Geotechnical investigation and testing — Laboratory testing of soil — Part 4: Determination of particle size distribution

ISO 17892-4.2016 specifies a method of determining the particle size distribution of soils. ISO 17892-4.2016 is applicable to the laboratory determination of the particle size distribution of a soil test specimen by sieving, or sedimentation, or a combination of both within the scope of geotechnical investigations. The particle size distribution is one of the most important physical characteristics of soil. Classification of soils is mainly based on the particle size distribution. Many geotechnical and geohydrological properties of soil are related to the particle size distribution. The particle size distribution provides a description of soil based on a subdivision in discrete classes of particle sizes. The size of each class can be determined by sieving and/or sedimentation. Coarse soils are usually tested by sieving, but fine and mixed soils are usually tested by a combination of sieving and sedimentation, depending on the composition of the soil. The sieving method described is applicable to all non-cemented soils with particle sizes less than 125 mm. Two sedimentation methods are described: the hydrometer method and the pipette method. NOTE ISO 17892-4.2016 fulfils the requirements of the particle size distribution testing in accordance with EN 1997-2.

Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols — Partie 4: Détermination de la distribution granulométrie des particules

ISO 17892-4:2016 spécifie une méthode de détermination de la distribution granulométrique des particules des sols. ISO 17892-4:2016 s'applique à la détermination en laboratoire de la distribution granulométrique des particules d'un échantillon d'essai de sol par tamisage, ou sédimentation, ou une combinaison des deux dans le cadre d'investigations géotechniques. La distribution granulométrique des particules (ou granulométrie) est l'une des caractéristiques physiques les plus importantes des sols. C'est essentiellement de celle-ci que dépend la classification des sols. En outre, de nombreuses propriétés géotechniques et hydrogéologiques sont liées à la distribution granulométrique des particules. La distribution granulométrique des particules fournit une description du sol fondée sur une subdivision en classes discrètes en fonction des dimensions des particules. La dimension de chacune de ces classes peut être déterminée par tamisage et/ou sédimentation. Les essais portant sur des sols grossiers sont généralement réalisés par tamisage, mais les essais portant sur des sols fins et mixtes sont généralement réalisés par une combinaison de tamisage et de sédimentation, en fonction de la composition du sol. La méthode de tamisage décrite peut être appliquée à tous les sols non cimentés dont les dimensions des particules sont inférieures à 125 mm. Deux méthodes de sédimentation sont décrites: la méthode au densimètre et à la pipette. NOTE ISO 17892-4:2016 satisfait aux exigences d'essai de distribution granulométrique des particules de l'EN 1997-2.

General Information

Status
Published
Publication Date
27-Oct-2016
Technical Committee
Drafting Committee
Current Stage
9093 - International Standard confirmed
Completion Date
14-Mar-2022
Ref Project

Relations

Buy Standard

Standard
ISO 17892-4:2016 - Geotechnical investigation and testing -- Laboratory testing of soil
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 17892-4:2016 - Geotechnical investigation and testing -- Laboratory testing of soil
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 17892-4:2016 - Reconnaissance et essais géotechniques -- Essais de laboratoire sur les sols
French language
33 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 17892-4
First edition
2016-11-01
Geotechnical investigation and
testing — Laboratory testing of soil —
Part 4:
Determination of particle size
distribution
Reconnaissance et essais géotechniques — Essais de laboratoire sur
les sols —
Partie 4: Détermination de la distribution granulométrie des
particules
Reference number
ISO 17892-4:2016(E)
©
ISO 2016

---------------------- Page: 1 ----------------------
ISO 17892-4:2016(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 17892-4:2016(E)

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Apparatus . 2
4.1 General . 2
4.2 Sieving method . 3
4.3 Hydrometer method . 4
4.4 Pipette method . 4
4.5 Reagents. 6
5 Test procedure . 6
5.1 Selection of test method. 6
5.2 Sieving method . 7
5.2.1 General. 7
5.2.2 Specimen preparation . 9
5.2.3 Test execution .10
5.3 Hydrometer method .12
5.3.1 General.12
5.3.2 Specimen preparation .14
5.3.3 Test execution .15
5.4 Pipette method .15
5.4.1 General.15
5.4.2 Specimen preparation .16
5.4.3 Test execution .16
5.5 Combined tests .16
6 Test results .18
6.1 Sieving .18
6.1.1 Fraction passing each sieve .18
6.2 Hydrometer .18
6.2.1 Total dry mass .18
6.2.2 Fraction passing each sieve .19
6.2.3 True hydrometer reading .19
6.2.4 Effective depth .19
6.2.5 Equivalent particle diameter .19
6.2.6 Modified hydrometer reading .20
6.2.7 Fraction smaller than equivalent particle diameter .20
6.2.8 Correction for material larger than 2 mm .21
6.3 Pipette.21
6.3.1 Total dry mass .21
6.3.2 Fraction passing each sieve .21
6.3.3 Equivalent particle diameter .21
6.3.4 Fraction smaller than equivalent particle diameter .22
6.3.5 Correction for material larger than 2 mm .22
7 Test report .22
Annex A (normative) Calibration, maintenance and checks .24
Annex B (informative) Pre-treatment of samples .30
Bibliography .31
© ISO 2016 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 17892-4:2016(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity assessment,
as well as information about ISO’s adherence to the World Trade Organization (WTO) principles in the
Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.
ISO 17892-4 was prepared by the European Committee for Standardization (CEN) Technical Committee
CEN/TC 341, Geotechnical investigation and testing, in collaboration with ISO Technical Committee
TC 182, Geotechnics, in accordance with the agreement on technical cooperation between ISO and CEN
(Vienna Agreement).
This first edition cancels and replaces the first edition (ISO/TS 17892-4:2004), which has been
technically revised.
It also incorporates the Technical Corrigendum ISO/TS 17892-4:2004/Cor 1:2006.
A full list of parts in the ISO 17892 series, published under the general title Geotechnical investigation
and testing — Laboratory testing of soil, can be found on the ISO website.
iv © ISO 2016 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 17892-4:2016(E)

Introduction
This part of ISO 17892 covers areas in the international field of geotechnical engineering never
previously standardized. It is intended that this part of ISO 17892 presents broad good practice
throughout the world and significant differences with national documents is not anticipated. It is based
on international practice (see Reference [2]).
© ISO 2016 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 17892-4:2016(E)
Geotechnical investigation and testing — Laboratory
testing of soil —
Part 4:
Determination of particle size distribution
1 Scope
This part of ISO 17892 specifies a method of determining the particle size distribution of soils.
This part of ISO 17892 is applicable to the laboratory determination of the particle size distribution
of a soil test specimen by sieving, or sedimentation, or a combination of both within the scope of
geotechnical investigations.
The particle size distribution is one of the most important physical characteristics of soil. Classification
of soils is mainly based on the particle size distribution. Many geotechnical and geohydrological
properties of soil are related to the particle size distribution.
The particle size distribution provides a description of soil based on a subdivision in discrete classes of
particle sizes. The size of each class can be determined by sieving and/or sedimentation. Coarse soils
are usually tested by sieving, but fine and mixed soils are usually tested by a combination of sieving and
sedimentation, depending on the composition of the soil.
The sieving method described is applicable to all non-cemented soils with particle sizes less than
125 mm. Two sedimentation methods are described: the hydrometer method and the pipette method.
NOTE This part of ISO 17892 fulfils the requirements of the particle size distribution testing in accordance
with EN 1997-2.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
ISO 3310-1, Test sieves —Technical requirements and testing — Part 1: Test sieves of metal wire cloth
ISO 3310-2, Test sieves — Technical requirements and testing — Part 2: Test sieves of perforated metal plate
ISO 4788, Laboratory glassware — Graduated measuring cylinders
ISO 14688-1, Geotechnical investigation and testing — Identification and classification of soil — Part 1:
Identification and description
ISO 17892-1, Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination
of water content
ISO 17892-3, Geotechnical investigation and testing — Laboratory testing of soil — Part 3: Determination
of particle density
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
© ISO 2016 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 17892-4:2016(E)

3.1
sieving
process of separating soil particles into size classes by the use of test sieves consisting of a wire mesh or
slotted metal plate that permits particles smaller than the mesh size to pass through
3.2
sedimentation
process of separating soil particles into size classes by the gravitational settling of soil particles in a
liquid, where different size classes settle at different rates
3.3
particle size distribution
proportions by mass of the various particle size classes present in a soil
3.4
dispersion
mechanical or chemical treatment of the soil to separate any aggregations into single particles
3.5
coagulation
process of aggregation of soil particles in suspension
3.6
equivalent particle diameter
particle diameter calculated from sedimentation (3.2) data using Stokes’ law, assuming spherical
particles
Note 1 to entry: Stokes’ law establishes the relationship between the terminal velocity of a sphere falling through a
column of fluid, the sphere’s diameter, the density and dynamic viscosity of the fluid and the density of the sphere.
4 Apparatus
4.1 General
See Annex A for calibration, maintenance and checks on the following apparatus.
4.1.1 Balances
The balance for sieve test and hydrometer test shall have an accuracy of 0,01 g or 0,1 % of the weighed
mass, whichever value is greater. The balance for pipette test shall have an accuracy of 0,001 g or 0,1 %
of the weighed mass, whichever is greater.
4.1.2 Drying ovens
The drying oven should be of the forced-draught type and shall be capable of maintaining a uniform
temperature throughout the drying chamber. Any air circulation shall not be so strong that any
transport of particles can take place.
4.1.3 Timing devices
The watch or clock shall be readable to 1 s.
4.1.4 Temperature measuring devices
Temperature measuring devices, such as thermometers and thermocouples, shall cover the temperature
range of that part of the test and be readable to 0,1 °C.
2 © ISO 2016 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 17892-4:2016(E)

4.1.5 Desiccator
A desiccator, if used, shall be of suitable size and contain dry, self-indicating desiccant such as silica gel.
It is not required if test specimen containers with close-fitting lids are used.
4.1.6 Test specimen containers
Test specimen containers shall be made of a material that does not change mass as a result of repeated
drying cycles. Glass, porcelain and corrosion-resistant metals have been found to be suitable.
Containers shall have a capacity large enough to hold the mass of sample to be dried without spillage,
but should not be so large that the mass of the empty container is significantly in excess of that of the
specimen.
4.1.7 Sample separation following pre-treatment
If pre-treatment is required, a centrifuge or vacuum filter and ancillaries or other apparatus used
shall be suitable for separating out the soil particles from the reagent without altering the particle size
distribution.
4.2 Sieving method
4.2.1 Test sieves
Test sieves conforming to ISO 3310-1 and ISO 3310-2, together with appropriate receivers, shall be used.
The number of sieves used and their aperture sizes shall be sufficient to ensure that any discontinuities
in the grading curve are detected.
The inclusion of sieves 63 mm, 20 mm, 6,3 mm, 2,0 mm, 0,63 mm, 0,20 mm and 0,063 mm is
recommended as these represent the boundary sizes for coarse materials as defined in ISO 14688-1.
These facilitate sample description and classification.
4.2.2 Mechanical sieve shaker (optional)
A mechanical sieve shaker, if used, shall hold a nest of sieves with their lid and receiver securely. The
design of the shaker shall ensure that the test material on any given sieve progresses over the surface
of the sieve when it is agitated.
4.2.3 Ancillary apparatus
The ancillary apparatus shall consist of the following:
— corrosion resistant trays;
— large corrosion resistant or plastic tray or bucket;
— scoop;
— sieve brushes;
— rubber tubing;
— laboratory glassware (e.g. beakers and flasks);
— riffle box (optional).
© ISO 2016 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 17892-4:2016(E)

4.3 Hydrometer method
4.3.1 Hydrometer
The hydrometer shall be torpedo-shaped, made of glass, as free as possible from visible defects and
preferably manufactured to a national standard. The hydrometer stem and bulb shall be circular in
cross section and symmetrical around the main axis, without abrupt change in cross section.
The scale and inscription shall be marked clearly and permanently, showing no apparent irregularities
in spacing as shown in Figure A.1. The range of the hydrometer shall be at least between 0,995 0 g/ml
and 1,030 0 g/ml with graduation lines at intervals of 0,000 5 g/ml or less. The markings may be directly
in g/ml or may be the difference from 1,000 0 g/ml, expressed in mg/ml. The hydrometer shall be
indelibly marked with a unique identification number.
NOTE Some hydrometers measure the specific gravity of the solution (i.e. the density of the solution relative
to that of pure water) rather than the absolute density of the solution. Use of a hydrometer measuring specific
gravity will introduce a small error in the measurements.
4.3.2 Sedimentation cylinders
Sedimentation cylinders marked at 1 000 ml shall have constant cross-sectional area throughout
their length and be transparent to facilitate reading. The diameter shall be at least twice that of the
hydrometer bulb and the length shall be sufficient to ensure that the hydrometer can float freely in
1 000 ml of pure water. Larger cylinders of the same specification may be used provided the quantities
of the contents are scaled up equally to ensure that the concentration of the suspension is maintained.
4.3.3 Water bath (optional)
The temperature in the cylinders shall not vary by more than 3 °C during the test. Unless this is achieved
within a temperature controlled room, a water bath fitted with a temperature controller shall be used.
If using a water bath, the water level in the bath shall be maintained at least as high as the suspension in
the sedimentation cylinder throughout the test.
NOTE Temperature control minimizes the formation of convection currents within the suspension which
may affect the results.
4.3.4 Mechanical shaker or mixer
The mechanical shaker or mixer shall be capable of keeping the appropriate quantities of soil and water
in continuous suspension, but not so vigorously that soil particles are fractured or lost.
4.4 Pipette method
4.4.1 Pipette
The pipette shall have a nominal volume of 2 % of the volume of the soil suspension and shall be
mounted in a pipette configuration (Figure 1).
4.4.2 Sedimentation cylinders
Sedimentation cylinders (marked at specified volume) shall be of constant cross-sectional area
throughout their length and transparent to facilitate reading. Cylinders should have a minimum volume
of 500 ml.
4 © ISO 2016 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 17892-4:2016(E)

4.4.3 Pipette specimen containers
Containers, e.g. glass bottles with ground glass stoppers or evaporating dishes, shall be suitable for
the drying of aliquots removed from the sedimentation suspension by the pipette. Glass bottles about
25 mm in diameter and about 50 mm tall have been found to be suitable for a 10 ml sampling pipette.
4.4.4 Water bath (optional)
The temperature in the cylinders shall not vary by more than 3 °C during the test. Unless this is achieved
within a temperature controlled room, a water bath fitted with a temperature controller shall be used.
If using a water bath, the water level in the bath shall be maintained at least as high as the suspension in
the sedimentation cylinder throughout the test.
NOTE Temperature control minimizes the formation of convection currents within the suspension which
may affect the results.
Key
1 rubber suction bulb 7 sampling pipette
2 tap 8 sedimentation cylinder
3 safety bulb suction inlet 9 graduated scale
4 safety bulb 10 sliding panel
5 three-way tap 11 clamps
6 outlet tube
Figure 1 — Example of pipette configuration
4.4.5 Mechanical shaker or mixer
The mechanical shaker or mixer shall be capable of keeping the appropriate quantities of soil and water
in continuous suspension, but not so vigorously that soil particles are fractured or lost.
© ISO 2016 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 17892-4:2016(E)

4.4.6 Centrifuge (optional)
The centrifuge or vacuum filter and ancillaries or any other apparatus shall be suitable for separating
out the soil particles following pre-treatment for the removal of salts, organic and/or calcareous matter.
4.5 Reagents
4.5.1 General
Other than water, the following reagents shall be of recognized analytical reagent quality.
4.5.2 Water
The water shall be distilled, de-ionized or demineralized. Where distilled is referred to in this part of
ISO 17892, the terms are interchangeable.
4.5.3 Dispersing agent
Where a dispersing agent is required by the test procedure, options include but are not limited to the
following:
— sieving: hexa-sodium hexametaphosphate or tetra-sodium diphosphate, approximately 2 g/l
dissolved in water;
— sedimentation: hexa-sodium hexametaphosphate, approximately 40 g/l, or tetra-sodium
diphosphate, approximately 20 g/l, dissolved in water.
Dispersing agent solutions shall not be used more than 1 month after their preparation.
NOTE Different dispersing agents, and different concentrations of the agents, can cause differences in the
effectiveness of dispersion, as can differences in the pH of the solution. There is no single universally agreed
optimal dispersing agent for all soils.
4.5.4 Hydrogen peroxide (optional)
Hydrogen peroxide (20 % V/V) may be used to remove organic material. See Annex B.
4.5.5 Hydrochloric acid (optional)
Hydrochloric acid (0,2 M ± 0,02 M) may be used to remove carbonate. See Annex B.
5 Test procedure
5.1 Selection of test method
The test method or combination of methods should be specified prior to testing or be selected on the
following basis.
— If a sample has less than about 10 % of particles smaller than 0,063 mm, sedimentation test is not
normally required.
— If all of the sample is smaller than 2 mm and has less than about 10 % of particles larger than
0,063 mm, a full sieve test is not normally required.
— For all other samples, a combination of sieve test and sedimentation should be performed in order
to determine the full particle size distribution.
6 © ISO 2016 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 17892-4:2016(E)

5.2 Sieving method
5.2.1 General
5.2.1.1 The general procedure for sieving is outlined schematically in Figure 2. Either a moist or a dry
sample may be tested.
5.2.1.2 Although the starting sample may be moist, and although washing a sample through a sieve
may be used during sample preparation as described below, the sieve test to determine the masses of
material retained on each sieve is always performed on a dried specimen.
© ISO 2016 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 17892-4:2016(E)

Key
1 sample 7 dispersing agent 13 sedimentation test (optional)
2 dry sample method 8 soaking and stirring 14 drying retained material
3 riffling or quartering 9 dry separation (alternative method) 15 sieving
4 drying 10 separating and washing 16 weighing material on each sieve
5 moist sample method 11 washings 17 test results calculations
6 weighing 12 collect material <0,063 mm (optional)
Figure 2 — General sieving procedure
8 © ISO 2016 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 17892-4:2016(E)

5.2.2 Specimen preparation
5.2.2.1 Wet preparation is preferred for soils with particles smaller than 0,063 mm, as use of the dry
preparation method may introduce significant errors.
5.2.2.2 Prepare a representative test specimen by riffling or quartering the sample. The required initial
wet mass of the test specimen is dependent upon the maximum particle diameter (D ) present and the
max
soil water content. The dry mass of test specimens should be as given in Table 1 or as defined in 5.2.2.3
for other values of D .
max
Table 1 — Recommended minimum masses for sieving
Particle diameter Recommended
a
D minimum
max
b
mm masses
g
<2,0 100
2,0 100
6,3 300
10 500
20 2 000
37,5 14 000
63 40 000
a
Maximum diameter of soil particles, excluding any discrete coarser particles
present.
b
Using a test specimen smaller than the recommended minimum mass indicated
requires discretion, although it may be adequate for the purpose of the test.
5.2.2.3 For values of D smaller than 20 mm, the minimum mass should be estimated by interpolation
max
of the values in Table 1. For values of D greater than 20 mm, the recommended minimum mass (m ,
max min
kg) should be evaluated from Formula (1):
2
 
D
max
 
m = (1)
min
 10 


NOTE The particle sizes above are based on the boundaries between and within sand, gravel and cobbles as
defined in ISO 14688-1.
5.2.2.4 Soils may be pre-treated prior to sieving to remove dissolved salts, organic and/or calcareous
matter if required. The method shall be stated on the test report, together with the amount of material
removed. A suggested method for pre-treatment for organic or carbonate material is included in Annex B.
5.2.2.5 If a dry sample is used, determine the mass of the specimen (m) to the nearest 0,1 g or 0,1 % of
the m
...

DRAFT INTERNATIONAL STANDARD
ISO/DIS 17892-4
ISO/TC 182/SC 1 Secretariat: DIN
Voting begins on: Voting terminates on:
2014-06-05 2014-11-05
Geotechnical investigation and testing — Laboratory
testing of soil —
Part 4:
Determination of particle size distribution
Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols —
Partie 4: Détermination de la granulométrie
ICS: 13.080.20;93.020
ISO/CEN PARALLEL PROCESSING
This draft has been developed within the European Committee for Standardization
(CEN), and processed under the CEN lead mode of collaboration as defined in the
Vienna Agreement.
This draft is hereby submitted to the ISO member bodies and to the CEN member
bodies for a parallel five month enquiry.
Should this draft be accepted, a final draft, established on the basis of comments
received, will be submitted to a parallel two-month approval vote in ISO and
THIS DOCUMENT IS A DRAFT CIRCULATED
formal vote in CEN.
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
To expedite distribution, this document is circulated as received from the
IN ADDITION TO THEIR EVALUATION AS
committee secretariat. ISO Central Secretariat work of editing and text
BEING ACCEPTABLE FOR INDUSTRIAL,
composition will be undertaken at publication stage.
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 17892-4:2014(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2014

---------------------- Page: 1 ----------------------
ISO/DIS 17892-4:2014(E)

Copyright notice
This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract
from it may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to either ISO at the address below or ISO’s
member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Reproduction may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.
ii © ISO 2014 – All rights reserved

---------------------- Page: 2 ----------------------
prEN ISO 17892-4:2013 (E)
Contents
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 6
4 Equipment . 6
4.1 General . 6
4.2 Sieving . 7
4.3 Hydrometer method . 7
4.4 Pipette method . 8
4.5 Reagents . 9
5 Test procedure . 10
5.1 Selection of test method . 10
5.2 Sieving . 10
5.3 Hydrometer analysis . 15
5.4 Pipette analysis . 19
6 Test results . 20
6.1 Sieving . 20
6.2 Hydrometer . 20
6.3 Pipette . 23
7 Test report . 24
Annex A (Normative) Calibration, maintenance and checks . 26
Annex B (Informative) Pre-treatment of samples……………………………… . ………………………………32
Bibliography . 33

Tables
Table 1 — Minimum masses required for sieving . 12
Table 2 — Maximum mass of soil retained on each sieve. 14
Table 3 — Dry mass of soil specimen for hydrometer sedimentation test . 17
Table 4 — Dry mass of sample smaller than 2mm for pipette sedimentation test . 19
Table 5 — Dynamic viscosity of water . 22
Table A.1 — Grading of the performance check sample . 28

Figures
Figure 1 — Example of pipette configuration . 9
Figure 2 — General sieving procedure . 11
Figure 3 — General sedimentation procedure . 16
Figure 4 — Example of a particle size distribution result. 25
Figure A.1 — Example of calibration of hydrometer scale . 31


2

---------------------- Page: 3 ----------------------
prEN ISO 17892-4:2013 (E)

Foreword
This document (prCEN ISO 17892-4:2013) has been prepared by Technical Committee CEN/TC 341 “Geotechnical
investigation and testing”, the secretariat of which is held by BSI, in collaboration with Technical Committee
ISO/TC 182 “Geotechnics”.
According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following
countries are bound to announce this Technical Specification: Austria, Belgium, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,
Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
CEN ISO/TS 17892 consists of the following parts, under the general title Geotechnical investigation and testing —
Laboratory testing of soil:
 Part 1: Determination of water content.
 Part 2: Determination of bulk density.
 Part 3: Determination of particle density.
 Part 4: Determination of particle size distribution.
 Part 5: Incremental loading oedometer test.
 Part 6: Fall cone test.
 Part 7: Unconfined compression test.
 Part 8: Unconsolidated undrained triaxial test.
 Part 9: Consolidated triaxial compression tests.
 Part 10: Direct shear tests.
 Part 11: Permeability tests.
 Part 12: Determination of liquid and plastic limits.
3

---------------------- Page: 4 ----------------------
prEN ISO 17892-4:2013 (E)
Introduction
This document covers areas in the international field of geotechnical engineering never previously standardised. It
is intended that this document presents broad good practice throughout the world and significant differences with
national documents is not anticipated. It is based on international practice (see [1]).

4

---------------------- Page: 5 ----------------------
prEN ISO 17892-4:2013 (E)
1 Scope
This International Standard specifies a method of determining the particle size distribution of soils.
This International Standard is applicable to the laboratory determination of the particle size distribution of a soil test
specimen by sieving, or sedimentation, or a combination of both within the scope of geotechnical investigations.
The particle size distribution is one of the most important physical characteristics of soil. Classification of soils is
mainly based on the particle size distribution. Many geotechnical and geohydrological properties of soil are related
to the particle size distribution.
The particle size distribution provides a description of soil, based on a subdivision in discrete classes of particle
sizes. The size of each class can be determined by sieving and/or sedimentation. Coarse soils are usually tested
just by sieving, but fine and mixed soils should be tested by a combination of sieving and sedimentation, depending
on the composition of the soil.
Sieving is the process whereby the soil is separated in particle size classes by the use of test sieves.
Sedimentation is the process of the settling of soil particles in a liquid, where differences in settling rates enable the
particle size classes to be separated. Two sedimentation methods are described; the hydrometer method and the
pipette method.
The methods described are applicable to all non-cemented soils with particle sizes less than 125 mm.
Depending on the purpose for the determination of the particle size distribution, pre-treatment or correction for
calcium carbonate, dissolved salts and/or organic matter can be required.
Other methods that incorporate detection systems using x-rays, lasers, density measurements and particle
counters are not covered by this document.
NOTE This document fulfils the requirements of the particle size analysis testing in accordance with EN 1997-1
and EN 1997-2.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for
its application. For dated references, only the edition cited applies. For undated references, the latest edition of the
referenced document (including any amendments) applies.
EN ISO 14688-1, Geotechnical investigation and testing - identification and classification of soil. Part 1:
identification and description.
EN ISO 17892-1, Geotechnical investigation and testing — Laboratory testing of soil — Part 1: Determination of
water content.
EN ISO 17892-3, Geotechnical investigation and testing — Laboratory testing of soil — Part 3: Determination of
particle density.
ISO 386, Liquid in glass thermometers – principles of design, construction and use
ISO 565, Test sieves - Metal wire cloth, perforated metal plate and electroformed sheet - Nominal sizes of
openings.
ISO 3310-1, Test sieves - Technical requirements and testing - Part 1: Test sieves of metal wire cloth.
ISO 3310-2, Test sieves - Technical requirements and testing - Part 2: Test sieves of perforated metal plate.



5

---------------------- Page: 6 ----------------------
prEN ISO 17892-4:2013 (E)

3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
particle size distribution
proportions by mass of the various particle size classes present in a soil
3.2
equivalent particle diameter
particle diameter calculated from sedimentation data using Stoke's law, assuming spherical particles
4 Equipment
4.1 General
See Annex A for calibration, maintenance and checks on the following equipment
4.1.1 Balances
The balance for sieve analysis and hydrometer test shall have an accuracy of 0,01 g or 0,1% of the weighed
mass whichever value is the greater. The balance for pipette test shall have an accuracy of 0,001 g or 0,1% of
the weighed mass whichever is the greater.
4.1.2 Drying ovens
The drying oven should be of the forced-draft type and shall be capable of maintaining a uniform temperature
throughout the drying chamber. Any air circulation shall not be so strong that any transport of particles can take
place.
4.1.3 Timing devices
The watch or clock shall be accurate and readable to 1s.
4.1.4 Temperature measuring devices
Temperature measuring devices, such as thermometers and thermocouples, shall cover the temperature range
of that part of the test and be accurate to 0,1°C.
4.1.5 Desiccator
A desiccator, if used, shall be of suitable size and contain dry, self-indicating desiccant such as silica gel. It is
not required if test specimen containers with close-fitting lids are used.
4.1.6 Test specimen containers
Test specimen containers shall be made of a material that does not change mass as a result of repeated drying
cycles. Glass, porcelain and corrosion-resistant metals have been found to be suitable.
Containers shall have a capacity large enough to hold the mass of sample to be dried without spillage, but
should not be so large that the mass of the empty container is significantly in excess of that of the specimen.
4.1.7 Sample separation following pre-treatment
If pre-treatment is required, a centrifuge or vacuum filter and ancillaries, or other apparatus used shall be
suitable for separating out the soil particles from the reagent without altering the particle size distribution.

6

---------------------- Page: 7 ----------------------
prEN ISO 17892-4:2013 (E)


4.2 Sieving
4.2.1 Test sieves
Test sieves complying with ISO 3310-1 and ISO 3310-2, together with appropriate receivers, shall be used.
The number of sieves used and their aperture sizes shall be sufficient to ensure that any discontinuities in the
grading curve are detected.
The inclusion of sieves 63 mm, 20 mm, 6.3 mm, 2.0 mm, 0.63 mm, 0.20 mm and 0.063 mm, is recommended
as these represent the boundary sizes for coarse materials as defined in EN ISO 14688-1. These facilitate
sample description and classification.
4.2.2 Mechanical sieve shaker (optional)
A mechanical sieve shaker, if used, shall hold a nest of sieves with their lid and receiver securely. The design of
the shaker shall ensure that the test material on any given sieve progresses over the surface of the sieve when
it is agitated.
4.2.3 Ancillary apparatus
The ancillary apparatus shall consist of
- corrosion resistant trays;
- large corrosion resistant or plastic tray or bucket;
- scoop;
- sieve brushes;
- rubber tubing;
- laboratory glassware ( eg beakers and flasks )
- riffle box (optional).

4.3 Hydrometer method
4.3.1 Hydrometer
The hydrometer shall be torpedo-shaped, made of glass, as free as possible from visible defects and preferably
manufactured to a national standard. The hydrometer stem and bulb shall be circular in cross section and
symmetrical around the main axis, without abrupt change in cross section.
The scale and inscription shall be marked clearly and permanently, showing no apparent irregularities in
spacing. The range of the hydrometer shall be at least between 0,9950 g/ml and 1,0300 g/ml with graduation
lines at intervals of 0,0005 g/ml or less. The markings may be directly in g/ml or may be the difference from
1,0000 g/ml, expressed in mg/ml. The hydrometer shall be indelibly marked with a unique identification number.
4.3.2 Sedimentation cylinders
Sedimentation cylinders marked at 1000 ml shall have constant cross sectional area throughout their length and
be transparent to facilitate reading. The diameter shall be at least twice that of the hydrometer bulb and the
length must be sufficient to ensure that the hydrometer can float freely in 1000 ml of pure water. Larger
7

---------------------- Page: 8 ----------------------
prEN ISO 17892-4:2013 (E)
cylinders of the same specification may be used provided the quantities of the contents are scaled up equally to
ensure that the concentration of the suspension is maintained.
4.3.3 Water bath (optional)
The temperature in the cylinders shall not vary by more than 3°C during the test. Unless this is achieved within a
temperature controlled room, a water bath fitted with a temperature controller shall be used. If using a water
bath, the water level in the bath shall be maintained at least as high as the suspension in the sedimentation
cylinder, throughout the test.
Note: temperature control is required to minimise the formation of convection currents within the
suspension which may affect the results.
4.3.4 Mechanical shaker or mixer
The mechanical shaker or mixer shall be capable of keeping the appropriate quantities of soil and water in
continuous suspension.
4.4 Pipette method
4.4.1 Pipette
The pipette shall have a nominal volume of 2% of the volume of the soil suspension. It shall be calibrated to an
accuracy of 0,01% of its volume and be mounted in a pipette configuration (Figure 1).
4.4.2 Sedimentation cylinders
Sedimentation cylinders (marked at specified volume) shall be of constant cross sectional area throughout their
length and transparent to facilitate reading. Cylinders should have a minimum volume of 500 ml.
4.4.3 Pipette specimen containers
Containers, for example glass bottles with ground glass stoppers or evaporating dishes, suitable for the drying
of aliquots removed from the sedimentation suspension by the pipette. Glass bottles about 25 mm diameter and
about 50 mm tall have been found to be suitable for a 10 ml sampling pipette.
4.4.4 Water bath (optional)
The temperature in the cylinders shall not vary by more than 3°C during the test. Unless this is achieved within a
temperature controlled room, a water bath fitted with a temperature controller shall be used. If using a water
bath, the water level in the bath shall be maintained at least as high as the suspension in the sedimentation
cylinder, throughout the test.
Note: temperature control is required to minimise the formation of convection currents within the suspension
which may affect the results.
8

---------------------- Page: 9 ----------------------
prEN ISO 17892-4:2013 (E)

Key
1 Rubber suction bulb
2 Tap
3 Safety bulb suction inlet
4 Safety bulb
5 Three-way tap
6 Outlet tube
7 Sampling pipette
8 Sedimentation cylinder
9 Graduated scale
10 Sliding panel
11 Clamps



Figure 1 — Example of pipette configuration
4.4.5 Mechanical shaker or mixer
The mechanical shaker or mixer shall be capable of keeping the appropriate quantities of soil and water in
continuous suspension.
4.4.6 Centrifuge (optional)
The centrifuge or vacuum filter and ancillaries, or any other apparatus shall be suitable for separating out the
soil particles following pre-treatment for the removal of salts, organic and/or calcareous matter.
4.5 Reagents
4.5.1 General
Reagents shall be of analytical reagent quality.
4.5.2 Water
The water shall be distilled, de-ionised or demineralised. Where distilled is referred to in this standard, the terms
are interchangeable.
4.5.3 Dispersing agent
Where a dispersing agent is required by the test procedure, options include but are not limited to:
 Sieving: sodium hexametaphosphate or sodium pyrophosphate, approximately 2 g/l dissolved in water;
 Sedimentation: sodium hexametaphosphate, approximately 40 g/l, or sodium pyrophosphate,
approximately 20 g/l, dissolved in water.
9

---------------------- Page: 10 ----------------------
prEN ISO 17892-4:2013 (E)
Dispersing agent solutions shall not be used more than one month after their preparation.
4.5.4 Hydrogen peroxide (optional)
Hydrogen peroxide (20% V/V) may be used to remove organic material. See Annex B.
4.5.5 Hydrochloric acid (optional)
Hydrochloric acid (0,2 M ± 0.02 M) may be used to remove carbonate. See Annex B.

5 Test procedure
5.1 Selection of test method
The test method or combination of methods should be specified prior to testing, or be selected on the following
basis:
If a sample has less than about 10% of particles smaller than 0.063 mm sedimentation analysis is not normally
required. Similarly, if the sample has less than about 10% of particles larger than 0.063 mm sieve analysis is not
normally required. For all other samples a combination of sieve analysis and sedimentation should be
performed in order to determine the full particle size distribution.
If only a sieve or only a sedimentation test is performed, the mass of excluded sample must be determined and
taken into account in the calculations.
5.2 Sieving
5.2.1 General
5.2.1.1 The general procedure for sieving is outlined schematically in Figure 2. The test may be performed
either on a moist or dried specimen. If a moist sample is used, the dry mass is calculated from its wet mass
after drying in accordance with EN ISO 17892-1.
5.2.1.2 If a dry specimen is required, it shall be oven-dried at 105°C to 110°C either to constant mass or for
a minimum of 16 hours, unless the soil is susceptible to heating. Susceptible soils may be dried at a lower
temperature, eg 50°C.
NOTE  Soils susceptible to heating include organic soils, gypsum and certain tropical soils.









10

---------------------- Page: 11 ----------------------
prEN ISO 17892-4:2013 (E)
Moist sample method



Key
1 Sample
2 Riffling or quartering
3 Dry sample method
4 Moist sample method
5 Drying
6 Weighing
7 Dispersing agent
8 Soaking and Stirring
9 Dry separation (alternative method)
10 Separating
11 Clear water
12 Drying material above 0.063mm
13 Sieving
14 Weighing
15 Computation





Figure 2 — General sieving procedure
11

---------------------- Page: 12 ----------------------
prEN ISO 17892-4:2013 (E)
5.2.2 Specimen preparation
5.2.2.1 Wet preparation is preferred for soils with particles smaller than 0.063 mm, as use of the dry
preparation method may introduce significant errors.
A representative specimen shall be prepared by riffling or quartering. The required initial wet mass of the
specimen is dependent upon the maximum particle diameter (D ) present and the soil water content.
max
Minimum masses for dried specimens required for testing are given in Table 1.

Table 1 — Minimum masses required for sieving

Particle diameter Recommended minimum mass required for
b
a
Dmax sieving
mm g
<2,0 100
2,0 100
6,3 300
10 500
20 2000
37,5 15000
63 70000
a
maximum diameter of soil particles, excluding any discrete coarser

particles present.

b
Using a test specimen smaller than the minimum mass indicated requires
discretion, though it may be adequate for the purpose of the test.

The particle sizes above are based on the boundaries between and within
sand, gravel and cobbles as defined in EN ISO 14688-1, Table 1. The
minimum mass required for an intermediate size in the above list may be
assessed by interpolation.


5.2.2.2 Soils may be pre-treated prior to sieving to remove dissolved salts, organic and/or calcareous
matter if required. The method shall be stated on the test report together with the amount of material
removed. A suggested method for pre-treatment for organic and carbonate material is included in Annex B.
5.2.2.3 The specimen shall be weighed to the nearest 0,1 g or 0.1% of the total mass (m) whichever is the
greater. If the sample has already been dried, go to 5.2.3.
5.2.2.4 The specimen shall be placed in a tray or bucket and covered with water. It shall stand for a
minimum of 1 hour and be stirred frequently.
For specimens with particles with diameter above 20 mm, it may be necessary to split the sample on a
suitable sieve, and treat the coarse fraction separately. If necessary the mass of the fraction passing the
sieve shall be reduced by riffling.
It may be necessary to soak the specimen in dispersing agent to disperse interstitial clay.
12

---------------------- Page: 13 ----------------------
prEN ISO 17892-4:2013 (E)
5.2.2.5 The specimen shall be washed through a 2 mm sieve nested in a 0,063 mm sieve until the water
runs virtually clear. In mixed soils it may beneficial to only sieve the suspended material first, washing until
the water starts to run clear and only then adding the settled coarser material. Ensure that neither sieve
becomes overloaded. Material passing the sieves can be collected if required.
5.2.2.6 All material retained on the sieves shall be transferred to a suitable container, oven-dried to
constant mass in accordance with 5.2.1.2, and then weighed to the nearest 0,1 g or 0.1% of the total dry
mass of the specimen, whichever is the greater.
5.2.3 Test execution
5.2.3.1 The dried material shall be sieved to 0,063 mm, weighing the soil retained on each test sieve, and
weighing any material passing the 0,063 mm sieve. The masses retained on each sieve shall not exceed the
values listed in Table 2.
Sieving shall be considered complete when additional sieving does not lead to a change of mass of the
retained material on any sieve by more than 1% by mass.
The effectiveness of mechanical sieving is influenced by the soil type, the sieving time, the loading on the
sieve and the parameters of the shaking movement, such as amplitude and frequency. In most soils, if a
mechanical sieve shaker is used, the specimen should be shaken for at least ten minutes. If hand sieving is
used, each sieve should be shaken for at least two minutes, and until no more material passes.
If the maximum mass listed in Table 2 is exceeded on any sieve, the soil on that sieve shall be split into two
or more smaller portions which are then sieved separately. The total mass on each sieve is calculated from
the sum of masses retained from each portion.
5.2.3.2 For each test, the cumulative mass retained on each sieve and the fraction passing the last sieve
shall be calculated and totalled. If this total differs from the mass at the start of sieving by more than 1%, the
sieving shall be repeated.
13

---------------------- Page: 14 ----------------------
prEN ISO 17892-4:2013 (E)
Table 2 — Maximum mass of soil retained on each sieve
Maximum mass of soil on sieve of diameter
Nominal sieve aperture size
450 mm 300 mm 200 mm

mm kg kg g
0,063  25
0,150  40
0,200  50
0,300  60
0,425  75
0,500  90
0,630  100
1,18  150
2,0  200
4,0  300
5,0 1 0,50
6,3 1,5 0,75
10,0 2,0 1,0
14,0 3,0 1,3
20,0 3,5 1,5
28,0 4,0 1,8
37,5 4,5 2,0
50,0 5,5 2,5
63,0 6,0 2,8

The maximum mass on sieve sizes not included above may be interpolated, or may be derived from the
approximation:
A× d
  M =
200
where
 M is maximum mass of soil retained on sieve (g)
2
 A is the area of the sieve (mm )
 d is the aperture size of the sieve (mm)

14

---------------------- Page: 15 ----------------------
prEN ISO 17892-4:2013 (E)
5.3 Hydrometer analysis
5.3.1 General
5.3.1.1 The general procedure for hydrometer analysis is outlined schematically in Figure 3.
5.3.1.2 When only the fine fraction of soil is required for testing, the prepared sample of the original soil
should be large enough to provide the specified mass of the desired fraction. For soils with a coarse fraction,
a suitable sub-sample of non-dried material smaller than 2 mm should be taken for the sedimentation test.
5.3.1.3 For tests carried out in a temperature-conditioned room a calibrated temperature measuring device
shall be placed permanently in the room to record the maximum and minimum temperature variations in the
proximity of the test.
5.3.1.4 If a water bath is used, care shall be taken that its circulation system does not introduce vibrations
in the specimen suspension.
5.3.1.5 All readings of the hydrometer should be recorded as the decimal part of the reading, multiplied by
1000, eg 1,0300 becomes 30,0. This convention should be applied to all test readings, calculations and
calibrations.

15

---------------------- Page: 16
...

NORME ISO
INTERNATIONALE 17892-4
Première édition
2016-11-01
Reconnaissance et essais
géotechniques — Essais de laboratoire
sur les sols —
Partie 4:
Détermination de la distribution
granulométrie des particules
Geotechnical investigation and testing — Laboratory testing of soil —
Part 4: Determination of particle size distribution
Numéro de référence
ISO 17892-4:2016(F)
©
ISO 2016

---------------------- Page: 1 ----------------------
ISO 17892-4:2016(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 17892-4:2016(F)

Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Appareillage . 2
4.1 Généralités . 2
4.2 Méthode de tamisage. 3
4.3 Méthode du densimètre . 4
4.4 Méthode de la pipette . 5
4.5 Réactifs . 6
5 Procédures d’essai . 7
5.1 Sélection de la méthode d’essai . 7
5.2 Méthode de tamisage. 7
5.2.1 Généralités . 7
5.2.2 Préparation de l’éprouvette . 9
5.2.3 Mode opératoire d’essai .10
5.3 Méthode du densimètre .11
5.3.1 Généralités .11
5.3.2 Préparation de l’éprouvette .14
5.3.3 Mode opératoire d’essai .15
5.4 Méthode de la pipette .15
5.4.1 Généralités .15
5.4.2 Préparation de l’éprouvette .16
5.4.3 Mode opératoire d’essai .16
5.5 Essais combinés .17
6 Résultats d’essais .19
6.1 Tamisage .19
6.1.1 Fraction des particules passant au travers de chaque tamis .19
6.2 Densimètre .19
6.2.1 Masse sèche totale .19
6.2.2 Fraction des particules passant au travers de chaque tamis .20
6.2.3 Valeur vraie du densimètre .20
6.2.4 Profondeur effective .20
6.2.5 Diamètre équivalent des particules .20
6.2.6 Lecture corrigée du densimètre .21
6.2.7 Fraction des particules de dimension inférieure au diamètre équivalent .21
6.2.8 Correction pour la fraction supérieure à 2 mm.22
6.3 Pipette.22
6.3.1 Masse sèche totale .22
6.3.2 Fraction des particules passant au travers de chaque tamis .22
6.3.3 Diamètre équivalent des particules .22
6.3.4 Fraction des particules de dimension inférieure au diamètre équivalent .23
6.3.5 Correction pour la fraction supérieure à 2 mm.23
7 Rapport d’essai .23
Annexe A (normative) Étalonnage, maintenance et contrôles .25
Annexe B (informative) Pré-traitement des échantillons .32
Bibliographie .33
© ISO 2016 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 17892-4:2016(F)

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO, participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction définies dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/patents).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la signification des termes et expressions spécifiques de l’ISO liés à l’évaluation
de la conformité, ou pour toute information au sujet de l’adhésion de l’ISO aux principes de l’organisation
mondiale du commerce (OMC) concernant les obstacles techniques au commerce (OTC), voir le lien
suivant: www.iso.org/iso/foreword.html.
L’ISO 17892-4 a été élaborée par le comité technique du Comité européen de normalisation CEN/TC 341,
Reconnaissance et essais géotechniques, en collaboration avec le comité technique TC 182, Géotechniques,
conformément à l’accord de coopération technique entre l’ISO et le CEN (accord de Vienne).
Cette première édition annule et remplace la première édition (ISO/TS 17892-4:2004), qui a fait l’objet
d’une révision technique.
Elle intègre également le rectificatif technique ISO/TS 17892-4:2004/Cor, 1.
Une liste de toutes les parties de la série ISO 17892, publiées avec le titre général «Reconnaissance et
essais géotechniques — Essai de laboratoire sur les sols», sont disponibles sur le site internet de l’ISO.
iv © ISO 2016 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 17892-4:2016(F)

Introduction
Cette partie de l’ISO 17892 couvre des sujets n’ayant jusqu’alors pas été normalisés au niveau
international dans le domaine de la géotechnique. L’objectif de cette partie de l’ISO 17892 est de
présenter la pratique généralement en vigueur au niveau mondial et aucune différence significative
n’est attendue par rapport aux documents nationaux. Celle-ci s’appuie sur une pratique internationale
(voir la Référence [2]).
© ISO 2016 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 17892-4:2016(F)
Reconnaissance et essais géotechniques — Essais de
laboratoire sur les sols —
Partie 4:
Détermination de la distribution granulométrie des
particules
1 Domaine d’application
Cette partie de l’ISO 17892 spécifie une méthode de détermination de la distribution granulométrique
des particules des sols.
Cette partie de l’ISO 17892 s’applique à la détermination en laboratoire de la distribution
granulométrique des particules d’un échantillon d’essai de sol par tamisage, ou sédimentation, ou une
combinaison des deux dans le cadre d’investigations géotechniques.
La distribution granulométrique des particules (ou granulométrie) est l’une des caractéristiques
physiques les plus importantes des sols. C’est essentiellement de celle-ci que dépend la classification des
sols. En outre, de nombreuses propriétés géotechniques et hydrogéologiques sont liées à la distribution
granulométrique des particules.
La distribution granulométrique des particules fournit une description du sol fondée sur une
subdivision en classes discrètes en fonction des dimensions des particules. La dimension de chacune
de ces classes peut être déterminée par tamisage et/ou sédimentation. Les essais portant sur des sols
grossiers sont généralement réalisés par tamisage, mais les essais portant sur des sols fins et mixtes
sont généralement réalisés par une combinaison de tamisage et de sédimentation, en fonction de la
composition du sol.
La méthode de tamisage décrite peut être appliquée à tous les sols non cimentés dont les dimensions
des particules sont inférieures à 125 mm. Deux méthodes de sédimentation sont décrites: la méthode
au densimètre et à la pipette.
NOTE Cette partie de l’ISO 17892 satisfait aux exigences d’essai de distribution granulométrique des
particules de l’EN 1997-2.
2 Références normatives
Les documents de référence suivants, en tout ou partie, sont référencés de façon normative dans le
présent document et sont indispensables à son application. Pour les références datées, seule l’édition
citée s’applique. Pour les références non datées, la dernière édition du document de référence s’applique
(y compris les éventuels amendements).
ISO 3310-1, Tamis de contrôle — Exigences techniques et vérifications — Partie 1: tamis de contrôle en
tissus métalliques
ISO 3310-2, Test sieves — Technical requirements and testing — Part 2: Test sieves of perforated metal plate
ISO 4788, Laboratory glassware — Graduated measuring cylinders
NF EN ISO 14688-1, Reconnaissance et essais géotechniques — Dénomination, description et classification
des sols — Partie 1: dénomination et description
© ISO 2016 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 17892-4:2016(F)

NF EN ISO 17892-1, Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols — Partie 1:
détermination de la teneur en eau
NF EN ISO 17892-3, Reconnaissance et essais géotechniques — Essais de laboratoire sur les sols — Partie 3:
détermination de la masse volumique des particules solides
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
tamisage
processus de séparation des particules d’un sol en classes granulométriques à l’aide de tamis de contrôle
constitués d’un maillage de fils ou d’une tôle métallique perforée permettant le passage des particules
dont les dimensions sont inférieures à la dimension des ouvertures
3.2
sédimentation
processus de séparation des particules d’un sol en classes granulométriques par décantation gravitaire
des particules du sol dans un liquide, les différentes classes granulométriques décantant à des vitesses
différentes
3.3
granulométrie
pourcentages massiques des différentes classes granulométriques présentes dans un sol
3.4
dispersion
traitement mécanique ou chimique du sol destiné à séparer les agrégats en particules indépendantes
3.5
coagulation
processus d’agrégation des particules en suspension d’un sol
3.6
diamètre équivalent des particules
diamètre d’un grain calculé sur la base des résultats de sédimentation (3.2) en appliquant la loi de Stokes
et en prenant pour hypothèse que les particules sont sphériques
Note 1 à l’article: La loi de Stokes établit la relation entre la vitesse limite d’une sphère en chute libre dans une
colonne de fluide, le diamètre de la sphère, la masse volumique et la viscosité dynamique du fluide et la masse
volumique de la sphère.
4 Appareillage
4.1 Généralités
Voir l’Annexe A pour l’étalonnage, la maintenance et les contrôles relatifs à l’appareillage suivant.
4.1.1 Balances
L’exactitude de la balance utilisée pour l’essai au tamis et l’essai au densimètre doit être de 0,01 g, ou
0,1 % de la masse pesée, la valeur la plus élevée étant retenue. L’exactitude de la balance utilisée pour
l’essai à la pipette doit être de 0,001 g, ou 0,1 % de la masse pesée, la valeur la plus élevée étant retenue.
2 © ISO 2016 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 17892-4:2016(F)

4.1.2 Étuve de séchage
Il est recommandé que l’étuve de séchage soit de type à tirage forcé et celle-ci doit pouvoir maintenir
une température homogène dans l’ensemble de la chambre de séchage. La circulation d’air ne doit
toutefois pas être suffisamment forte pour pouvoir déplacer les particules.
4.1.3 Dispositifs de mesure du temps
La montre ou l’horloge doit avoir une résolution de 1 s.
4.1.4 Dispositifs de mesure de la température
Les dispositifs de mesure de la température, tels que les thermomètres et les thermocouples, doivent
couvrir la plage de température utilisée dans la partie correspondante de l’essai, et doivent avoir une
résolution de 0,1 °C.
4.1.5 Dessiccateur
Un dessiccateur, s’il est utilisé, doit être de dimension appropriée et doit contenir un dessiccant auto-
indicateur tel qu’un gel de silice. L’utilisation d’un dessiccateur n’est pas exigée si les récipients utilisés
pour conserver les éprouvettes sont pourvus de couvercles hermétiques.
4.1.6 Récipients pour éprouvette
Les récipients pour éprouvette doivent être constitués d’un matériau dont la masse ne change pas sous
l’effet de cycles de séchage répétés. Le verre, la porcelaine et les métaux résistants à la corrosion se sont
avérés adaptés.
La capacité des récipients doit être suffisante pour pouvoir contenir la masse de l’échantillon à
sécher sans déversement, mais doit également être suffisante pour que la masse du récipient vide soit
significativement supérieure à celle de l’éprouvette.
4.1.7 Séparation d’échantillon après pré-traitement
Lorsqu’un pré-traitement est exigé, les filtres centrifuges ou à vide et les accessoires ou autres appareils
utilisés doivent être adaptés à la séparation des particules de sol du réactif, sans altération de la
granulométrie.
4.2 Méthode de tamisage
4.2.1 Tamis de contrôle
Des tamis de contrôle conformes à l’ISO 3310-1 et à l’ISO 3310-2, avec des fonds de tamis appropriés,
doivent être utilisés.
Le nombre de tamis utilisés et leurs ouvertures, doivent être suffisants pour éviter toute discontinuité
détectable dans la courbe granulométrique.
Il est recommandé d’utiliser des tamis de 63 mm, 20 mm, 6,3 mm, 2,0 mm, 0,63 mm, 0,20 mm et
0,063 mm car ces valeurs représentent les limites de taille des matériaux grossiers selon la définition
de l’ISO 14688-1. Ceux-ci facilitent la description et la classification de l’éprouvette.
4.2.2 Agitateur de tamis mécanique (facultatif)
Si un agitateur de tamis mécanique est utilisé, celui-ci doit permettre d’emboîter et de maintenir le
tamis avec son couvercle et son fond. La conception de l’agitateur doit garantir que le matériau d’essai
présent sur un tamis donné se déplace sur la surface du tamis lorsque celui-ci est agité.
© ISO 2016 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 17892-4:2016(F)

4.2.3 Appareillage accessoire
L’appareillage accessoire doit être composé des éléments suivants:
— bacs inoxydables;
— grand bac ou seau résistant à la corrosion ou en plastique;
— pelle;
— brosses à tamis;
— tuyau en caoutchouc;
— verrerie de laboratoire (p. ex. béchers et erlenmeyers);
— diviseur (éventuellement).
4.3 Méthode du densimètre
4.3.1 Densimètre
Le densimètre doit avoir une forme de torpille, être en verre, présenter le moins de défauts visibles
possible et, de préférence, être fabriqué selon une norme nationale. La tige et le bulbe du densimètre
doivent avoir une section transversale circulaire symétrique par rapport à leur axe principal et sans
variation brutale de section.
L’échelle et les inscriptions doivent être marquées clairement et de façon permanente, sans irrégularités
apparentes dans leur espacement, comme cela est représenté sur la Figure A.1. La plage de lecture du
densimètre doit au moins aller de 0,995 0 g/ml à 1,030 0 g/ml, avec des lignes de graduation espacées
de 0,000 5 g/ml maximum. Les marquages peuvent être directement exprimés en g/ml ou peuvent
être exprimés en différence par rapport à 1,000 0 g/ml, exprimée en mg/ml. Le densimètre doit être
identifié par un numéro unique indélébile.
NOTE Certains densimètres mesurent la densité de la solution (c.-à-d. la masse volumique de la solution
rapportée à celle de l’eau pure) à la place de la masse volumique absolue de la solution. L’utilisation d’un
densimètre mesurant la densité introduira une petite erreur dans les mesures.
4.3.2 Tube cylindrique de sédimentation
Les tubes cylindriques de sédimentation avec marquage à 1 000 ml doivent être de section transversale
constante sur toute leur hauteur et être transparents, afin de faciliter la lecture. Leur diamètre doit
être équivalent à au moins deux fois celui du bulbe du densimètre et leur hauteur doit assurer une
libre flottaison du densimètre dans 1 000 ml d’eau pure. Des tubes cylindriques plus grands de même
spécification peuvent être utilisés, sous réserve que les quantités des substances contenues soient
proportionnées, afin d’assurer le maintien de la concentration de la suspension.
4.3.3 Bain-marie (facultatif)
La température des tubes cylindriques ne doit pas varier de plus de 3 °C pendant l’essai. À moins que
ceci soit assuré par la climatisation de la pièce, un bain-marie régulé en température doit être utilisé.
Dans le cas de l’utilisation d’un bain-marie, le niveau de l’eau dans le bain doit être maintenu, pendant
toute la durée de l’essai, au minimum à la hauteur de la suspension qui se trouve dans le tube cylindrique
de sédimentation.
NOTE La régulation de la température réduit au minimum la formation, au sein de la suspension, de courants
de convection susceptibles d’affecter les résultats.
4 © ISO 2016 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 17892-4:2016(F)

4.3.4 Agitateur mécanique ou mélangeur
L’agitateur mécanique ou mélangeur doit permettre de maintenir la quantité appropriée de sol et
d’eau sous forme d’une suspension stable, mais ne doit pas permettre la fracturation ni la perte des
particules de sol.
4.4 Méthode de la pipette
4.4.1 Pipette
Le volume nominal de la pipette doit représenter 2 % du volume de la suspension de sol et la pipette
doit être montée en configuration pipette (Figure 1).
4.4.2 Tube cylindrique de sédimentation
Les tubes cylindriques de sédimentation (avec marquage au volume spécifié) doivent être de section
transversale constante sur toute leur hauteur et être transparents, afin de faciliter la lecture. Il est
recommandé que le volume minimal des tubes cylindriques soit de 500 ml.
4.4.3 Récipients pour éprouvettes prélevées à la pipette
Les récipients, p. ex. flacons en verre à bouchon rodé ou cristallisoirs, doivent être appropriés au
séchage de prélèvements extraits de la suspension de sédimentation à l’aide de la pipette. Des flacons
en verre d’environ 25 mm de diamètre et environ 50 mm de hauteur se sont avérés adaptés pour une
pipette de prélèvement de 10 ml.
4.4.4 Bain-marie (facultatif)
La température des tubes cylindriques ne doit pas varier de plus de 3 °C pendant l’essai. À moins que
ceci soit assuré par la climatisation de la pièce, un bain-marie régulé en température doit être utilisé.
Dans le cas de l’utilisation d’un bain-marie, le niveau de l’eau dans le bain doit être maintenu, pendant
toute la durée de l’essai, au minimum à la hauteur de la suspension qui se trouve dans le tube cylindrique
de sédimentation.
NOTE La régulation de la température réduit au minimum la formation, au sein de la suspension, de courants
de convection susceptibles d’affecter les résultats.
© ISO 2016 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 17892-4:2016(F)

Légende
1 Poire à pipetter en caoutchouc 7 Pipette de prélèvement
2 Robinet 8 Tube cylindrique de sédimentation
3 Tube d’aspiration du réservoir de garde 9 Échelle graduée
4 Réservoir de garde 10 Panneau coulissant
5 Robinet à trois voies 11 Colliers d’attache
6 Tube d’évacuation
Figure 1 — Exemple de configuration de pipette
4.4.5 Agitateur mécanique ou mélangeur
L’agitateur mécanique ou mélangeur doit permettre de maintenir la quantité appropriée de sol et
d’eau sous forme d’une suspension stable, mais ne doit pas permettre la fracturation ni la perte des
particules de sol.
4.4.6 Centrifugeuse (facultatif)
La centrifugeuse ou le filtre à vide et leurs dispositifs accessoires, ou tout autre appareillage similaire,
doivent être adaptés à la séparation des particules de sol, après pré-traitement destiné à éliminer les
sels, la matière organique et/ou le calcaire.
4.5 Réactifs
4.5.1 Généralité
En dehors de l’eau, les réactifs suivants doivent être identifiés comme réactifs de qualité analytique.
6 © ISO 2016 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 17892-4:2016(F)

4.5.2 Eau
L’eau doit être distillée, déionisée ou déminéralisée. Lorsque le terme « distillée » est utilisé dans la
présente partie de l’ISO 17892, ces différents termes sont interchangeables.
4.5.3 Agent dispersant
Lorsqu’un agent dispersant est exigé dans la procédure d’essai, différentes options sont possibles, en
particulier les suivantes:
— tamisage: hexamétaphosphate hexasodique ou diphosphate tétrasodique, environ 2 g/l en solution
dans l’eau;
— sédimentation: hexamétaphosphate hexasodique, environ 40 g/l, ou diphosphate tétrasodique,
environ 20 g/l en solution dans l’eau.
Les solutions d’agent dispersant ne doivent pas être utilisées au-delà d’un mois après leur préparation.
NOTE Des agents dispersants différents, et des concentrations en agent dispersant différentes peuvent
conduire à des différences dans l’efficacité de la dispersion, tout comme des différences de pH de la solution. Il n’y
a pas de consensus universel sur un agent dispersant optimal pour tous les sols.
4.5.4 Peroxyde d’hydrogène (facultatif)
Le peroxyde d’hydrogène (20 % V/V) peut être utilisé pour éliminer la matière organique. Voir
l’Annexe B.
4.5.5 Acide chlorhydrique (facultatif)
De l’acide chlorhydrique (0,2 M ± 0,02 M) peut être utilisé pour éliminer les carbonates. Voir l’Annexe B.
5 Procédures d’essai
5.1 Sélection de la méthode d’essai
La méthode d’essai, ou la combinaison de méthodes, doit être spécifiée avant de conduire l’essai, ou être
sélectionnée sur la base suivante:
— Si un échantillon contient moins d’environ 10 % de particules mesurant moins de 0,063 mm, aucun
essai de sédimentation n’est normalement exigé.
— Si toutes les particules de l’échantillon mesurent moins de 2 mm et que celui-ci contient moins
d’environ 10 % de particules mesurant plus de 0,063 mm, aucun essai au tamis complet n’est
normalement exigé.
— Pour tous les autres échantillons, un essai combinant essai au tamis et sédimentation doit être
réalisé afin de déterminer la distribution granulométrique complète des particules.
5.2 Méthode de tamisage
5.2.1 Généralités
5.2.1.1 Le mode opératoire général de l’essai au tamis est schématisé sur la Figure 2. Il est possible de
réaliser l’essai sur un échantillon humide ou sec.
5.2.1.2 Bien que l’échantillon de départ puisse être humide, et bien qu’un lavage de l’échantillon sur un
tamis puisse être effectué lors de la préparation de l’
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.