Earthquake-resistant and subsidence-resistant design of ductile iron pipelines

This document specifies the design of earthquake-resistant and subsidence-resistant ductile iron pipelines suitable for use in areas where seismic activity and land subsidence can be expected. It provides a means of determining and checking the resistance of buried pipelines and gives example calculations. It is applicable to ductile iron pipes and fittings with joints as specified in ISO 2531, ISO 7186 and ISO 16631 that have expansion/contraction and deflection capabilities, used in pipelines buried underground. NOTE Subsidence is not the effects of an earthquake or a sinkhole.

Conception de canalisations en fonte ductile résistant aux tremblements de terre et aux phénomènes de subsidence

Le présent document spécifie la conception de canalisations en fonte ductile résistant aux tremblements de terre et aux phénomènes de subsidence, adaptées pour une utilisation dans des zones susceptibles d'être soumises à une activité sismique et à une subsidence des terres. Il offre un moyen de déterminer et de vérifier la résistance des canalisations enterrées et donne des exemples de calcul. Il est applicable aux tuyaux et raccords en fonte ductile avec des assemblages tels que spécifiés dans l'ISO 2531, l'ISO 7186 et l'ISO 16631, ayant des capacités de dilatation/retrait et de déviation angulaire, utilisés dans les canalisations enterrées. NOTE Les phénomènes de subsidence ne résultent pas d'un tremblement de terre ou d'un éboulement souterrain.

General Information

Status
Published
Publication Date
24-May-2020
Current Stage
6060 - International Standard published
Start Date
31-Jan-2020
Due Date
21-May-2020
Completion Date
25-May-2020
Ref Project

Relations

Buy Standard

Standard
ISO 16134:2020 - Earthquake-resistant and subsidence-resistant design of ductile iron pipelines
English language
37 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16134:2020 - Earthquake-resistant and subsidence-resistant design of ductile iron pipelines
English language
37 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16134:2020 - Conception de canalisations en fonte ductile résistant aux tremblements de terre et aux phénomènes de subsidence
French language
39 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 16134
Second edition
2020-05
Earthquake-resistant and subsidence-
resistant design of ductile iron
pipelines
Conception de canalisations en fonte ductile résistant aux
tremblements de terre et aux phénomènes de subsidence
Reference number
ISO 16134:2020(E)
©
ISO 2020

---------------------- Page: 1 ----------------------
ISO 16134:2020(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 16134:2020(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Earthquake-resistant design . 2
4.1 Seismic hazards to buried pipelines . 2
4.2 Qualitative design considerations . 2
4.2.1 General. 2
4.2.2 Where high earthquake resistance is needed . 2
4.3 Design procedure . 3
4.4 Earthquake resistance calculations and safety checking . 3
4.5 Calculation of earthquake resistance — Response displacement method . 4
4.5.1 General. 4
4.5.2 Design earthquake motion . 5
4.5.3 Horizontal displacement amplitude of ground . 5
4.5.4 Pipe body stress . 5
4.5.5 Expansion/contraction of joint in pipe axis direction . 6
4.5.6 Joint deflection angle . . 6
5 Design for ground deformation by earthquake . 7
5.1 General . 7
5.2 Evaluation of possibility of liquefaction . 7
5.3 Checking basic resistance . 7
6 Design for ground subsidence in soft ground (e.g. reclaimed ground) .8
6.1 Calculating ground subsidence . 8
6.2 Basic safety checking . 9
7 Pipeline system design . 9
7.1 Pipeline components . 9
7.2 Countermeasures for large ground deformation such as liquefaction .10
Annex A (informative) Example of earthquake resistance calculation .11
Annex B (informative) Relationship between seismic intensity scales and ground surface
acceleration .20
Annex C (informative) Example of calculation of liquefaction resistance coefficient value .22
Annex D (informative) Checking pipeline resistance to ground deformation .28
Annex E (informative) Example of ground subsidence calculation .31
Bibliography .37
© ISO 2020 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 16134:2020(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 5, Ferrous metal pipes and metallic fittings,
Subcommittee SC 2, Cast iron pipes, fittings and their joints.
This second edition cancels and replaces the first edition (ISO 16134:2006), which has been technically
revised.
The main changes compared to the previous edition are as follows:
— the classification of pipelines components in Table 3 is modified;
— the relationship between seismic intensity and ground surface acceleration in Table B.1 is modified;
— the calculation method of checking the safety of pipeline against ground deformation is added in 5.3.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 16134:2020(E)

Introduction
Buried pipelines are often subjected to damage by earthquakes. It is therefore necessary to take
earthquake resistance into consideration, where applicable, in the design of the pipelines. In reclaimed
ground and other areas where ground subsidence is expected, the pipeline design must also take the
subsidence into consideration.
Even though ductile iron pipelines are generally considered to be earthquake-resistant, since their
joints are flexible and expand/contract according to the seismic motion to minimize the stress on the
pipe body, nevertheless there have been reports of the joints becoming disconnected by either a large
quake motion or major ground deformation such as liquefaction.
© ISO 2020 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 16134:2020(E)
Earthquake-resistant and subsidence-resistant design of
ductile iron pipelines
1 Scope
This document specifies the design of earthquake-resistant and subsidence-resistant ductile iron
pipelines suitable for use in areas where seismic activity and land subsidence can be expected. It
provides a means of determining and checking the resistance of buried pipelines and gives example
calculations. It is applicable to ductile iron pipes and fittings with joints as specified in ISO 2531,
ISO 7186 and ISO 16631 that have expansion/contraction and deflection capabilities, used in pipelines
buried underground.
NOTE Subsidence is not the effects of an earthquake or a sinkhole.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 2531, Ductile iron pipes, fittings, accessories and their joints for water applications
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 2531 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
burying
placing of pipes underground in a condition where they touch the soil directly
3.2
response displacement method
earthquake-resistant calculation method in which the underground pipeline structure is affected by
the ground displacement in its axial direction during an earthquake
3.3
liquefaction
phenomenon in which sandy ground rapidly loses its strength and rigidity due to repeated stress during
an earthquake, and where the whole ground behaves just like a liquid
3.4
earthquake-resistant joint
joint having slip out resistance as well as expansion/contraction and deflection capabilities
3.5
flexible joint
joint having expansion and deflection capabilities
© ISO 2020 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 16134:2020(E)

4 Earthquake-resistant design
4.1 Seismic hazards to buried pipelines
In general, there are several main causes of seismic hazards to buried pipelines:
a) ground displacement and ground strain caused by seismic ground shaking;
b) ground deformation such as a ground surface crack, ground subsidence and lateral spread induced
by liquefaction;
c) relative displacement at the connecting part with the structure, etc.;
d) ground displacement and rupture along a fault zone.
Since the ductile iron pipe has high tensile strength as well as the capacity for expansion/contraction
and deflection from its joint part, giving it the ability to follow the ground movement during the
earthquake, the stress generated on the pipe body is relatively small. Few ruptures of pipe body have
occurred during earthquakes in the past. It is therefore important to consider whether the pipeline
can follow the ground displacement and ground strain without slipping out of joint when considering
its earthquake resistance. The internal hydrodynamic surge pressures induced by seismic shaking are
normally small enough not to be considered.
4.2 Qualitative design considerations
4.2.1 General
To increase the resistance of ductile iron pipelines to seismic hazards, the following qualitative design
measures should be taken into consideration.
a) Provide pipelines with expansion/contraction and deflection capability.
EXAMPLE Use of shorter pipe segments, special joints or sleeves and anti-slip-out mechanisms
according to the anticipated intensity or nature of the earthquake.
b) Lay pipelines in a firm foundation.
c) Use smooth back fill materials.
NOTE Polyethylene sleeves and special coating are also effective in special cases.
d) Install more valves.
4.2.2 Where high earthquake resistance is needed
It is desirable to enhance the earthquake resistance of parts connecting the pipelines to structures and
when burying the pipes in
a) soft ground such as alluvium,
b) reclaimed ground,
c) filled ground,
d) suddenly changing soil types (geology) or topography,
e) sloping ground,
f) near revetments,
g) liquefiable ground, and/or
2 © ISO 2020 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 16134:2020(E)

h) near an active fault.
4.3 Design procedure
To make earthquake-resistant design for ductile iron pipelines:
a) select the piping route;
b) investigate the potential for earthquakes and ground movement;
c) assume probable earthquake motion (seismic intensity);
d) undertake earthquake resistance calculation and safety checking;
e) select joints.
Solid/firm foundations should be chosen for the pipeline route.
When investigating earthquakes and ground conditions, take into account any previous earthquakes in
the area where the pipeline is to be laid.
4.4 Earthquake resistance calculations and safety checking
When checking the resistance of pipelines to the effects of earthquakes, the calculation shall be carried
out for the condition in which the normal load (dead load and normal live load) is combined with the
influence of the earthquake.
The pipe body stress, expansion/contraction value of joint, and deflection angle of joint are calculated
by the response displacement method. Earthquake resistance is checked by comparing these values
with their respective allowable values. The basic criteria are given in Table 1.
A flowchart of earthquake resistance determination and safety checking is shown in Figure 1. The basic
formulae only for earthquake resistance calculation are given in 4.5. A detailed example of calculation
is given in Annex A.
Table 1 — Basic earthquake resistance check criteria
Load condition Criterion
≤ Allowable stress (proof stress) of ductile
Pipe body stress
iron pipe
Load in earthquake motion Expansion/contraction value of ≤ Allowable expansion/contraction value of
and normal load joint ductile iron pipe joint
≤ Allowable deflection angle of ductile iron
Deflection angle of joint
pipe joint

© ISO 2020 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 16134:2020(E)

Figure 1 — Flowchart for calculation of earthquake resistance of buried pipelines
4.5 Calculation of earthquake resistance — Response displacement method
4.5.1 General
This method shall be used except when the manufacturer and the customer agree on an alternative
recognized method.
4 © ISO 2020 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 16134:2020(E)

4.5.2 Design earthquake motion
The design acceleration for different seismic intensity scales can be determined according to the
relationship between the several kinds of seismic intensity scales and the acceleration of ground
surface, as given in Annex B.
4.5.3 Horizontal displacement amplitude of ground
The horizontal displacement amplitude of the ground is calculated using Formula (1) (see Annex A):
2
T
  π⋅x
G
Ux()= ⋅⋅a γ ⋅cos (1)
 
h
22π H
 
where
Ux() is the horizontal displacement amplitude of the ground x m deep from the ground surface
h
to the centre line of the pipe, in metres (m);
x is the depth from the ground surface, in metres (m);
T is the predominant period of the subsurface layer, in seconds (s);
G
2
a is the acceleration on the ground surface for design, in metres per second squared (m/s );
γ is the ground inhomogeneous coefficient (see Table 2)
H is the thickness of the subsurface layer, in metres (m).
Table 2 — Ground inhomogeneous coefficient
Geotechnical condition Ground inhomogeneous coefficient γ
Homogeneous 1,0
Inhomogeneous 1,4
Extremely inhomogeneous 2,0
4.5.4 Pipe body stress
Pipe body stress is calculated using Formulae (2), (3) and (4).
Axial stress:
π⋅Ux()
h
σξ=⋅α ⋅ ⋅E (2)
L 11
L
Bending stress:
2
2π ⋅⋅DU ()x
h
σξ=⋅α ⋅ ⋅E (3)
B 22
2
L
Combined stress:
22
σσ=⋅31, 2 +σ (4)
x LB
© ISO 2020 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 16134:2020(E)

where
σ , σ are the axial stress and the bending stress, respectively, in pascals (Pa);
L B
σ is the combination of the axial and bending stresses, in pascals (Pa);
x
ξ is the correction factor of axial stress in the case of expansion flexible joints;
1
ξ is the correction factor of the bending stress in the case of expansion flexible joints;
2
α , α
are the transfer coefficient of ground displacement in the pipe axis and pipe perpendic-
1 2
ular directions, respectively;
Ux() is the horizontal displacement amplitude of ground x m deep from the ground surface,
h
in metres (m);
L is the wavelength, in metres (m);
D is the outside diameter of the buried pipeline, in metres (m);
E is the elastic modulus of the buried pipeline, in pascals (Pa).
4.5.5 Expansion/contraction of joint in pipe axis direction
The amount of expansion/contraction of the joint in the pipe axis direction is calculated using
Formula (5) (see Annex A):
ul=±ε ⋅ (5)
G
where
u is the amount of expansion/contraction of the joint in the pipe axis direction, in metres (m);
π⋅U
h
ε
G
is the ground strain = ;
L
L is the wavelength, in metres (m);
U is the horizontal displacement amplitude of ground x m deep from the ground surface, in metres (m);
h
l is the pipe length, in metres (m).
4.5.6 Joint deflection angle
The joint deflection angle is calculated using Formula (6) (see Annex A):
2
4⋅⋅π lU⋅
h
θ =± (6)
2
L
where
θ is the joint deflection angle, in radians (rad);
l is the pipe length, in metres (m);
U is the horizontal displacement amplitude of ground x m deep from the ground surface, in metres (m);
h
L is the wavelength, in metres (m).
6 © ISO 2020 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 16134:2020(E)

5 Design for ground deformation by earthquake
5.1 General
Large scale ground deformation such as ground cracks, ground subsidence and lateral displacement
near revetments and inclined ground can be generated by liquefaction during an earthquake. Since
such ground deformations can affect the buried pipeline, it is necessary to consider this possibility and
to take it into account in the pipeline design.
5.2 Evaluation of possibility of liquefaction
The possibility of liquefaction shall be evaluated for soil layers when the following conditions are
present:
a) saturated soil layer ≤25 m from the ground surface;
b) average grain diameter, D , ≤10 mm;
50
c) content by weight of small grain particles (with grain diameter ≤0,075 mm) ≤30 %.
The possibility of liquefaction can be evaluated by calculating the liquefaction resistance coefficient, F ,
L
using Formula (7):
FR= L (7)
L
where
R is the dynamic shear strength ratio indicating the resistance to liquefaction;
L is the ground shear stress ratio during an earthquake, which indicates the generated shear stress
in ground due to the earthquake.
When F < 1,0, the layer is considered to be liquefied.
L
A detailed example of the evaluation of liquefaction assessment is given in Annex C.
5.3 Checking basic resistance
For ground deformation such as lateral displacement and ground subsidence induced by liquefaction,
the basic resistance of the pipeline shall be checked by observing whether it can absorb the ground
movement by the expansion/contraction and deflection of joints.
For ground deformation in pipe axis direction, the safety of the pipeline shall be checked by Formula (8).
When E exceeds δδE > then the pipeline can absorb the ground displacement and has been safely
()
l
al a
designed for ground deformation in its axis direction.
E >δ (8)
la
where
En=β.l/100
l
δε= fn. ./l 100
a G
© ISO 2020 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 16134:2020(E)

E is total amount of expansion/contraction of joint, in metres (m);
l
δ is ground displacement in pipe axis direction, in metres (m);
a
β is the amount of expansion/contraction of the joint, in per cent (%) of the pipe length;
n is the number of joints;
l is the pipe length, in metres (m);
f is the reduction ratio of the amount of expansion/contraction of the joint for the ground dis-
placement (= 0,5);
ε is the ground strain in pipe axis direction, in per cent (%).
G
When E does not exceed δδE ≤ , all joints expand to the joint’s capacity, then the safety of the
()
l
al a
joint’s slip-out resistance against friction force between pipe and soil shall be checked by Formula (9).
F > π · D · α · τ · n · l (9)
P
where
F is the joint’s slip-out resistance, in kilonewtons (kN);
P
D is the outside diameter of buried pipeline, in metres (m);
α is reduction factor of friction force;
τ is friction force per unit area between pipe and soil, in kilopascals (kPa).
The examples of safety checking including the case of pipe perpendicular direction are given in Annex D.
6 Design for ground subsidence in soft ground (e.g. reclaimed ground)
6.1 Calculating ground subsidence
When burying pipes in soft ground, the amount of ground subsidence is estimated by calculating the
increased earth pressure at the bottom of the trench in considering the weight of pipes, the weight of
water in the pipes and the earth pressure of back-fill, using Formulae (10), (11) and (12):
ee−
0
δ = ⋅H (10)
cc
1+e
0
δ =⋅mPΔ ⋅H (11)
cv c
C
PP+Δ
c
δ = ⋅⋅H log (12)
c c
1+e p
0
8 © ISO 2020 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 16134:2020(E)

where
δ is the consolidation settlement, in metres (m);
c
e is the initial void ratio of the undisturbed ground;
0
e is the void ratio after loading;
H is the thickness of consolidated layers, in metres (m);
c
m is the volume change ratio of the soil (coefficient of volume compressibility), in square metres
v
2
per newton (m /N);
C is the compression index of the soil;
c
2
P is the pre-load of the undisturbed ground, in newtons per square metre (N/m );
2
ΔP is the increased load, in newtons per square metre (N/m ), where
ΔΔPI=⋅ W (13)
σ
I is the influence by depth value;
σ
2
ΔW is the increased load, in newtons per square metre (N/m )
A detailed example of the calculation of the amount of ground subsidence is shown in Annex E.
6.2 Basic safety checking
For ground subsidence in soft ground such as reclaimed ground, safety shall be checked by observing
if the pipeline can absorb the ground movement by expansion/contraction and deflection of the joints.
This way of safety checking is the same as for the ground deformation in the pipe perpendicular
direction induced by liquefaction, which is given in Annex D.
7 Pipeline system design
7.1 Pipeline components
According to the results of calculations for expansion/contraction, slip-out resistance, and joint
deflection, the pipeline system may be designed using the same joint for all pipes, or, alternatively,
using a range/combination of pipeline components. If necessary, pipeline system components may be
classified according to Table 3.
Table 3 — Classification of pipeline components
Parameter Class Component performance
S-1 ±1 % of L or more
Expansion/contraction
S-2 ±0,5 % to less than ±1 % of L
performance
S-3 Less than ±0,5 % of L
Key
L  the component length, in millimetres (mm)
d  the nominal diameter of pipe, in millimetres (mm)
θ  the joint deflection angle as shown in Table 4, in degrees (°)
a
© ISO 2020 – All rights reserved 9

---------------------- Page: 14 ----------------------
ISO 16134:2020(E)

Table 3 (continued)
Parameter Class Component performance
A 3 d kN or more
B 1,5 d kN to less than 3 d kN
Slip-out resistance
C 0,75 d kN to less than 1,5 d kN
D Less than 0,75 d kN
M-1 θ or more
a
Joint deflection angle M-2 θ /2 to less than θ
a a
M-3 Less than θ /2
a
Key
L  the component length, in millimetres (mm)
d  the nominal diameter of pipe, in millimetres (mm)
θ  the joint deflection angle as shown in Table 4, in degrees (°)
a
Table 4 — Joint deflection angle
Nominal diameter d 80 to 400 450 to 1 000 1 100 to 1 500 1 600 to 2 200 2 400 to 2 600
Joint deflection angle θ 8° 7° 5°30′ 4° 3°30′
a
a
(Ref) Pipe length 6 m 6 m 6 m 5 m 4 m
a
Ductile iron pipe is available in shorter lengths and, where needed, can be cut during installation to achieve greater
pipeline deflection over shorter pipeline lengths.
7.2 Countermeasures for large ground deformation such as liquefaction
In cases where pipelines are to be laid in locations where ground deformation could be induced by
liquefaction during an earthquake, and where ground subsidence is anticipated in soft soil such as
reclaimed ground, a pipeline having earthquake-resistant joints with slip-out resistance, as well as an
expansion/contraction and deflection capability, should be used.
10 © ISO 2020 – All rights reserved

---------------------- Page: 15 ----------------------
ISO 16134:2020(E)

Annex A
(informative)

Example of earthquake resistance calculation
A.1 General
This annex presents an example of the calculation of the earthquake resistance of a pipeline,
specified in A.2.
A.2 Specifications and conditions
The example pipeline and conditions are the following.
a) Type of the pipe: 500 mm nominal diameter ductile iron pipe (K-9 class)
b) Outside diameter of the pipe: D = 0,532 m
c) Standard thickness of the pipe: t = 0,009 m
d) Calculated thickness of the pipe: t = 0,007 2 m (= t − 0,001 8)
1
(= minimum thickness of the pipe)
e) Pipe length: l = 6 m
f) Soil covering above pipes: h = 1,20 m
3
g) Unit weight of soil: γ = 17 kN/m
t
8 2
h) Elastic modulus of the ductile cast E = 1,6 × 10 kN/m
iron:
2
i) Design acceleration on the ground a = 1,80 m/s (corresponding to Modified Mercalli scale
surface: intensity of VI).
j) Ground inhomogeneous coefficient: γ = 2,0 (corresponding to extremely inhomogeneous geo-
technical condition)
A.3 Ground model
See Figure A.1.
© ISO 2020 – All rights reserved 11

---------------------- Page: 16 ----------------------
ISO 16134:2020(E)

Dimensions in metres
Key
1 first layer (alluvium sandy soil) 6 thickness of subsurface layer
2 second layer (alluvium sandy soil) 7 ground surface
3 thickness of layer 8 bedrock surface
4 thickness of layer 9 diluvium sandy soil
5 soil covering
NOTE N and N are the equivalent N values, which are derived from the standard penetration test defined
1 2
in JIS A 1219, ASTM D1586 and BS 1377 test 19, etc. See Table A.1.
Figure A.1 — Ground model
A.4 Various values of pipe profiles
A.4.1 Cross-sectional area, A
r
This is calculated using
...

FINAL
INTERNATIONAL ISO/FDIS
DRAFT
STANDARD 16134
ISO/TC 5/SC 2
Earthquake-resistant and subsidence-
Secretariat: AFNOR
resistant design of ductile iron
Voting begins on:
2020­02­27 pipelines
Voting terminates on:
Conceptions de canalisations en fonte ductile résistant aux
2020­04­23
tremblements de terre et aux affaissements de terrain
RECIPIENTS OF THIS DRAFT ARE INVITED TO
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
Reference number
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO­
ISO/FDIS 16134:2020(E)
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN­
DARDS TO WHICH REFERENCE MAY BE MADE IN
©
NATIONAL REGULATIONS. ISO 2020

---------------------- Page: 1 ----------------------
ISO/FDIS 16134:2020(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH­1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved

---------------------- Page: 2 ----------------------
ISO/FDIS 16134:2020(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Earthquake-resistant design . 2
4.1 Seismic hazards to buried pipelines . 2
4.2 Qualitative design considerations . 2
4.2.1 General. 2
4.2.2 Where high earthquake resistance is needed . 2
4.3 Design procedure . 3
4.4 Earthquake resistance calculations and safety checking . 3
4.5 Calculation of earthquake resistance — Response displacement method . 4
4.5.1 General. 4
4.5.2 Design earthquake motion . 5
4.5.3 Horizontal displacement amplitude of ground . 5
4.5.4 Pipe body stress . 5
4.5.5 Expansion/contraction of joint in pipe axis direction . 6
4.5.6 Joint deflection angle . . 6
5 Design for ground deformation by earthquake . 7
5.1 General . 7
5.2 Evaluation of possibility of liquefaction . 7
5.3 Checking basic resistance . 7
6 Design for ground subsidence in soft ground (e.g. reclaimed ground) .8
6.1 Calculating ground subsidence . 8
6.2 Basic safety checking . 9
7 Pipeline system design . 9
7.1 Pipeline components . 9
7.2 Countermeasures for large ground deformation such as liquefaction .10
Annex A (informative) Example of earthquake resistance calculation .11
Annex B (informative) Relationship between seismic intensity scales and ground surface
acceleration .20
Annex C (informative) Example of calculation of liquefaction resistance coefficient value .22
Annex D (informative) Checking pipeline resistance to ground deformation .28
Annex E (informative) Example of ground subsidence calculation .31
Bibliography .37
© ISO 2020 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO/FDIS 16134:2020(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 5, Ferrous metal pipes and metallic fittings,
Subcommittee SC 2, Cast iron pipes, fittings and their joints.
This second edition cancels and replaces the first edition (ISO 16134:2006), which has been technically
revised.
The main changes compared to the previous edition are as follows:
— the classification of pipelines components in Table 3 is modified;
— the relationship between seismic intensity and ground surface acceleration in Table B.1 is modified;
— the calculation method of checking the safety of pipeline against ground deformation is added in 5.3.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/FDIS 16134:2020(E)

Introduction
Buried pipelines are often subjected to damage by earthquakes. It is therefore necessary to take
earthquake resistance into consideration, where applicable, in the design of the pipelines. In reclaimed
ground and other areas where ground subsidence is expected, the pipeline design must also take the
subsidence into consideration.
Even though ductile iron pipelines are generally considered to be earthquake-resistant, since their
joints are flexible and expand/contract according to the seismic motion to minimize the stress on the
pipe body, nevertheless there have been reports of the joints becoming disconnected by either a large
quake motion or major ground deformation such as liquefaction.
© ISO 2020 – All rights reserved v

---------------------- Page: 5 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 16134:2020(E)
Earthquake-resistant and subsidence-resistant design of
ductile iron pipelines
1 Scope
This document specifies the design of earthquake-resistant and subsidence-resistant ductile iron
pipelines suitable for use in areas where seismic activity and land subsidence can be expected. It
provides a means of determining and checking the resistance of buried pipelines and gives example
calculations. It is applicable to ductile iron pipes and fittings with joints as specified in ISO 2531,
ISO 7186 and ISO 16631 that have expansion/contraction and deflection capabilities, used in pipelines
buried underground.
NOTE Subsidence is not the effects of an earthquake or a sinkhole.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 2531, Ductile iron pipes, fittings, accessories and their joints for water applications
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 2531 and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
burying
placing of pipes underground in a condition where they touch the soil directly
3.2
response displacement method
earthquake-resistant calculation method in which the underground pipeline structure is affected by
the ground displacement in its axial direction during an earthquake
3.3
liquefaction
phenomenon in which sandy ground rapidly loses its strength and rigidity due to repeated stress during
an earthquake, and where the whole ground behaves just like a liquid
3.4
earthquake-resistant joint
joint having slip out resistance as well as expansion/contraction and deflection capabilities
3.5
flexible joint
joint having expansion and deflection capabilities
© ISO 2020 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO/FDIS 16134:2020(E)

4 Earthquake-resistant design
4.1 Seismic hazards to buried pipelines
In general, there are several main causes of seismic hazards to buried pipelines:
a) ground displacement and ground strain caused by seismic ground shaking;
b) ground deformation such as a ground surface crack, ground subsidence and lateral spread induced
by liquefaction;
c) relative displacement at the connecting part with the structure, etc.;
d) ground displacement and rupture along a fault zone.
Since the ductile iron pipe has high tensile strength as well as the capacity for expansion/contraction
and deflection from its joint part, giving it the ability to follow the ground movement during the
earthquake, the stress generated on the pipe body is relatively small. Few ruptures of pipe body have
occurred during earthquakes in the past. It is therefore important to consider whether the pipeline
can follow the ground displacement and ground strain without slipping out of joint when considering
its earthquake resistance. The internal hydrodynamic surge pressures induced by seismic shaking are
normally small enough not to be considered.
4.2 Qualitative design considerations
4.2.1 General
To increase the resistance of ductile iron pipelines to seismic hazards, the following qualitative design
measures should be taken into consideration.
a) Provide pipelines with expansion/contraction and deflection capability.
EXAMPLE Use of shorter pipe segments, special joints or sleeves and anti-slip-out mechanisms
according to the anticipated intensity or nature of the earthquake.
b) Lay pipelines in a firm foundation.
c) Use smooth back fill materials.
NOTE Polyethylene sleeves and special coating are also effective in special cases.
d) Install more valves.
4.2.2 Where high earthquake resistance is needed
It is desirable to enhance the earthquake resistance of parts connecting the pipelines to structures and
when burying the pipes in
a) soft ground such as alluvium,
b) reclaimed ground,
c) filled ground,
d) suddenly changing soil types (geology) or topography,
e) sloping ground,
f) near revetments,
g) liquefiable ground, and/or
2 © ISO 2020 – All rights reserved

---------------------- Page: 7 ----------------------
ISO/FDIS 16134:2020(E)

h) near an active fault.
4.3 Design procedure
To make earthquake-resistant design for ductile iron pipelines:
a) select the piping route;
b) investigate the potential for earthquakes and ground movement;
c) assume probable earthquake motion (seismic intensity);
d) undertake earthquake resistance calculation and safety checking;
e) select joints.
Solid/firm foundations should be chosen for the pipeline route.
When investigating earthquakes and ground conditions, take into account any previous earthquakes in
the area where the pipeline is to be laid.
4.4 Earthquake resistance calculations and safety checking
When checking the resistance of pipelines to the effects of earthquakes, the calculation shall be carried
out for the condition in which the normal load (dead load and normal live load) is combined with the
influence of the earthquake.
The pipe body stress, expansion/contraction value of joint, and deflection angle of joint are calculated
by the response displacement method. Earthquake resistance is checked by comparing these values
with their respective allowable values. The basic criteria are given in Table 1.
A flowchart of earthquake resistance determination and safety checking is shown in Figure 1. The basic
formulae only for earthquake resistance calculation are given in 4.5. A detailed example of calculation
is given in Annex A.
Table 1 — Basic earthquake resistance check criteria
Load condition Criterion
≤ Allowable stress (proof stress) of ductile
Pipe body stress
iron pipe
Load in earthquake motion Expansion/contraction value of ≤ Allowable expansion/contraction value of
and normal load joint ductile iron pipe joint
≤ Allowable deflection angle of ductile iron
Deflection angle of joint
pipe joint

© ISO 2020 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO/FDIS 16134:2020(E)

Figure 1 — Flowchart for calculation of earthquake resistance of buried pipelines
4.5 Calculation of earthquake resistance — Response displacement method
4.5.1 General
This method shall be used except when the manufacturer and the customer agree on an alternative
recognized method.
4 © ISO 2020 – All rights reserved

---------------------- Page: 9 ----------------------
ISO/FDIS 16134:2020(E)

4.5.2 Design earthquake motion
The design acceleration for different seismic intensity scales can be determined according to the
relationship between the several kinds of seismic intensity scales and the acceleration of ground
surface, as given in Annex B.
4.5.3 Horizontal displacement amplitude of ground
The horizontal displacement amplitude of the ground is calculated using Formula (1) (see Annex A):
2
T
  π⋅x
G
Ux()= ⋅⋅a γ ⋅cos (1)
 
h
22π H
 
where
Ux() is the horizontal displacement amplitude of the ground x m deep from the ground surface
h
to the centre line of the pipe, in metres (m);
x is the depth from the ground surface, in metres (m);
T is the predominant period of the subsurface layer, in seconds (s);
G
2
a is the acceleration on the ground surface for design, in metres per second squared (m/s );
γ is the ground inhomogeneous coefficient (see Table 2)
H is the thickness of the subsurface layer, in metres (m).
Table 2 — Ground inhomogeneous coefficient
Geotechnical condition Ground inhomogeneous coefficient γ
Homogeneous 1,0
Inhomogeneous 1,4
Extremely inhomogeneous 2,0
4.5.4 Pipe body stress
Pipe body stress is calculated using Formulae (2), (3) and (4).
Axial stress:
π⋅Ux()
h
σξ=⋅α ⋅ ⋅E (2)
L 11
L
Bending stress:
2
2π ⋅⋅DU ()x
h
σξ=⋅α ⋅ ⋅E (3)
B 22
2
L
Combined stress:
22
σσ=⋅31, 2 +σ (4)
x LB
© ISO 2020 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO/FDIS 16134:2020(E)

where
σ , σ are the axial stress and the bending stress, respectively, in pascals (Pa);
L B
σ is the combination of the axial and bending stresses, in pascals (Pa);
x
ξ is the correction factor of axial stress in the case of expansion flexible joints;
1
ξ is the correction factor of the bending stress in the case of expansion flexible joints;
2
α , α
are the transfer coefficient of ground displacement in the pipe axis and pipe perpendic­
1 2
ular directions, respectively;
Ux() is the horizontal displacement amplitude of ground x m deep from the ground surface,
h
in metres (m);
L is the wavelength, in metres (m);
D is the outside diameter of the buried pipeline, in metres (m);
E is the elastic modulus of the buried pipeline, in pascals (Pa).
4.5.5 Expansion/contraction of joint in pipe axis direction
The amount of expansion/contraction of the joint in the pipe axis direction is calculated using
Formula (5) (see Annex A):
ul=±ε ⋅ (5)
G
where
u is the amount of expansion/contraction of the joint in the pipe axis direction, in metres (m);
ε π⋅U
G
h
is the ground strain = ;
L
L is the wavelength, in metres (m);
U is the horizontal displacement amplitude of ground x m deep from the ground surface, in metres (m);
h
l is the pipe length, in metres (m).
4.5.6 Joint deflection angle
The joint deflection angle is calculated using Formula (6) (see Annex A):
2
4⋅⋅π lU⋅
h
θ =± (6)
2
L
where
θ is the joint deflection angle, in radians (rad);
l is the pipe length, in metres (m);
U is the horizontal displacement amplitude of ground x m deep from the ground surface, in metres (m);
h
L is the wavelength, in metres (m).
6 © ISO 2020 – All rights reserved

---------------------- Page: 11 ----------------------
ISO/FDIS 16134:2020(E)

The above calculations, such as the amount of expansion/contraction of joint by the response
displacement method, are based on the assumption that the ground will deform uniformly. However,
since strain can be concentrated locally during an earthquake (due to the heterogeneity of the ground)
and there is a possibility that the value can be greater than the calculation result, a certain value of
safety margin — for instance, twice as much — is recommended.
5 Design for ground deformation by earthquake
5.1 General
Large scale ground deformation such as ground cracks, ground subsidence and lateral displacement
near revetments and inclined ground can be generated by liquefaction during an earthquake. Since
such ground deformations can affect the buried pipeline, it is necessary to consider this possibility and
to take it into account in the pipeline design.
5.2 Evaluation of possibility of liquefaction
The possibility of liquefaction shall be evaluated for soil layers when the following conditions are
present:
a) saturated soil layer ≤25 m from the ground surface;
b) average grain diameter, D , ≤10 mm;
50
c) content by weight of small grain particles (with grain diameter ≤0,075 mm) ≤30 %.
The possibility of liquefaction can be evaluated by calculating the liquefaction resistance coefficient, F ,
L
using Formula (7):
FR= L (7)
L
where
R is the dynamic shear strength ratio indicating the resistance to liquefaction;
L is the ground shear stress ratio during an earthquake, which indicates the generated shear stress
in ground due to the earthquake.
When F < 1,0, the layer is considered to be liquefied.
L
A detailed example of the evaluation of liquefaction assessment is given in Annex C.
5.3 Checking basic resistance
For ground deformation such as lateral displacement and ground subsidence induced by liquefaction,
the basic resistance of the pipeline shall be checked by observing whether it can absorb the ground
movement by the expansion/contraction and deflection of joints.
For ground deformation in pipe axis direction, the safety of the pipeline shall be checked by Formula (8).
When E exceeds δδE > then the pipeline can absorb the ground displacement and has been safely
()
l
al a
designed for ground deformation in its axis direction.
E >δ (8)
la
En=β.l/100
l
© ISO 2020 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO/FDIS 16134:2020(E)

δε= fn. ./l 100
a G
where
E is total amount of expansion/contraction of joint, in metres (m);
l
δ is ground displacement in pipe axis direction, in metres (m);
a
β is the amount of expansion/contraction of the joint, in per cent (%) of the pipe length;
n is the number of joints;
l is the pipe length, in metres (m);
f is the reduction ratio of the amount of expansion/contraction of the joint for the ground dis­
placement (= 0,5);
ε is the ground strain in pipe axis direction, in per cent (%).
G
When E does not exceed δδE ≤ , all joints expand to the joint’s capacity, then the safety of the
()
l
al a
joint’s slip-out resistance against friction force between pipe and soil shall be checked by Formula (9).
F > π · D · α · τ · n · l (9)
P
where
F is the joint’s slip-out resistance, in kilonewtons (kN);
P
D is the outside diameter of buried pipeline, in metres (m);
α is reduction factor of friction force;
τ is friction force per unit area between pipe and soil, in kilopascals (kPa).
The examples of safety checking including the case of pipe perpendicular direction are given in Annex D.
6 Design for ground subsidence in soft ground (e.g. reclaimed ground)
6.1 Calculating ground subsidence
When burying pipes in soft ground, the amount of ground subsidence is estimated by calculating the
increased earth pressure at the bottom of the trench in considering the weight of pipes, the weight of
water in the pipes and the earth pressure of back-fill, using Formulae (10), (11) and (12):
ee−
0
δ = ⋅H (10)
cc
1+e
0
δ =⋅mPΔ ⋅H (11)
cv c
C
PP+Δ
c
δ = ⋅⋅H log (12)
c c
1+e p
0
8 © ISO 2020 – All rights reserved

---------------------- Page: 13 ----------------------
ISO/FDIS 16134:2020(E)

where
δ is the consolidation settlement, in metres (m);
c
e is the initial void ratio of the undisturbed ground;
0
e is the void ratio after loading;
H is the thickness of consolidated layers, in metres (m);
c
m is the volume change ratio of the soil (coefficient of volume compressibility), in square metres
v
2
per newton (m /N);
C is the compression index of the soil;
c
2
P is the pre-load of the undisturbed ground, in newtons per square metre (N/m );
2
ΔP is the increased load, in newtons per square metre (N/m ), where
ΔΔPI=⋅ W (13)
σ
I is the influence by depth value;
σ
2
ΔW is the increased load, in newtons per square metre (N/m )
A detailed example of the calculation of the amount of ground subsidence is shown in Annex E.
6.2 Basic safety checking
For ground subsidence in soft ground such as reclaimed ground, safety shall be checked by observing
if the pipeline can absorb the ground movement by expansion/contraction and deflection of the joints.
This way of safety checking is the same as for the ground deformation in the pipe perpendicular
direction induced by liquefaction, which is given in Annex D.
7 Pipeline system design
7.1 Pipeline components
According to the results of calculations for expansion/contraction, slip-out resistance, and joint
deflection, the pipeline system may be designed using the same joint for all pipes, or, alternatively,
using a range/combination of pipeline components. If necessary, pipeline system components may be
classified according to Table 3.
Table 3 — Classification of pipeline components
Parameter Class Component performance
S­1 ±1 % of L or more
Expansion/contraction
S­2 ±0,5 % to less than ±1 % of L
performance
S­3 Less than ±0,5 % of L
Key
L  the component length, in millimetres (mm)
d  the nominal diameter of pipe, in millimetres (mm)
θ  the joint deflection angle as shown in Table 4, in degrees (°)
a
© ISO 2020 – All rights reserved 9

---------------------- Page: 14 ----------------------
ISO/FDIS 16134:2020(E)

Table 3 (continued)
Parameter Class Component performance
A 3 d kN or more
B 1,5 d kN to less than 3 d kN
Slip­out resistance
C 0,75 d kN to less than 1,5 d kN
D Less than 0,75 d kN
M­1 θ or more
a
Joint deflection angle M­2 θ /2 to less than θ
a a
M­3 Less than θ /2
a
Key
L  the component length, in millimetres (mm)
d  the nominal diameter of pipe, in millimetres (mm)
θ  the joint deflection angle as shown in Table 4, in degrees (°)
a
Table 4 — Joint deflection angle
Nominal diameter d 80 to 400 450 to 1 000 1 100 to 1 500 1 600 to 2 200 2 400 to 2 600
Joint deflection angle θ 8° 7° 5°30′ 4° 3°30′
a
(Ref) Pipe length 6 m 6 m 6 m 5 m 4 m
7.2 Countermeasures for large ground deformation such as liquefaction
In cases where pipelines are to be laid in locations where ground deformation could be induced by
liquefaction during an earthquake, and where ground subsidence is anticipated in soft soil such as
reclaimed ground, a pipeline having earthquake-resistant joints with slip-out resistance, as well as an
expansion/contraction and deflection capability, should be used.
10 © ISO 2020 – All rights reserved

---------------------- Page: 15 ----------------------
ISO/FDIS 16134:2020(E)

Annex A
(informative)

Example of earthquake resistance calculation
A.1 General
This annex presents an example of the calculation of the earthquake resistance of a pipeline,
specified in A.2.
A.2 Specifications and conditions
The example pipeline and conditions are the following.
a) Type of the pipe: 500 mm nominal diameter ductile iron pipe (K­9 class)
b) Outside diameter of the pipe: D = 0,532 m
c) Standard thickness of the pipe: t = 0,009 m
d) Calculated thickness of the pipe: t = 0,007 2 m (= t − 0,001 8)
1
e) Pipe length: l = 6 m
f) Soil covering above pipes: h = 1,20 m
3
g) Unit weight of soil: γ = 17 kN/m
t
8 2
h) Elastic modulus of the ductile cast E = 1,6 × 10 kN/m
iron:
2
i) D
...

NORME ISO
INTERNATIONALE 16134
Deuxième édition
2020-05
Conception de canalisations en fonte
ductile résistant aux tremblements
de terre et aux phénomènes de
subsidence
Earthquake-resistant and subsidence-resistant design of ductile iron
pipelines
Numéro de référence
ISO 16134:2020(F)
©
ISO 2020

---------------------- Page: 1 ----------------------
ISO 16134:2020(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2020
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2020 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 16134:2020(F)

Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Conception résistant aux tremblements de terre . 2
4.1 Phénomènes dangereux sismiques pour les canalisations enterrées . 2
4.2 Considérations relatives à la conception qualitative . 2
4.2.1 Généralités . 2
4.2.2 Lorsqu’une résistance élevée aux tremblements de terre est nécessaire . 3
4.3 Mode opératoire de conception . 3
4.4 Calcul de la résistance aux tremblements de terre et vérification de la sécurité . 3
4.5 Calcul de la résistance aux tremblements de terre — Méthode de réponse en
déplacement . 5
4.5.1 Généralités . 5
4.5.2 Tremblement de terre théorique . 5
4.5.3 Amplitude du déplacement horizontal du sol . 5
4.5.4 Contrainte exercée sur le fût du tuyau . 5
4.5.5 Dilatation/retrait d’un assemblage dans le sens de l’axe du tuyau . 6
4.5.6 Déviation angulaire de l’assemblage . 7
5 Conception en matière de déformation du sol par un tremblement de terre .7
5.1 Généralités . 7
5.2 Évaluation de la possibilité de liquéfaction . 7
5.3 Vérification de la résistance de base . 8
6 Conception en matière de phénomène de subsidence du sol dans le cas d’un sol
meuble (par exemple sol recyclé). 9
6.1 Calcul de la subsidence du sol . 9
6.2 Vérification de la sécurité de base .10
7 Conception du système de canalisation .10
7.1 Composants de la canalisation .10
7.2 Contre-mesures en cas de déformation importante du sol, telle qu’une liquéfaction .11
Annexe A (informative) Exemple de calcul de la résistance aux tremblements de terre .12
Annexe B (informative) Relation entre les échelles d’intensité sismique et l’accélération de
la surface du sol .21
Annexe C (informative) Exemple de calcul de la valeur du coefficient de résistance à la
liquéfaction .23
Annexe D (informative) Vérification de la résistance de la canalisation à la déformation du sol .30
Annexe E (informative) Exemple de calcul de la subsidence du sol .33
Bibliographie .39
© ISO 2020 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 16134:2020(F)

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www .iso .org/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 5, Tuyauteries en métaux ferreux et
raccords métalliques, sous-comité SC 2, Tuyaux en fonte, raccords et leurs joints.
Cette deuxième édition annule et remplace la première édition (ISO 16134:2006), qui a fait l’objet d’une
révision technique.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— la classification des composants de canalisations dans le Tableau 3 a été modifiée;
— la relation entre l’intensité sismique et l’accélération de la surface du sol dans le Tableau B.1 a été
modifiée;
— une méthode de calcul a été ajoutée en 5.3 pour vérifier la sécurité de la canalisation en cas de
déformation du sol.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2020 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 16134:2020(F)

Introduction
Les canalisations enterrées sont souvent soumises à des dommages suite aux tremblements de
terre. Il est donc nécessaire de prendre en considération, lorsque cela est possible, la résistance aux
tremblements de terre lors de la conception des canalisations. Sur les sols recyclés et autres zones dans
lesquelles la subsidence du sol est prévisible, la conception de la canalisation doit également prendre en
compte les phénomènes de subsidence.
Même si les canalisations en fonte ductile sont généralement considérées comme étant résistantes aux
tremblements de terre du fait que leurs assemblages sont flexibles et se dilatent/rétractent en fonction
du mouvement sismique pour minimiser la contrainte exercée sur le fût du tuyau, il peut arriver que les
assemblages se déconnectent soit sous l’effet d’un mouvement sismique de grande amplitude, soit suite
à une déformation majeure du sol, telle qu’une liquéfaction.
© ISO 2020 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 16134:2020(F)
Conception de canalisations en fonte ductile résistant aux
tremblements de terre et aux phénomènes de subsidence
1 Domaine d’application
Le présent document spécifie la conception de canalisations en fonte ductile résistant aux tremblements
de terre et aux phénomènes de subsidence, adaptées pour une utilisation dans des zones susceptibles
d’être soumises à une activité sismique et à une subsidence des terres. Il offre un moyen de déterminer
et de vérifier la résistance des canalisations enterrées et donne des exemples de calcul. Il est applicable
aux tuyaux et raccords en fonte ductile avec des assemblages tels que spécifiés dans l’ISO 2531,
l’ISO 7186 et l’ISO 16631, ayant des capacités de dilatation/retrait et de déviation angulaire, utilisés
dans les canalisations enterrées.
NOTE Les phénomènes de subsidence ne résultent pas d’un tremblement de terre ou d’un éboulement
souterrain.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s'applique (y compris les
éventuels amendements).
ISO 2531, Tuyaux, raccords et accessoires en fonte ductile et leurs assemblages pour l'eau
3 Termes et définitions
Pour les besoins du présent document, les termes et les définitions de l’ISO 2531 ainsi que les suivants
s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/
3.1
enfouissement
mise en place de tuyaux dans le sol en faisant en sorte qu’ils soient directement en contact avec le sol
3.2
méthode de réponse en déplacement
méthode de calcul de la résistance aux tremblements de terre selon laquelle la structure de la canalisation
enterrée est affectée par le déplacement du sol dans sa direction axiale lors d’un tremblement de terre
3.3
liquéfaction
phénomène selon lequel le sol sableux perd rapidement sa résistance et sa rigidité sous l’effet des
contraintes répétées qui s’exercent lors d’un tremblement de terre et où tout le sol se comporte
exactement comme un liquide
© ISO 2020 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 16134:2020(F)

3.4
assemblage résistant aux tremblements de terre
assemblage ayant une résistance au glissement et des capacités de dilatation/retrait et de déviation
angulaire
3.5
assemblage flexible
assemblage ayant des capacités de dilatation et de déviation angulaire
4 Conception résistant aux tremblements de terre
4.1 Phénomènes dangereux sismiques pour les canalisations enterrées
En général, les phénomènes dangereux sismiques pour les canalisations enterrées sont dus à
plusieurs causes:
a) le déplacement et la déformation du sol causés par un tremblement de terre;
b) la déformation du sol, telle qu’une fissure à la surface du sol, la subsidence du sol et la propagation
latérale induite par la liquéfaction;
c) le déplacement relatif au niveau du raccordement à la structure, etc.;
d) le déplacement du sol et la rupture le long d’une zone de faille.
Étant donné que le tuyau en fonte ductile présente une résistance à la traction élevée et une capacité
de dilatation/retrait et de déviation angulaire par rapport à son assemblage, lui permettant de suivre
le mouvement du sol lors d’un tremblement de terre, la contrainte générée sur le fût du tuyau est
relativement faible. Peu de ruptures du fût du tuyau se sont produites lors de tremblements de terre
par le passé. Lors de l’étude de la résistance aux tremblements de terre, il est donc important de savoir
si la canalisation peut suivre le déplacement du sol et la déformation du sol sans glisser hors de son
assemblage. Les pointes de pression hydrodynamique interne induites par un tremblement de terre
sont normalement assez faibles pour être négligeables.
4.2 Considérations relatives à la conception qualitative
4.2.1 Généralités
Pour augmenter la résistance des canalisations en fonte ductile aux phénomènes dangereux sismiques,
il convient de prendre en considération les mesures de conception qualitative suivantes:
a) prévoir des canalisations avec des capacités de dilatation/retrait et de déviation angulaire;
EXEMPLE Utiliser des segments de tuyaux plus courts, des assemblages spéciaux et des manches et des
mécanismes anti-glissement suivant l’intensité ou la nature du tremblement de terre anticipée.
b) poser les canalisations sur des fondations solides;
c) utiliser des matériaux de remblai lisses;
NOTE Les manches en polyéthylène et l’utilisation d’un revêtement spécial sont également efficaces
dans certains cas particuliers.
d) installer plus de vannes.
2 © ISO 2020 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 16134:2020(F)

4.2.2 Lorsqu’une résistance élevée aux tremblements de terre est nécessaire
Il est souhaitable d’augmenter la résistance aux tremblements de terre des parties raccordant les
canalisations aux structures et en cas d’enfouissement des tuyaux dans:
a) un sol meuble, tel qu’une alluvion;
b) un sol recyclé;
c) un sol remblayé;
d) des types de sols qui varient brusquement (géologie) ou selon la topographie;
e) un sol en pente;
f) à proximité des ouvrages de protection des berges;
g) un sol liquéfiable; et/ou
h) à proximité d’une faille active.
4.3 Mode opératoire de conception
Pour réaliser une conception des canalisations en fonte ductile résistant aux tremblements de terre:
a) choisir le trajet de la conduite;
b) étudier le potentiel de tremblements de terre et de mouvements du sol;
c) estimer le tremblement de terre probable (intensité sismique);
d) réaliser un calcul de la résistance aux tremblements de terre et une vérification de la sécurité;
e) choisir les assemblages.
Il convient de choisir des fondations solides/fermes pour le trajet de la canalisation.
Lors de l’étude des tremblements de terre et des conditions du sol, prendre en compte les tremblements
de terre précédents éventuels ayant eu lieu dans la zone dans laquelle il est prévu de poser la
canalisation.
4.4 Calcul de la résistance aux tremblements de terre et vérification de la sécurité
Lors de la vérification de la résistance des canalisations aux effets des tremblements de terre, le calcul
doit être réalisé pour la condition dans laquelle la charge normale (charge statique et charge mobile
normale) est combinée à l’influence du tremblement de terre.
La contrainte exercée sur le fût du tuyau, la valeur de dilatation/retrait de l’assemblage et la déviation
angulaire de l’assemblage sont calculées par la méthode de réponse en déplacement. La résistance aux
tremblements de terre est vérifiée en comparant ces valeurs à leurs valeurs admissibles respectives.
Les critères de base sont indiqués dans le Tableau 1.
Un diagramme permettant de déterminer la résistance aux tremblements de terre et de réaliser la
vérification de la sécurité est illustré à la Figure 1. Les formules de base concernant uniquement le
calcul de la résistance aux tremblements de terre sont indiquées en 4.5. Un exemple de calcul détaillé
est fourni dans l’Annexe A.
© ISO 2020 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 16134:2020(F)

Tableau 1 — Critères de base pour la vérification de la résistance aux tremblements de terre
Condition de charge Critère
Contrainte exercée sur le fût du ≤ contrainte admissible (limite d’élasticité) du
tuyau tuyau en fonte ductile
Charge lors d’un tremble-
Valeur de dilatation/retrait de ≤ valeur admissible de dilatation/retrait de
ment de terre et charge
l’assemblage l’assemblage du tuyau en fonte ductile
normale
Déviation angulaire de l’assem- ≤ déviation angulaire admissible de l’assem-
blage blage du tuyau en fonte ductile
Figure 1 — Diagramme pour le calcul de la résistance aux tremblements de terre des
canalisations enterrées
4 © ISO 2020 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 16134:2020(F)

4.5 Calcul de la résistance aux tremblements de terre — Méthode de réponse en
déplacement
4.5.1 Généralités
Cette méthode doit être utilisée sauf si le fabricant et le client s’accordent pour utiliser une autre
méthode reconnue.
4.5.2 Tremblement de terre théorique
La valeur théorique calculée de l’accélération sur différentes échelles d’intensité sismique peut être
déterminée en fonction de la relation entre les différents types d’échelles d’intensité sismique et
l’accélération de la surface du sol, comme indiqué dans l’Annexe B.
4.5.3 Amplitude du déplacement horizontal du sol
L’amplitude du déplacement horizontal du sol est calculée à l’aide de la Formule (1) (voir l’Annexe A):
2
T
 
π⋅x
G
Ux()= ⋅⋅a γ ⋅cos (1)
h  
22π H
 

Ux() est l’amplitude du déplacement horizontal du sol à x mètres de profondeur de la surface
h
du sol jusqu’à l’axe du tuyau, en mètres (m);
x est la profondeur depuis la surface du sol, en mètres (m);
T est la période dominante du sol, en secondes (s);
G
a est l’accélération de la surface du sol utilisée pour la conception, en mètres par seconde
2
carrée (m/s );
γ est le coefficient d’inhomogénéité du sol (voir le Tableau 2);
H est l’épaisseur du sol, en mètres (m).
Tableau 2 — Coefficient d’inhomogénéité du sol
Conditions géotechniques Coefficient d’inhomogénéité du sol, γ
Homogène 1,0
Inhomogène 1,4
Extrêmement inhomogène 2,0
4.5.4 Contrainte exercée sur le fût du tuyau
La contrainte exercée sur le fût du tuyau est calculée à l’aide des Formules (2), (3) et (4).
© ISO 2020 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 16134:2020(F)

Contrainte axiale:
π⋅Ux()
h
σξ=⋅α ⋅ ⋅E (2)
L 11
L
Contrainte de flexion:
2
2π ⋅⋅DU ()x
h
σξ=⋅α ⋅ ⋅E (3)
B 22
2
L
Contrainte combinée:
22
σσ=⋅31, 2 +σ (4)
x LB

σ , σ sont respectivement la contrainte axiale et la contrainte de flexion, en pascals (Pa);
L B
σ est la combinaison des contraintes axiale et de flexion, en pascals (Pa);
x
ξ est le facteur de correction de la contrainte axiale en cas d’assemblages de dilatation
1
flexibles;
ξ
est le facteur de correction de la contrainte de flexion en cas d’assemblages de dilata-
2
tion flexibles;
α , α sont les coefficients de transfert du déplacement du sol dans le sens de l’axe du tuyau et
1 2
dans le sens perpendiculaire au tuyau, respectivement;
Ux est l’amplitude du déplacement horizontal du sol à x mètres de profondeur de la surface
()
h
du sol, en mètres (m);
L est la longueur d’onde, en mètres (m);
D est le diamètre extérieur de la canalisation enterrée, en mètres (m);
E est le module d’élasticité de la canalisation enterrée, en pascals (Pa).
4.5.5 Dilatation/retrait d’un assemblage dans le sens de l’axe du tuyau
L’amplitude de la dilatation/du retrait de l’assemblage dans le sens de l’axe du tuyau est calculée à l’aide
de la Formule (5) (voir l’Annexe A):
6 © ISO 2020 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 16134:2020(F)

ul=±ε ⋅ (5)
G

u est l’amplitude de la dilatation/du retrait de l’assemblage dans le sens de l’axe du tuyau, en
mètres (m);

π⋅U
ε h
G
est la déformation du sol = ;
L
L est la longueur d’onde, en mètres (m);
U est l’amplitude du déplacement horizontal du sol à x mètres de profondeur de la surface du sol,
h
en mètres (m);
l est la longueur du tuyau, en mètres (m).
4.5.6 Déviation angulaire de l’assemblage
La déviation angulaire de l’assemblage est calculée à l’aide de la Formule (6) (voir l’Annexe A):
2
4⋅⋅π lU⋅
h
θ =± (6)
2
L

θ est la déviation angulaire de l’assemblage, en radians (rad);
l est la longueur du tuyau, en mètres (m);
U est l’amplitude du déplacement horizontal du sol à x mètres de profondeur de la surface du sol,
h
en mètres (m);
L est la longueur d’onde, en mètres (m).
5 Conception en matière de déformation du sol par un tremblement de terre
5.1 Généralités
Une déformation du sol à grande échelle, caractérisée par des fissures dans le sol, une subsidence du
sol et un déplacement latéral à proximité des ouvrages de protection des berges et un sol incliné, peut
être générée sous l’effet de la liquéfaction pendant un tremblement de terre. Étant donné que ce type de
déformation du sol peut affecter la canalisation enterrée, il est nécessaire d’envisager cette possibilité
et de la prendre en compte dans la conception de la canalisation.
5.2 Évaluation de la possibilité de liquéfaction
La possibilité de liquéfaction doit être évaluée pour les différentes couches de sol lorsque les conditions
suivantes sont présentes:
a) couche de sol saturé ≤ 25 m de la surface du sol;
b) diamètre de grain moyen, D , ≤ 10 mm;
50
c) teneur en poids de petites particules de grains (avec un diamètre de grain ≤ 0,075 mm) ≤ 30 %.
© ISO 2020 – Tous droits réservés 7

---------------------- Page: 12 ----------------------
ISO 16134:2020(F)

La possibilité de liquéfaction peut être évaluée en calculant le coefficient de résistance à la liquéfaction,
F , à l’aide de la Formule (7):
L
FR= L (7)
L

R est le rapport de résistance au cisaillement dynamique indiquant la résistance à la liquéfaction;
L est le rapport de contrainte de cisaillement du sol pendant un tremblement de terre, qui indique
la contrainte de cisaillement générée dans le sol en raison du tremblement de terre.
Lorsque F < 1,0, la couche est considérée comme étant liquéfiée.
L
Un exemple d’évaluation détaillée de la liquéfaction est donné dans l’Annexe C.
5.3 Vérification de la résistance de base
Pour une déformation du sol, caractérisée par un déplacement latéral et une subsidence du sol induits
par la liquéfaction, la résistance de base de la canalisation doit être vérifiée en observant si celle-ci peut
absorber le mouvement du sol par dilatation/retrait et déviation angulaire des assemblages.
Pour la déformation du sol dans le sens de l’axe du tuyau, la sécurité de la canalisation doit être vérifiée
à l’aide de la Formule (8). Lorsque E dépasse δδE > , la canalisation peut absorber le déplacement
()
l
al a
du sol et a été conçue de manière sûre pour une déformation du sol dans le sens de son axe.
E >δ (8)
la

En=β.l/100
l
δε= fn. ./l 100
a G
E est l’amplitude totale de la dilatation/du retrait de l’assemblage, en mètres (m);
l
δ est le déplacement du sol dans le sens de l’axe du tuyau, en mètres (m);
a
β est l’amplitude de la dilatation/du retrait de l’assemblage, en pourcentage (%) de la longueur
du tuyau;
n est le nombre d’assemblages;
l est la longueur du tuyau, en mètres (m);
f est le rapport de réduction de l’amplitude de la dilatation/du retrait de l’assemblage pour le
déplacement du sol (= 0,5);
ε est la déformation du sol dans le sens de l’axe du tuyau, en pourcentage (%).
G
Lorsque E ne dépasse pas δδE ≤ , tous les assemblages se dilatent en fonction de la capacité de
()
l
al a
l’assemblage; il faut ensuite vérifier la sécurité en déterminant la résistance au glissement de
l’assemblage par rapport à la force de frottement entre le tuyau et le sol à l’aide de la Formule (9):
F > π · D · α · τ · n · l (9)
P

8 © ISO 2020 – Tous droits réservés

---------------------- Page: 13 ----------------------
ISO 16134:2020(F)

F est la résistance au glissement de l’assemblage, en kilonewtons (kN);
P
D est le diamètre extérieur de la canalisation enterrée, en mètres (m);
α est le facteur de réduction de la force de frottement;
τ est la force de frottement par unité de surface entre le tuyau et le sol, en kilopascals (kPa).
Des exemples de vérification de la sécurité, y compris dans le sens perpendiculaire au tuyau, sont
donnés dans l’Annexe D.
6 Conception en matière de phénomène de subsidence du sol dans le cas d’un
sol meuble (par exemple sol recyclé)
6.1 Calcul de la subsidence du sol
En cas d’enfouissement des tuyaux dans un sol meuble, l’amplitude de la subsidence du sol est estimée
en calculant l’augmentation de la pression des terres au fond de la tranchée, en considérant le poids
des tuyaux, le poids de l’eau dans les tuyaux et la pression exercée par la terre de remblai, à l’aide des
Formules (10), (11) et (12):
ee−
0
δ = ⋅H (10)
cc
1+e
0
δ =⋅mPΔ ⋅H (11)
cv c
C
PP+Δ
c
δ = ⋅⋅H log (12)
c c
1+e p
0

δ est la subsidence de consolidation, en mètres (m);
c
e est l’indice des vides initial du sol non perturbé;
0
e est l’indice des vides après la mise en charge;
H est l’épaisseur des couches consolidées, en mètres (m);
c
m est le taux de variation de volume du sol (coefficient de compressibilité du volume), en mètres
v
2
carrés par newton (m /N);
C est l’indice de compression du sol;
c
2
P est la précharge du sol non perturbé, en newtons par mètre carré (N/m );
2
ΔP est l’augmentation de la charge, en newtons par mètre carré (N/m ); où:
ΔΔPI=⋅ W (13)
σ
I est la valeur d’influence de la profondeur;
σ
2
ΔW est l’augmentation de la charge, en newtons par mètre carré (N/m ).
Un exemple de calcul détaillé de l’amplitude de la subsidence du sol est illustré dans l’Annexe E.
© ISO 2020 – Tous droits réservés 9

---------------------- Page: 14 ----------------------
ISO 16134:2020(F)

6.2 Vérification de la sécurité de base
Pour la subsidence du sol dans le cas d’un sol meuble, tel qu’un sol recyclé, la sécurité doit être vérifiée
en observant si la canalisation peut absorber le mouvement du sol par dilatation/retrait et déviation
angulaire des assemblages. Cette méthode de vérification de la sécurité est la même que pour la
déformation du sol dans le sens perpendiculaire au tuyau induite par la liquéfaction, qui est mentionnée
dans l
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.