.11
4.3.1 General.11
4.3.2 Internal principles .12
4.3.3 External principles .12
4.3.4 Health, safety, and environmental principles .12
4.4 Planning and decision-making .13
4.4.1 General.13
4.4.2 Intellectual property . .13
4.5 Resources .13
4.5.1 General.13
4.5.2 Competence of personnel .13
4.5.3 Equipment management .13
4.6 Communications .13
4.6.1 General.13
4.6.2 Public communications .14
4.6.3 Internal communications .14
4.7 Documentation .14
4.7.1 General.14
4.7.2 Information management .14
5 Site screening, selection, and characterization .14
5.1 General .14
5.2 Site screening .15
5.3 Site selection .16
5.4 Site characterization and assessment .18
5.4.1 General.18
5.4.2 Geological and hydrogeological characterization of the storage unit .18
5.4.3 Characterization of confining strata .18
5.4.4 Baseline geochemical characterization .19
5.4.5 Baseline geomechanical characterization .19
5.4.6 Well characterization .20
5.5 Modelling .20
5.5.1 General.20
5.5.2 Geostatic model .20
5.5.3 Flow modelling .21
5.5.4 Geochemical modelling .22
5.5.5 Geomechanical modelling .24
6 Risk management .26
6.1 General .26
6.2 Objectives.26
6.3 Process .26
6.4 Context .27
6.4.1 General.27
6.4.2 Context elements .27
6.5 Risk evaluation criteria .27
6.6 Risk management plan .28
6.7 Risk assessment .28
6.7.1 General.28
6.7.2 Risk identification .29
6.7.3 Risk analysis .29
6.7.4 Risk evaluation .30
6.8 Risk treatment plan .31
6.9 Review and documentation .31
6.9.1 Review . .31
6.9.2 Documentation .32
6.10 Risk communication and consultation .33
6.10.1 General.33
6.10.2 Objectives .33
6.10.3 Scope of risk communication and consultation activities .33
6.10.4 Performance goals .34
7 Well infrastructure .34
7.1 General .34
7.1.1 Scope .34
7.1.2 Documentation .34
7.2 Materials .35
7.2.1 Conditions for use .35
7.2.2 Materials selection .35
7.2.3 Material requirements .35
7.3 Design .36
7.3.1 General.36
7.3.2 Safety .36
7.3.3 Wells .36
7.3.4 Tubulars .37
7.4 Construction and completions .38
7.4.1 General.38
7.4.2 Cementing .38
7.4.3 Groundwater protection .38
7.4.4 Post-cementing evaluation and remediation .39
7.4.5 Completion and stimulation .39
7.4.6 Wellbore monitoring requirements .39
7.5 Corrosion control .39
7.5.1 General.39
7.5.2 Well maintenance .39
7.5.3 Cathodic protection systems .40
7.5.4 Environmental compatibility .40
7.6 Evaluation of wells .40
7.6.1 General.40
7.6.2 Legacy wells .40
7.6.3 Inspection and testing .41
7.7 Recompletion and workover of wells .41
7.7.1 General.41
7.7.2 Conditions for recompletion and workover of wells .41
7.7.3 Wellbore integrity .41
7.8 Abandonment of wells .42
7.8.1 General.42
7.8.2 Evaluation of existing abandoned wells .42
iv © ISO 2017 – All rights reserved
7.8.3 Abandonment .42
8 CO storage site injection operations .42
8.1 General .42
8.1.1 Objectives .42
8.1.2 Scope of operations .43
8.2 Design of CO injection operations .43
8.2.1 General.43
8.2.2 Components of operations design .43
8.2.3 Injection design parameters .43
8.2.4 Storage facility design plan .44
8.3 Operations and maintenance plan .45
8.3.1 General.45
8.3.2 Operational protocols and maintenance schedules .45
8.3.3 Recording management of change .45
8.3.4 Communication plan .45
8.3.5 Safety plan .45
8.3.6 Security plan .46
8.4 Injection operations .46
8.4.1 General.46
8.4.2 Injection .46
8.4.3 Shutdown .47
8.5 Data acquisition, monitoring and testing .47
8.5.1 General.47
8.5.2 Surface equipment and injection line data .48
8.5.3 Wellbore monitoring .48
8.5.4 Well testing .49
8.5.5 Corrosion mitigation .50
8.6 Well intervention (workovers) .50
9 Monitoring and verification .50
9.1 Purpose .50
9.2 M&V program periods .51
9.2.1 General.51
9.2.2 Pre-injection period monitoring .51
9.2.3 Injection period monitoring .51
9.2.4 Closure period monitoring .51
9.3 M&V program objectives .52
9.4 M&V plan design .52
9.4.1 M&V program procedures and practices .52
9.4.2 M&V plan specifications .53
9.4.3 M&V program contingency monitoring .54
10 Site closure .54
10.1 General .54
10.2 Criteria for site closure .54
10.3 Closure plan .55
10.4 Closure qualification process .55
10.4.1 Process .55
10.4.2 Documentation .56
10.4.3 Related activities .56
Bibliography .57
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 265, Carbon dioxide capture,
transportation, and geological storage.
vi © ISO 2017 – All rights reserved
Introduction
Geological storage of carbon dioxide (CO ) is recognized as a key technology for abatement of CO
2 2
emissions to the atmosphere or ocean and is an essential component in the process of carbon dioxide
[1]
capture and storage (CCS) . The objective of this document is to provide recommendations for the safe
and effective storage of CO in subsurface geologic formations through all phases of a storage project
life cycle (see Figure 1). While CCS is a nascent industry, this document is supported by a wide range
of operational experiences in pilot to commercial scale carbon dioxide storage projects that have used
methods and technologies mostly developed and widely deployed by the oil and gas industry including
CO -enhanced oil recovery (EOR). This document applies to injection of CO into geologic units for the
2 2
sole purpose of storage and does not apply to CO injection for hydrocarbon recovery, or storage of
CO that occurs in association with carbon dioxide enhanced hydrocarbon recovery. [ISO 29716 is in
development to address carbon dioxide storage using enhanced oil recovery (CO -EOR)]. This document
is supplemented by recommended practice manuals for CO storage and numerous standards and
technical recommendations developed for the oil and gas industry. [See Bibliography for selected
references (References [1] to [12])].
INTERNATIONAL STANDARD ISO 27914:2017(E)
Carbon dioxide capture, transportation and geological
storage — Geological storage
1 Scope
This document
a) establishes requirements and recommendations for the geological storage of CO streams, the
purpose of which is to promote commercial, safe, long-term containment of carbon dioxide in a way
that minimizes risk to the environment, natural resources, and human health,
b) is applicable for both onshore and offshore geological storage within permeable and porous
geological strata including hydrocarbon reservoirs where a CO stream is not being injected for the
purpose of hydrocarbon production or for storage in association with CO -EOR,
c) includes activities associated with site screening and selection, characterization, design and
development, operation of storage sites, and preparation for site closure,
d) recognizes that site selection and management are unique for each project and that intrinsic
technical risk and uncertainty will be dealt with on a site-specific basis,
e) acknowledges that permitting and approval by regulatory authorities will be required throughout
the project life cycle, including the closure period, although the permitting process is not included
in this document,
f) provides requirements and recommendations for the development of management systems,
community and other stakeholder engagement, risk assessment, risk management and risk
communication,
g) does not apply to, modify, interpret, or supersede any national or international regulations, treaties,
protocols or instruments otherwise applicable to the activities addressed in this document, and
h) does not apply to or modify any property rights or interests in the surface or the subsurface
(including mineral rights), or any pre-existing commercial contract or arrangement relating to
such property.
The life cycle of a CO geological storage project covers all aspects, periods, and stages of the project,
from those that lead to the start of the project (including site screening, selection, characterization,
assessment, engineering, permitting, and construction), through the start of injection and proceeding
through subsequent operations until cessation of injection and culminating in the post-injection period,
which includes a closure period. Figure 1 illustrates the limits of this document.
NOTE 1 This document does not address any post-closure period or specify post-closure period requirements.
This document does not apply to
— the post-closure period,
— injection of CO for enhancing production of hydrocarbons or for storage associated with CO -EOR,
2 2
— disposal of other acid gases except as considered part of the CO stream,
— disposal of waste and other matter added for purpose of disposal,
— CO injection and storage in coal, basalt, shale and salt caverns, or
— underground storage using any form of buried container.
NOTE 2 This document may not be suitable for research projects, for example, those with a primary objective
to test technologies or methods of monitoring.
NOTE 3 The closure period in this document does overlap with the post-closure phase of the EU regulatory
definition. This document, however, is not concerned with transfer of liability.
Figure 1 — Entities involved in the storage project life cycle
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at http://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
abandonment
process and procedures used to permanently end the operation of a well
Note 1 to entry: Well abandonment is designed to eliminate the physical hazard of the well (the hole in the
ground), eliminate a pathway for migration of contamination, and prevent changes in the hydrogeologic system,
such as the changes in hydraulic head and the mixing of formation fluids between hydraulically distinct strata.
3.2
acceptable risk
risk (3.39) borne by the project operator (3.33) and others, having regard to legal obligations and
management policies
3.3
area of review
geographical area(s) of a storage project (3.56), or part of it, designated for assessment of the extent to
which a storage project, or part of it, could affect life and human health, the environment, competitive
development of other resources, or infrastructure
Note 1 to entry: The delineation of an area of review defines the outer perimeters on the land surface or seabed
and water surface within which assessments will be conducted as may be required by regulatory authorities.
3.4
baseline
reference basis for comparison against which project performance is monitored or measured
2 © ISO 2017 – All rights reserved
3.5
biosphere
realm of living organisms including the atmosphere, on the ground surface and in soils, in oceans and
seas, in surface waters such as rivers and lakes, and in the subsurface above the storage complex (3.54)
3.6
carbon dioxide (CO ) plume
region within geologic strata where CO is present in free phase
3.7
carbon dioxide (CO ) stream
stream consisting overwhelmingly of carbon dioxide
Note 1 to entry: The stream is a fluid mixture that may include any incidental associated substances derived
from the source materials or the capture process and any substances added to the stream to enable or improve
the injection process and/or trace substances added to assist in CO migration detection.
3.8
casing
pipe material placed inside a drilled hole to prevent the surrounding strata from collapsing into the hole
Note 1 to entry: There are many acceptable variations on casing design but typical types of casing in most
injection wells are:
a) surface casing, i.e. the outermost casing that extends from the surface to the base of the lowermost protected
groundwater (3.37);
b) intermediate casing is one or more strings of casing installed between the surface and long-string casing for
various design reasons;
c) long-string casing, which extends from the surface to or through protected groundwater to the bottom of
the well.
3.9
casing shoe
reinforcing steel collar that is screwed onto the bottom joint of the casing (3.8) to prevent abrasion or
distortion of the casing when it is forced past obstructions on the wall of the borehole
3.10
closure period
period between the cessation of injection and the demonstration of compliance with the criteria for site
closure (3.52)
3.11
containment
retention of CO and formation fluids within a storage complex (3.54)
3.12
corrective action
action taken to correct material irregularities or to contain breaches in order to prevent or minimize
damage to, or release of CO from, a storage complex (3.54)
Note 1 to entry: Corrective actions are implemented after an irregularity has occurred to help prevent or
minimize damage.
3.13
decommission
take an engineered system or component out of service, render it inoperative, dismantle and
decontaminate it
3.14
element of concern
valued element or objective for which risk (3.39) is evaluated and managed
3.15
elevated pressure zone
zone within a storage complex (3.54) where there is sufficient pressure to cause flow of formation
fluids through a pathway from the storage unit(s) (3.59) to outside the storage complex into economic
resources, protected groundwater (3.37), or the biosphere (3.5)
3.16
event
material occurrence or change in a particular set of circumstances
3.17
geological storage
long-term containment (3.11) of CO2 streams (3.7) in subsurface geological formations
Note 1 to entry: Long-term means the minimum period necessary for CO geological storage to be considered an
effective and environmentally safe climate change mitigation option.
Note 2 to entry: The term “sequestration” has been used by a number of countries and organizations instead of
“storage” (e.g. the international “Carbon Sequestration Leadership Forum”). The two terms are considered to be
synonymous, and only “storage” is used in this document.
Note 3 to entry: Within the context of this document, geological storage
a) is applicable to permeable and porous strata that do not contain protected groundwater (3.37),
b) is applicable to nonproducing hydrocarbon reservoirs, and
c) does not apply to
1) CO injection and storage in unmineable coal beds, basalt formations, shales, and salt caverns,
2) CO injection and storage in any formations containing producible hydrocarbons, and
3) underground storage in materials involving the use of any form of man-made containers.
3.18
geosphere
solid earth below the ground surface and bottom of rivers and other bodies of water on land, and below
the sea bottom offshore
3.19
injectivity
rate and pressure at which fluids can be pumped into the storage unit (3.59) without fracturing the
storage unit
3.20
leakage
unintended release of fluid out of a pre-defined containment (3.11)
Note 1 to entry: In this document, the pre-defined containment is the storage complex (3.54).
3.21
legacy well
pre-existing well within the area of review (3.3) of a CO storage project (3.56) that was drilled for a
different purpose than CO injection or monitoring (3.27) of the respective CO storage project
2 2
3.22
likelihood
chance of something happening, expressed qualitatively or quantitatively and described using general
terms or mathematically, e.g. by specifying a probability or frequency of occurrence over a given period
4 © ISO 2017 – All rights reserved
3.23
liner
casing (3.8) string that does not extend to the surface
3.24
management of change
procedure used when making a change to the process equipment or operating procedures to detail
changes made and to document steps taken to inform and train operating personnel and relevant
stakeholders on process changes
3.25
mechanical integrity
mechanical condition of a well, such that engineered components maintain their original dimensions
and functions, solid geological materials are kept out of the wellbore, and fluids including CO are
prevented from uncontrolled flow into, o
...
NORME ISO
INTERNATIONALE 27914
Première édition
2017-10
Capture, transport et stockage
géologique du dioxyde de carbone —
Stockage géologique
Carbon dioxide capture, transportation and geological storage —
Geological storage
Numéro de référence
©
ISO 2017
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2017
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en oeuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2017 – Tous droits réservés
Sommaire Page
Avant-propos .vi
Introduction .vii
1 Domaine d’application . 1
2 Références normatives . 2
3 Termes et définitions . 2
4 Systèmes de management .10
4.1 Périmètre des activités .10
4.1.1 Généralités .10
4.1.2 Rôles et responsabilités de l’exploitant d’un projet de stockage .10
4.1.3 Identification et participation des parties prenantes .11
4.1.4 Délimitation du projet de stockage .11
4.2 Limites du projet .12
4.2.1 Responsabilités .12
4.2.2 Périmètre organisationnel.12
4.2.3 Périmètre opérationnel .12
4.3 Engagement de la direction à des principes .12
4.3.1 Généralités .12
4.3.2 Principes internes .13
4.3.3 Principes externes .13
4.3.4 Principes applicables en matière de santé, de sécurité et d’environnement .13
4.4 Planification et prise de décision .14
4.4.1 Généralités .14
4.4.2 Propriété intellectuelle .14
4.5 Ressources .14
4.5.1 Généralités .14
4.5.2 Compétences du personnel .14
4.5.3 Gestion des équipements .14
4.6 Communication .14
4.6.1 Généralités .14
4.6.2 Communication publique .15
4.6.3 Communication interne .15
4.7 Documentation .15
4.7.1 Généralités .15
4.7.2 Management de l’information .15
5 Tri, sélection et caractérisation de site .16
5.1 Généralités .16
5.2 Tri de site .16
5.3 Sélection du site .18
5.4 Caractérisation et évaluation du site .19
5.4.1 Généralités .19
5.4.2 Caractérisation géologique et hydrogéologique de l’unité de stockage .19
5.4.3 Caractérisation des strates de confinement .20
5.4.4 Caractérisation géochimique de référence.20
5.4.5 Caractérisation géomécanique de référence .21
5.4.6 Caractérisation du puits .21
5.5 Modélisation.21
5.5.1 Généralités .21
5.5.2 Modèle géostatique .22
5.5.3 Modélisation des écoulements .23
5.5.4 Modélisation géochimique .24
5.5.5 Modélisation géomécanique .27
6 Management du risque .28
6.1 Généralités .28
6.2 Objectifs .28
6.3 Processus .28
6.4 Contexte .29
6.4.1 Généralités .29
6.4.2 Éléments contextuels .29
6.5 Critères d’évaluation du risque .30
6.6 Plan de management du risque .30
6.7 Appréciation du risque .31
6.7.1 Généralités .31
6.7.2 Identification des risques .31
6.7.3 Analyse des risques .32
6.7.4 Évaluation des risques .33
6.8 Plan de traitement des risques .33
6.9 Revue et documentation .34
6.9.1 Revue.34
6.9.2 Documentation .35
6.10 Communication et concertation sur les risques .36
6.10.1 Généralités .36
6.10.2 Objectifs .36
6.10.3 Étendue des activités de communication et de concertation sur les risques .36
6.10.4 Objectifs de performance .37
7 Infrastructure des puits .37
7.1 Généralités .37
7.1.1 Domaine d’application .37
7.1.2 Documentation .38
7.2 Matériaux .38
7.2.1 Conditions d’utilisation .38
7.2.2 Choix des matériaux.38
7.2.3 Exigences relatives aux matériaux .38
7.3 Conception .39
7.3.1 Généralités .39
7.3.2 Sécurité .39
7.3.3 Puits .40
7.3.4 Matériel tubulaire .41
7.4 Construction et complétion .42
7.4.1 Généralités .42
7.4.2 Cimentation .42
7.4.3 Protection des eaux souterraines .42
7.4.4 Évaluation et réparation après la cimentation.42
7.4.5 Complétion et stimulation .43
7.4.6 Exigences en matière de surveillance des puits.43
7.5 Contrôle de la corrosion .43
7.5.1 Généralités .43
7.5.2 Maintenance des puits .43
7.5.3 Systèmes de protection cathodique .43
7.5.4 Compatibilité environnementale .44
7.6 Évaluation des puits .44
7.6.1 Généralités .44
7.6.2 Puits antérieurs.44
7.6.3 Contrôle et essais . . .45
7.7 Reprise et reconditionnement des puits.45
7.7.1 Généralités .45
7.7.2 Conditions pour la reprise et le reconditionnement des puits .45
7.7.3 Intégrité du forage .45
7.8 Abandon des puits .46
7.8.1 Généralités .46
7.8.2 Évaluation des puits abandonnés existants .46
iv © ISO 2017 – Tous droits réservés
7.8.3 Abandon .46
8 Opérations d’injection du site de stockage de CO .47
8.1 Généralités .47
8.1.1 Objectifs .47
8.1.2 Domaine d’application des opérations .47
8.2 Conception des opérations d’injection de CO .
2 47
8.2.1 Généralités .47
8.2.2 Composants de la conception des opérations .47
8.2.3 Paramètres de dimensionnement de l’injection .48
8.2.4 Plan de conception des installations de stockage .49
8.3 Plan d’exploitation et de maintenance .49
8.3.1 Généralités .49
8.3.2 Protocoles opérationnels et plannings de maintenance.49
8.3.3 Gestion des enregistrements relatifs aux changements .50
8.3.4 Plan de communication .50
8.3.5 Plan de sécurité .50
8.3.6 Plan de sûreté .50
8.4 Opérations d’injection .50
8.4.1 Généralités .50
8.4.2 Injection .51
8.4.3 Arrêt .51
8.5 Acquisition de données, surveillance et essais .52
8.5.1 Généralités .52
8.5.2 Données concernant les équipements de surface et les conduites d’injection .52
8.5.3 Surveillance du puits .53
8.5.4 Essais en puits .53
8.5.5 Atténuation de la corrosion .55
8.6 Interventions sur le puits (reconditionnements) .55
9 Surveillance et vérification .55
9.1 Finalité .55
9.2 Périodes du programme de surveillance et de validation .56
9.2.1 Généralités .56
9.2.2 Surveillance de la période de pré-injection .56
9.2.3 Surveillance de la période d’injection .56
9.2.4 Surveillance de la période de fermeture .56
9.3 Objectifs du programme de surveillance et de validation .57
9.4 Conception du plan de S&V .57
9.4.1 Modes opératoires et pratiques du programme de S&V .57
9.4.2 Spécifications du plan de S&V .58
9.4.3 Surveillance de contingence du programme de S&V .59
10 Fermeture du site .59
10.1 Généralités .59
10.2 Critères de fermeture du site .59
10.3 Plan de fermeture .60
10.4 Processus de qualification de la fermeture .61
10.4.1 Processus .61
10.4.2 Documentation .61
10.4.3 Activités connexes .62
Bibliographie .63
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 265, Captage du dioxyde de carbone,
transport et stockage géologique.
vi © ISO 2017 – Tous droits réservés
Introduction
Le stockage géologique du dioxyde de carbone (CO ) est reconnu en tant que technologie-clé pour
la réduction des émissions de CO dans l’atmosphère ou les océans et est un composant essentiel du
[1]
processus de captage et de stockage du dioxyde de carbone (CSC) . Le présent document a pour
objectif de fournir des recommandations pour le stockage sûr et efficace du CO dans les formations
géologiques souterraines à toutes les phases du cycle de vie d’un projet de stockage (voir Figure 1).
Bien que le CSC soit un secteur industriel naissant, le présent document s’appuie sur un large éventail
d’expériences opérationnelles allant de projets pilotes jusqu’à des projets commerciaux de stockage
du dioxyde de carbone qui ont utilisé des méthodes et des technologies essentiellement développées
et largement déployées par l’industrie pétrolière et gazière, y compris la récupération assistée des
hydrocarbures (RAH) à l’aide de CO . Le présent document s’applique à l’injection de CO dans les unités
2 2
géologiques aux seules fins de stockage et ne s’applique pas à l’injection de CO pour la récupération
des hydrocarbures, ou au stockage de CO associé à la récupération assistée des hydrocarbures à
l’aide de dioxyde de carbone. [L’ISO 29716, qui traite du stockage du dioxyde de carbone en utilisant la
récupération assistée des hydrocarbures (RAH-CO ), est en cours d’élaboration]. Le présent document
est complété par des manuels de pratiques recommandées pour le stockage du CO , ainsi que par de
nombreuses normes et recommandations techniques développées pour l’industrie pétrolière et gazière
[voir la Bibliographie pour les références sélectionnées (Références [1] à [12])].
NORME INTERNATIONALE ISO 27914:2017(F)
Capture, transport et stockage géologique du dioxyde de
carbone — Stockage géologique
1 Domaine d’application
Le présent document
a) établit les exigences et recommandations relatives au stockage géologique de flux de CO , dont le
but est de promouvoir le confinement à long terme et en toute sécurité du dioxyde de carbone à
l’échelle commerciale, de manière à réduire le plus possible les risques pour l’environnement, les
ressources naturelles et la santé humaine,
b) s’applique aussi bien au stockage géologique à terre et en mer dans des strates géologiques
perméables et poreuses, y compris les réservoirs d’hydrocarbures où un flux de CO n’est pas
injecté aux fins de la production d’hydrocarbures ou en vue d’un stockage en association avec la
RAH-CO ,
c) englobe les activités liées au tri et à la sélection de site, la caractérisation, l’étude, le développement,
l’exploitation des sites de stockage et la préparation en vue de leur fermeture,
d) reconnaît que le choix et la gestion du site sont propres à chaque projet et que les risques techniques
et incertitudes intrinsèques seront traités selon une approche spécifique à chaque site,
e) reconnaît que des permis et des approbations devront être obtenus auprès des autorités de
réglementation tout au long du cycle de vie d’un projet, période de fermeture incluse, bien que le
présent document ne traite pas du processus de délivrance des permis,
f) fournit des exigences et des recommandations pour l’élaboration de systèmes de management, la
participation des collectivités et autres parties prenantes, l’appréciation du risque, le management
et la communication sur les risques,
g) ne s’applique pas à, ni ne modifie, interprète ou remplace, tout règlement, traité, protocole ou
instrument national ou international par ailleurs applicable aux activités couvertes par le présent
document, et
h) ne s’applique pas aux, ni ne modifie les, droits de propriété ou les intérêts sur les biens en surface
ou en subsurface (y compris les droits miniers), ou tout contrat commercial pré existant ou toute
disposition afférant à cette propriété.
Le cycle de vie d’un projet de stockage géologique de CO couvre tous les aspects, périodes et phases
du projet, allant de son lancement (y compris le tri de site, la sélection, la caractérisation, l’évaluation,
l’étude technique, l’obtention de permis et la construction), en passant par le début de l’injection et
les opérations ultérieures jusqu’à l’arrêt de l’injection, et se terminant par la période de post-injection
incluant une période de fermeture. La Figure 1 illustre le périmètre du présent document.
NOTE 1 Le présent document ne couvre pas la période de post-fermeture et ne spécifie aucune exigence
relative à cette période.
Le présent document ne s’applique pas
— à la période de post-fermeture,
— à l’injection de CO destinée à améliorer la production d’hydrocarbures ou au stockage associé à la
RAH-CO ,
— à l’élimination d’autres gaz acides à l’exception de ceux considérés comme faisant partie du flux de CO ,
— à l’élimination de déchets et autres matières ajoutées aux fins d’élimination,
— à l’injection et au stockage du CO dans le charbon, le basalte, le schiste et les cavités salines, ou
— au stockage souterrain utilisant une quelconque forme de conteneur enterré.
NOTE 2 Le présent document peut s’avérer inadapté pour les projets de recherche, tels que ceux dont le
principal objectif est d’expérimenter des technologies ou des méthodes de surveillance.
NOTE 3 La période de fermeture spécifiée dans le présent document chevauche la phase de post-fermeture
de la définition réglementaire de l’UE. En revanche, le présent document ne s’intéresse pas au transfert de
responsabilité.
Figure 1 — Entités intervenant dans le cycle de vie d’un projet de stockage
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
3.1
abandon
processus et modes opératoires mis en œuvre pour l’arrêt définitif de l’exploitation d’un puits
Note 1 à l'article: L’abandon est destiné à éliminer tout risque physique du puits (présence d’un trou dans le sol)
et toute voie de migration de contamination, ainsi qu’à empêcher des modifications du système hydrogéologique,
telles que les variations de la charge hydraulique et le mélange de fluides de formation entre des strates
hydrauliquement distinctes.
3.2
risque acceptable
risque (3.39) supporté par l’exploitant du projet (3.33) et d’autres parties, compte tenu des obligations
légales et des politiques en matière de management
2 © ISO 2017 – Tous droits réservés
3.3
zone d’examen
zone(s) géographique(s) d’un projet de stockage (3.56) ou de l’une de ses parties, identifiée(s) pour
évaluer dans quelle mesure ce projet, ou l’une de ses parties, pourrait affecter la vie et la santé humaine,
l’environnement, le développement concurrentiel d’autres ressources ou les infrastructures
Note 1 à l'article: La délimitation d’une zone d’examen définit le périmètre extérieur à la surface du sol ou du fond
marin et de l’eau, à l’intérieur duquel seront réalisées les évaluations qui peuvent être exigées par les autorités de
réglementation.
3.4
ligne de base
base de comparaison par rapport à laquelle les performances du projet sont surveillées ou mesurées
3.5
biosphère
ensemble des organismes vivant dans l’atmosphère, à la surface du sol et dans les sols, les océans et les
mers, dans les eaux de surface telles que les rivières et les lacs, et en subsurface au-dessus du complexe
de stockage (3.54)
3.6
panache de dioxyde de carbone (CO )
région des strates géologiques où le CO est présent en phase libre
3.7
flux de dioxyde de carbone (CO )
flux essentiellement constitué de dioxyde de carbone
Note 1 à l'article: Ce flux est un mélange de fluides qui peut contenir des substances accidentellement associées
dérivées des matières d’origine ou du procédé de captage, ainsi que des substances ajoutées au flux afin de
permettre ou d’améliorer le processus d’injection et/ou des substances traces ajoutées pour faciliter la détection
de la migration du CO .
3.8
tubage
éléments tubulaires placés à l’intérieur d’un puits pour empêcher les strates environnantes de
s’effondrer dans le trou
Note 1 à l'article: Bien qu’il existe de nombreuses variantes de conception acceptables, les types de tubage
habituellement utilisés dans la plupart des puits d’injection sont:
a) le tubage de surface, c’est-à-dire le tubage le plus à l’extérieur qui s’étend de la surface jusqu’à la base de l’eau
souterraine protégée (3.37) la plus basse;
b) le tubage intermédiaire qui se compose d’un ou plusieurs trains de tubage installés entre la surface et le
tubage de production pour différentes raisons liées à la conception;
c) le tubage de production, qui s’étend de la surface jusqu’à ou au travers de l’eau souterraine protégée jusqu’au
fond du puits.
3.9
sabot de tubage
manchon de renfort en acier qui est vissé sur le raccord inférieur du tubage (3.8) afin d’empêcher
l’abrasion ou la déformation du tubage lorsqu’il est forcé pour passer des obstacles situés sur la paroi du
trou de forage
3.10
période de fermeture
période comprise entre l’arrêt de l’injection et la démonstration de la conformité aux critères de
fermeture du site (3.52)
3.11
confinement
rétention du CO et des fluides de formation à l’intérieur d’un complexe de stockage (3.54)
3.12
action corrective
mesure prise dans le but de corriger des irrégularités matérielles ou de restreindre les brèches
afin d’empêcher ou de réduire le plus possible l’endommagement d’un complexe de stockage ou le
dégagement de CO à partir d’un complexe de stockage (3.54)
Note 1 à l'article: Les actions correctives sont mises en œuvre après l’apparition d’une irrégularité afin d’aider à
empêcher ou réduire le plus possible les dommages.
3.13
démanteler
mettre un système ou un composant technique hors service, le rendre inopérant, le démonter et le
décontaminer
3.14
enjeu
élément ou objectif essentiel vis-à-vis duquel le risque (3.39) est évalué et géré
3.15
zone de pression élevée
zone à l’intérieur d’un complexe de stockage (3.54) où la pression est suffisante pour entraîner un
écoulement de fluides de formation via une voie de passage depuis l’unité de stockage (3.59) vers
une ressource économique, de l’eau souterraine protégée (3.37) ou la biosphère (3.5) à l’extérieur du
complexe de stockage
3.16
événement
occurrence matérielle ou changement d’un ensemble particulier de circonstances
3.17
stockage géologique
confinement (3.11) à long terme de flux de CO2 (3.7) dans des formations géologiques souterraines
Note 1 à l'article: L’expression «à long terme» signifie pendant la période minimale nécessaire pour que le
stockage géologique du CO soit considéré comme une option d’atténuation du changement climatique efficace et
sans danger pour l’environnement.
Note 2 à l'article: Le terme «séquestration» a été utilisé par un certain nombre de pays et d’organisations à
la place de «stockage» (par exemple le Forum international sur le leadership en matière de séquestration du
carbone). Les deux termes sont considérés comme des synonymes et le présent document n’emploie que le terme
«stockage».
Note 3 à l'article: Dans le contexte du présent document, le stockage géologique:
a) s’applique aux strates perméables et poreuses qui ne contiennent pas d’eau souterraine protégée (3.37);
b) s’applique aux réservoirs d’hydrocarbures non producteurs; et
c) ne s’applique pas:
1) à l’injection et au stockage de CO dans les couches de charbon non exploitables, les formations basal-
tiques, les schistes et les cavités salines;
2) à l’injection et au stockage de CO dans des formations contenant des hydrocarbures productibles; et
3) au stockage souterrain dans des matériaux impliquant l’utilisation d’une quelconque forme de conte-
neur artificiel.
4 © ISO 2017 – Tous droits réservés
3.18
géosphère
terre ferme située sous la surface du sol et le fond des rivières et autres plans d’eau à terre, et sous le
fond marin
3.19
injectivité
débit et pression auxquels les fluides peuvent être pompés dans l’unité
...
Frequently Asked Questions
ISO 27914:2017 is a standard published by the International Organization for Standardization (ISO). Its full title is "Carbon dioxide capture, transportation and geological storage - Geological storage". This standard covers: ISO 27914:2017 a) establishes requirements and recommendations for the geological storage of CO2 streams, the purpose of which is to promote commercial, safe, long-term containment of carbon dioxide in a way that minimizes risk to the environment, natural resources, and human health, b) is applicable for both onshore and offshore geological storage within permeable and porous geological strata including hydrocarbon reservoirs where a CO2 stream is not being injected for the purpose of hydrocarbon production or for storage in association with CO2-EOR, c) includes activities associated with site screening and selection, characterization, design and development, operation of storage sites, and preparation for site closure, d) recognizes that site selection and management are unique for each project and that intrinsic technical risk and uncertainty will be dealt with on a site-specific basis, e) acknowledges that permitting and approval by regulatory authorities will be required throughout the project life cycle, including the closure period, although the permitting process is not included in ISO 27914:2017, f) provides requirements and recommendations for the development of management systems, community and other stakeholder engagement, risk assessment, risk management and risk communication, g) does not apply to, modify, interpret, or supersede any national or international regulations, treaties, protocols or instruments otherwise applicable to the activities addressed in ISO 27914:2017, and h) does not apply to or modify any property rights or interests in the surface or the subsurface (including mineral rights), or any pre-existing commercial contract or arrangement relating to such property. The life cycle of a CO2 geological storage project covers all aspects, periods, and stages of the project, from those that lead to the start of the project (including site screening, selection, characterization, assessment, engineering, permitting, and construction), through the start of injection and proceeding through subsequent operations until cessation of injection and culminating in the post-injection period, which includes a closure period. Figure 1 illustrates the limits of ISO 27914:2017.
ISO 27914:2017 a) establishes requirements and recommendations for the geological storage of CO2 streams, the purpose of which is to promote commercial, safe, long-term containment of carbon dioxide in a way that minimizes risk to the environment, natural resources, and human health, b) is applicable for both onshore and offshore geological storage within permeable and porous geological strata including hydrocarbon reservoirs where a CO2 stream is not being injected for the purpose of hydrocarbon production or for storage in association with CO2-EOR, c) includes activities associated with site screening and selection, characterization, design and development, operation of storage sites, and preparation for site closure, d) recognizes that site selection and management are unique for each project and that intrinsic technical risk and uncertainty will be dealt with on a site-specific basis, e) acknowledges that permitting and approval by regulatory authorities will be required throughout the project life cycle, including the closure period, although the permitting process is not included in ISO 27914:2017, f) provides requirements and recommendations for the development of management systems, community and other stakeholder engagement, risk assessment, risk management and risk communication, g) does not apply to, modify, interpret, or supersede any national or international regulations, treaties, protocols or instruments otherwise applicable to the activities addressed in ISO 27914:2017, and h) does not apply to or modify any property rights or interests in the surface or the subsurface (including mineral rights), or any pre-existing commercial contract or arrangement relating to such property. The life cycle of a CO2 geological storage project covers all aspects, periods, and stages of the project, from those that lead to the start of the project (including site screening, selection, characterization, assessment, engineering, permitting, and construction), through the start of injection and proceeding through subsequent operations until cessation of injection and culminating in the post-injection period, which includes a closure period. Figure 1 illustrates the limits of ISO 27914:2017.
ISO 27914:2017 is classified under the following ICS (International Classification for Standards) categories: 13.020.40 - Pollution, pollution control and conservation. The ICS classification helps identify the subject area and facilitates finding related standards.
ISO 27914:2017 has the following relationships with other standards: It is inter standard links to ISO 27914. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase ISO 27914:2017 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.












Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...