Calculation of load capacity of spur and helical gears - Part 5: Strength and quality of materials

ISO 6336-5:2003 describes contact and tooth-root stresses, and gives numerical values for both limit stress numbers. It specifies requirements for material quality and heat treatment and comments on their influences on both limit stress numbers. Values in accordance with it are suitable for use with the calculation procedures provided in ISO 6336-2 and ISO 6336-3 and in the application standards for industrial, high speed and marine gears. They are also suited to the calculation procedures given in ISO 10300 for rating the load capacity of bevel gears. It is applicable to all gearing, basic rack profiles, profile dimensions, design, etc., covered by those standards. The results are in good agreement with other methods for the range indicated in the scope of ISO 6336-1.

Calcul de la capacité de charge des engrenages cylindriques à dentures droite et hélicoïdale — Partie 5: Résistance et qualité des matériaux

L'ISO 6336-5:2003 décrit les pressions de contact et les contraintes en pied de dent, et donne des valeurs numériques pour ces deux contraintes limites de référence. Elle spécifie les exigences pour la qualité du matériau et le traitement thermique, et elle fournit des indications concernant leur influence sur chacune des contraintes limites de référence. Les valeurs données dans l'ISO 6336-5:2003 sont valables pour les méthodes de calcul définies dans l'ISO 6336-2 et l'ISO 6336-3 ainsi que dans les normes d'application pour engrenages industriels, engrenages grande vitesse et engrenages marins. Elles sont applicables aux méthodes de calcul données dans l'ISO 10300 pour déterminer la capacité de charge des engrenages coniques. L'ISO 6336-5:2003 est applicable à tous les engrenages, aux tracés de référence, aux dimensions, conception, etc., définis dans ces normes. Les résultats sont en bon accord avec d'autres méthodes pour le sujet tel qu'indiqué dans le domaine d'application de l'ISO 6336-1.

Izračun nosilnosti ravnozobih in poševnozobih zobnikov - 5. del: Trdnost in kakovost materiala

General Information

Status
Withdrawn
Publication Date
26-Jun-2003
Withdrawal Date
26-Jun-2003
Current Stage
9599 - Withdrawal of International Standard
Start Date
04-Aug-2016
Completion Date
13-Dec-2025

Relations

Standard
ISO 6336-5:2003 - Calculation of load capacity of spur and helical gears
English language
43 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 6336-5:2004
English language
43 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day
Standard
ISO 6336-5:2003 - Calcul de la capacité de charge des engrenages cylindriques a dentures droite et hélicoidale
French language
45 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 6336-5:2003 is a standard published by the International Organization for Standardization (ISO). Its full title is "Calculation of load capacity of spur and helical gears - Part 5: Strength and quality of materials". This standard covers: ISO 6336-5:2003 describes contact and tooth-root stresses, and gives numerical values for both limit stress numbers. It specifies requirements for material quality and heat treatment and comments on their influences on both limit stress numbers. Values in accordance with it are suitable for use with the calculation procedures provided in ISO 6336-2 and ISO 6336-3 and in the application standards for industrial, high speed and marine gears. They are also suited to the calculation procedures given in ISO 10300 for rating the load capacity of bevel gears. It is applicable to all gearing, basic rack profiles, profile dimensions, design, etc., covered by those standards. The results are in good agreement with other methods for the range indicated in the scope of ISO 6336-1.

ISO 6336-5:2003 describes contact and tooth-root stresses, and gives numerical values for both limit stress numbers. It specifies requirements for material quality and heat treatment and comments on their influences on both limit stress numbers. Values in accordance with it are suitable for use with the calculation procedures provided in ISO 6336-2 and ISO 6336-3 and in the application standards for industrial, high speed and marine gears. They are also suited to the calculation procedures given in ISO 10300 for rating the load capacity of bevel gears. It is applicable to all gearing, basic rack profiles, profile dimensions, design, etc., covered by those standards. The results are in good agreement with other methods for the range indicated in the scope of ISO 6336-1.

ISO 6336-5:2003 is classified under the following ICS (International Classification for Standards) categories: 21.200 - Gears. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 6336-5:2003 has the following relationships with other standards: It is inter standard links to ISO 6336-5:2016, ISO 6336-5:1996. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 6336-5:2003 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 6336-5
Second edition
2003-07-01
Calculation of load capacity of spur and
helical gears —
Part 5:
Strength and quality of materials
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 5: Résistance et qualité des matériaux

Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Normative references . 1
3 Terms, definitions and symbols . 2
4 Methods for the determination of allowable stress numbers. 2
4.1 General. 2
4.2 Method A . 3
4.3 Method B. 3
4.4 Method B . 3
k
4.5 Method B . 3
p
5 Standard allowable stress numbers — Method B . 3
5.1 Application. 3
5.2 Allowable stress number (contact), σ . 4
H lim
5.3 Bending stress number values for σ and σ . 5
F lim FE
5.4 Graphs for σ and σ and σ . 5
H lim F lim FE
5.5 Calculation of σ and σ . 6
H lim F lim
5.6 Case depth of surface hardened gears. 21
6 Requirements for material quality and heat treatment. 24
6.1 General aspects. 24
6.2 Normalized low carbon or cast steel, plain carbon, unalloyed steels (see Figures 1 and 2) . 24
6.3 Black malleable cast iron (see Figures 3 and 4). 24
6.4 Other materials (see Figures 5 to 16) . 24
6.5 Coupon. 35
Annex A (normative) Considerations of size of controlling section for through hardened gearing . 37
Annex B (informative) Table of hardness conversions . 40
Annex C (informative) Testing surface hardness with a file . 41
Bibliography . 43

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6336-5 was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear capacity
calculation.
This second edition cancels and replaces the first edition (ISO 6336-5:1996), which has been technically
revised.
ISO 6336 consists of the following parts, under the general title Calculation of load capacity of spur and helical
gears:
 Part 1: Basic principles, introduction and general influence factors
 Part 2: Calculation of surface durability (pitting)
 Part 3: Calculation of tooth bending strength
 Part 5: Strength and quality of materials
Part 6, Calculation of service life under variable load, is under preparation.

iv © ISO 2003 — All rights reserved

Introduction
This part of ISO 6336, together with ISO 6336-1, ISO 6336-2 and ISO 6336-3, provides the principles for a
coherent system of procedures for the calculation of the load capacity of cylindrical involute gears with
external or internal teeth. ISO 6336 is designed to facilitate the application of future knowledge and
developments, as well as the exchange of information gained from experience.
Allowable stress numbers, as covered by this part of ISO 6336, may vary widely. Such variation is attributable
to defects and variations of chemical composition (charge), structure, the type and extent of hot working (e.g.
bar stock, forging, reduction ratio), heat treatment, residual stress levels, etc.
Tables summarize the most important influencing variables and the requirements for the different materials
and quality grades. The effects of these influences on surface durability and tooth bending strength are
illustrated by graphs.
This part of ISO 6336 covers the most widely used ferrous gear materials and related heat treatment
processes. Recommendations on the choice of specific materials, heat treatment processes or manufacturing
processes are not included. Furthermore, no comments are made concerning the suitability or otherwise of
any materials for specific manufacturing or heat treatment processes.

INTERNATIONAL STANDARD ISO 6336-5:2003(E)

Calculation of load capacity of spur and helical gears —
Part 5:
Strength and quality of materials
1 Scope
This part of ISO 6336 describes contact and tooth-root stresses, and gives numerical values for both limit
stress numbers. It specifies requirements for material quality and heat treatment and comments on their
influences on both limit stress numbers.
Values in accordance with this part of ISO 6336 are suitable for use with the calculation procedures provided
in ISO 6336-2 and ISO 6336-3 and in the application standards for industrial, high speed and marine gears.
They are applicable to the calculation procedures given in ISO 10300 for rating the load capacity of bevel
gears. This part of ISO 6336 is applicable to all gearing, basic rack profiles, profile dimensions, design, etc.,
covered by those standards. The results are in good agreement with other methods for the range indicated in
the scope of ISO 6336-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 53: 1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 642:1999, Steel — Hardenability test by end quenching (Jominy test)
1)
ISO 643:— , Steel — Micrographic determination of the ferritic or austenitic grain size
ISO 683-1:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 1: Direct hardening
unalloyed and low alloyed wrought steel in form of different black products
ISO 683-9:1988, Heat-treatable steels, alloy steels and free-cutting steels — Part 9: Wrought free-cutting
steels
ISO 683-10:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 10: Wrought nitriding
steels
ISO 683-11:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 11: Wrought case-
hardening steels
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry

1) To be published. (Revision of ISO 643:1983)
ISO 1328-1:1995, Cylindrical gears — ISO system of accuracy — Part 1: Definitions and allowable values of
deviations relevant to corresponding flanks of gear teeth
ISO 2639:2002, Steel — Determination and verification of the effective depth of carburized and hardened
cases
ISO 3754:1976, Steel — Determination of effective depth of hardening after flame or induction hardening
ISO 4948/2:1981, Steels — Classification — Part 2: Classification of unalloyed and alloy steels according to
main quality classes and main property or application characteristics
ISO 4967:1998, Steel — Determination of content of non-metallic inclusions — Micrographic method using
standard diagrams
2)
ISO 6336-1:— , Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction
and general influence factors
2)
ISO 6336-2:— , Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface
durability (pitting)
2)
ISO 6336-3: — , Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending
strength
ISO 9443:1991, Heat-treatable and alloy steels — Surface quality classes for hot-rolled round bars and wire
rods — Technical delivery conditions
ISO 10474:1991, Steel and steel products — Inspection documents
ISO 14104:1995, Gears — Surface temper etch inspection after grinding
3)
ASTM A388-01, Standard Practice for Ultrasonic Examination of Heavy Steel Forgings
ASTM E428-00, Standard Practice for Fabrication and Control of Steel Reference Blocks Used in Ultrasonic
Inspection
ASTM A609-91, Standard Practice for Castings, Carbon, Low Alloy and Martensitic Stainless Steel, Ultrasonic
Examination Thereof
ASTM E1444-01, Standard Practice for Magnetic Particle Examination
3 Terms, definitions and symbols
For the purposes of this document, the terms and definitions given in ISO 1122-1 and the symbols and units
given in ISO 6336-1 apply.
4 Methods for the determination of allowable stress numbers
4.1 General
Allowable stress numbers should be determined for each material and material condition, preferably by means
of gear running tests. Test conditions and component dimensions should equate, as nearly as is practicable,
to the operating conditions and dimensions of the gears to be rated.

2) Under preparation. (Revisions of ISO 6336-1:1996, ISO 6336-2:1996 and ISO 6336-3:1996, respectively)
3) American Society for Testing and Materials
2 © ISO 2003 — All rights reserved

When evaluating test results or data derived from field service, it is always necessary to ascertain whether or
not specific influences on permissible stresses are already included with the evaluated data, e.g. in the case
of surface durability, the effects of lubricants, surface roughness and gear geometry; in the case of tooth
bending strength, the fillet radius, surface roughness and gear geometry. Where appropriate, 1,0 should be
substituted for the relevant influence factor when calculating the permissible stresses.
4.2 Method A
The allowable stress numbers for contact and bending are derived from endurance tests of gears having
dimensions closely similar to those of the gears to be rated, under test conditions which are closely similar to
the intended operating conditions.
4.3 Method B
The allowable stress numbers for contact and bending were derived from endurance tests of reference test
gears under reference test conditions. Tooth-root allowable stress numbers were also derived from pulsator
tests. Practical experience should be taken into account. The standard allowable stress numbers specified in
5.2 and 5.3 are based on such tests and experience.
Three different classes, ME, MQ and ML, are given for the allowable stress numbers. The appropriate choice
of class will depend, as described in Clause 6, on the type of production and quality control exercised.
4.4 Method B
k
Allowable stress numbers for bending are derived from the results of testing notched test pieces. Preferably,
the ratio of the test piece notch radius to thickness should be similar to that of the fillet radius to the tooth-root
chord in the critical section and the surface condition should be similar to that of the tooth root. When
evaluating test data, it should be understood that test pieces are usually subjected to pure, alternating bending
stress, whereas in the case of a gear tooth the fillets of the teeth are subjected to combined bending, shear
and compressive stresses. Data on the various materials can be obtained from in-house testing, experience or
from the literature.
4.5 Method B
p
Allowable stress numbers for bending are derived from the results of testing un-notched test pieces. See 4.4
for comments on evaluation of test results. In order to take into account the effect of notch sensitivity, it is
necessary that actual notch form and notch factors be included in calculations; thus their results will be
influenced by the extreme unreliability of these factors. Data on the various materials can be obtained from
known test facilities or from the literature (see Bibliography).
5 Standard allowable stress numbers — Method B
5.1 Application
The allowable stress numbers shown in Figures 1 to 16 are based on the assumption that material
composition, heat treatment and inspection methods are appropriately chosen for the size of the gear.
If test values for specific materials are available they can be used in replacement of the values in Figures 1
to 16.
The data furnished in this part of ISO 6336 are well substantiated by tests and practical experience.
The values are chosen for 1 % probability of damage. Statistical analysis enables adjustment of these values
in order to correspond to other probabilities of damage.
When other probabilities of damage (reliability) are desired, the values of σ , σ , and σ are adjusted
H lim F lim FE
by an appropriate “reliability factor”. When this adjustment is made, a subscript shall to be added to indicate
the relevant percentage (e.g. σ for 10 % probability of damage).
H lim10
The allowable stress numbers indicated in Figures 9 and 10 were derived for effective case depths of about
0,15m to 0,2m on finish-machined gears.
n n
The extent to which the level of surface hardness influences the strength of contour-hardened, nitrided, carbo-
nitrided and nitro-carburized gears, cannot be reliably specified. Other surface related factors of the material
and heat treatment have a much more pronounced influence.
In some cases the full hardness range is not covered. The ranges covered are indicated by the length of the
lines in Figures 1 to 16.
For surface-hardened steels (Figures 9 to 16), the HV scale was chosen as the reference axis. The HRC
scale is included for comparison. To define the relationship between Vickers and Rockwell hardness numbers
conversion tables are included in Annex B.
5.2 Allowable stress number (contact), σ
H lim
The allowable stress number, σ , is derived from a contact pressure that may be sustained for a specified
H lim
number of cycles without the occurrence of progressive pitting. For some materials, 5 × 10 stress cycles are
considered to be the beginning of the long-life strength range (see life factor in ISO 6336-2).
Values of σ indicated in Figures 1, 3, 5, 7, 9, 11, 13 and 15 are appropriate for the reference operating
H lim
4)
conditions and dimensions of the reference test gears, as follows :
 Centre distance a = 100 mm
 Helix angle β = 0 (Z = 1)
β
 Module m = 3 mm to 5 mm (Z = 1)
x
 Mean peak-to-valley roughness of the tooth flanks Rz = 3 µm (Z = 1)
R
 Tangential velocity v = 10 m/s (Z = 1)
v
 Lubricant viscosity ν = 100 mm /s (Z = 1)
50 L
 Mating gears of the same material (Z =1)
W
 Gearing accuracy grades 4 to 6 according to ISO 1328-1
 Facewidth b = 10 mm to 20 mm
 Load influence factors K = K = K = K = 1
A v Hβ Hα
Test gears were deemed to have failed by pitting when the following conditions were met: when 2 % of the
total working flank area of through hardened gears, or when 0,5 % of the total working flank area of surface
hardened gears, or 4 % of the working flank area of a single tooth, is damaged by pitting. The percentages
refer to test evaluations; they are not intended as limits for product gears.

4) Data obtained under different conditions of testing were adjusted to be consistent with reference conditions. It is
important to note σ is not the contact pressure under continuous load, but rather the upper limit of the contact pressure
H lim
derived in accordance with ISO 6336-2, which can be sustained without progressive pitting damage, for a specified
number of load cycles.
4 © ISO 2003 — All rights reserved

5.3 Bending stress number values for σ and σ
F lim FE
5.3.1 Nominal stress numbers (bending), σ
F lim
The nominal stress number (bending), σ , was determined by testing reference test gears (see
F lim
ISO 6336-3). It is the bending stress limit value relevant to the influences of the material, the heat treatment
and the surface roughness of the test gear root fillets.
5.3.2 Allowable stress number (bending), σ
FE
The allowable stress number for bending, σ (for definition of σ , see ISO 6336-3), is the basic bending
FE FE
strength of the un-notched test piece, under the assumption that the material condition (including heat
treatment) is fully elastic:
σσ= Y (1)
FE F lim ST
For the reference test gear, the stress correction factor Y = 2,0. For most materials, 3 × 10 stress cycles
ST
are considered to be the beginning of the long-life strength range (see life factor in ISO 6336-3).
Values of σ and σ indicated in Figures 2, 4, 6, 8, 10, 12, 14 and 16 are appropriate for the reference
F lim FE
operating conditions and dimensions of the reference test gears, as shown below (see 5.2, Footnote 3):
 Helix angle β = 0 (Y = 1)
β
 Module m = 3 mm to 5 mm (Y = 1)
X
 Stress correction factor Y = 2,0
ST
 Notch parameter q = 2,5 (Y = 1)
ST δ rel T
 Mean peak-to-valley roughness of the tooth fillets Rz = 10 µm (Y = 1)
R rel T
 Gearing accuracy grades 4 to 7 according to ISO 1328-1
 Basic rack according to ISO 53
 Facewidth b = 10 mm to 50 mm
 Load factors K = K = K = K = 1
A v Fβ Fα
5.3.3 Reversed bending
The allowable stress numbers indicated in Figures 2, 4, 6, 8, 10, 12, 14 and 16 are appropriate for repeated,
unidirectional, tooth loading. When reversals of full load occur, a reduced value of σ is required. In the most
FE
severe case (e.g. an idler gear where full load reversal occurs each load cycle), the values σ and σ
F lim FE
should be reduced to 0,7 times the unidirectional value. If the number of load reversals is less frequent than
this, a different factor, depending on the number of reversals expected during the gear lifetime, can be chosen.
2)
For guidance on this, see ISO 6336-3: — , Annex B.
5.4 Graphs for σ and σ and σ
H lim F lim FE
Allowable stress numbers for hardness values which exceed the minimum and maximum hardness values in
Figures 1 to 16 are subject to agreement between manufacturer and purchaser on the basis of previous
experience.
5.5 Calculation of σ and σ
H lim F lim
The allowable stress numbers, σ , and the nominal stress numbers, σ , can be calculated by the
H lim F lim
following equation:
σ

Hlim

=⋅A x+ B (2)

σ
Flim 

where
x is the surface hardness HBW or HV;
A, B are constants (See Table 1).
The hardness ranges are restricted by the minimum and maximum hardness values given in Table 1.
Table 1 — Calculation of σ and σ
H lim F lim
No. Material Stress Type Abbre- Fig. Quality A B Hard- Min. Max.
viation ness hardness hardness
1 wNormalized contact rought normalized St 1 a) ML/MQ 1,000 190 HBW 110 210
low carbon
2 low carbon steels  ME 1,520 250 110 210
steels/cast
a
3 Scast steels t 1 b) ML/MQ 0,986 131 HBW 140 210
steels
4 (cast) ME 1,143 237 140 210
5 wbending rought normalized St 2 a) ML/MQ 0,455 69 HBW 110 210
6 low carbon steels  ME 0,386 147 110 210
7 Scast steels t 2 b) ML/MQ 0,313 62 HBW 140 210
8 (cast) ME 0,254 137 140 210
9 blCast iron contact ack malleable GTS 3 a) ML/MQ 1,371 143 HBW 135 250
materials
10 cast iron (perl.) ME 1,333 267 175 250
11 GGG nodular cast iron 3 b) ML/MQ 1,434 211 HBW 175 300
12  ME 1,500 250 200 300
13 GG grey cast iron 3 c) ML/MQ 1,033 132 HBW 150 240
14  ME 1,465 122 175 275
15 blbending ack malleable GTS 4 a) ML/MQ 0,345 77 HBW 135 250
16 cast iron (perl.) ME 0,403 128 175 250
17 GGG nodular cast iron 4 b) ML/MQ 0,350 119 HBW 175 300
18  ME 0,380 134 200 300
19 GG grey cast iron 4 c) ML/MQ 0,256 8 HBW 150 240
20  ME 0,200 53 175 275
21 VThrough contact carbon steels 5 ML 0,963 283 HV 135 210
hardened
22  MQ 0,925 360 135 210
wrought
b
23  ME 0,838 432 135 210
steels
24 Valloy steels 5 ML 1,313 188 HV 200 360
25  MQ 1,313 373 200 360
26  ME 2,213 260 200 390
27 Vbending carbon steels 6 ML 0,250 108 HV 115 215
28  MQ 0,240 163 115 215
29  ME 0,283 202 115 215
30 Valloy steels 6 ML 0,423 104 HV 200 360
31  MQ 0,425 187 200 360
32  ME 0,358 231 200 390
6 © ISO 2003 — All rights reserved

Table 1 (continued)
No. Material Stress Type Abbre- Fig. Quality A B Hard- Min. Max.
viation ness hardness hardness
33 cThrough contact arbon steels V 7 ML/MQ 0,831 300 HV 130 215
hardened cast
34 (cast) ME 0,951 345 130 215
steels
35 alloy steels V 7 ML/MQ 1,276 298 HV 200 360
36 (cast) ME 1,350 356 200 360
37 cbending arbon steels V 8 ML/MQ 0,224 117 HV 130 215
38 (cast) ME 0,286 167 130 215
39 alloy steels V 8 ML/MQ 0,364 161 HV 200 360
40 (cast) ME 0,356 186 200 360
41 Case contact Eh 9 ML 0,000 1 300 HV 600 800
hardened
42  MQ 0,000 1 500 660 800
wrought
43  ME 0,000 1 650 660 800
c
steels
44 cbending ore hardness: Eh 10 ML 0,000 312 HV 600 800
45 W 25 HRC,  MQ 0,000 425 660 800
lower
46 W 25 HRC,  0,000 461 660 800
upper
47 W 30 HRC  0,000 500 660 800
48  ME 0,000 525 660 800
49 Flame or contact IF 11 ML 0,740 602 HV 485 615
induction
50  MQ 0,541 882 500 615
hardened
51  ME 0,505 1 013 500 615
wrought and
cast steels
52 bending IF 12 ML 0,305 76 HV 485 615
53  MQ 0,138 290 500 570
54   0,000 369 570 615
55  ME 0,271 237 500 615
56 Nitrided contact nitriding NT 13 a) ML 0,000 1 125 HV 650 900
wrought steels (a)
57 (nitr.) MQ 0,000 1 250 650 900
steels/nitriding
58 d ME 0,000 1 450 650 900
steels
/through
59 through NV 13 b) ML 0,000 788 HV 450 650
hardening
hardening
60 (nitr.) MQ 0,000 998 450 650
b
steels (b)
steels
61  ME 0,000 1 217 450 650
nitrided
62 NT bending nitriding 14 a) ML 0,000 270 HV 650 900
steels (a)
63 (nitr.) MQ 0,000 420 650 900
64  ME 0,000 468 650 900
65 through NV 14 b) ML 0,000 258 HV 450 650
hardening
66 (nitr.) MQ 0,000 363 450 650
steels (b)
67  ME 0,000 432 450 650
68 wrought contact through NV 15 ML 0,000 650 HV 300 650
steels nitro- hardening
69 (nitro- MQ/ME 1,167 425 300 450
e
steels
carburized
70 car.)  0,000 950 450 650
71 bending through NV 16 ML 0,000 224 HV 300 650
hardening
72 (nitro- MQ/ME 0,653 94 300 450
steels
73 car.)  0,000 388 450 650
a
In accordance with ISO 4948-2.
b
In accordance with ISO 683-1.
c
In accordance with ISO 683-11.
d
In accordance with ISO 683-10.
e
In accordance with ISO 683-1, ISO 683-10 or ISO 683-11.
a) Wrought normalized low carbon steels b) Cast steels
Figure 1 — Allowable stress numbers (contact) for wrought normalized low carbon steels and cast
steels (Attention is drawn to the quality requirements of 6.2)
a) Wrought normalized low carbon steels b) Cast steels
Figure 2 — Nominal and allowable stress numbers (bending) for wrought normalized low carbon
steels and cast steels (Attention is drawn to the quality requirements of 6.2)
8 © ISO 2003 — All rights reserved

a) Black malleable cast iron (see 6.3) b) Nodular cast iron (see Table 2)

c) Grey cast iron (see Table 2)
NOTE Brinell hardness HBW < 180 indicates the presence of a high proportion of ferrite in the structure. For gears,
this condition is not recommended.
Figure 3 — Cast iron materials — Allowable stress numbers (contact) for cast iron materials
(Attention is drawn to the quality requirements of 6.3 and Table 2)
a) Black malleable cast iron (see 6.3) b) Nodular cast iron (see Table 2)

c) Grey cast iron (see Table 2)
NOTE Brinell hardness HBW < 180 indicates the presence of a high proportion of ferrite in the structure. For gears,
this condition is not recommended.
Figure 4 — Cast iron materials — Nominal and allowable stress numbers (bending) for cast iron
materials (Attention is drawn to the quality requirements of 6.3 and Table 2)
10 © ISO 2003 — All rights reserved

NOTE 1 Nominal carbon content
W 0,20 %.
NOTE 2 The alloy steel MX line from the
first edition of ISO 6336-5 was replaced by
the ME line.
Figure 5 — Allowable stress numbers (contact) for through hardened wrought steels
(Attention is drawn to the quality requirements of Table 3)
NOTE Nominal carbon content W 0,20 %.
Figure 6 — Nominal and allowable stress numbers (bending) for through hardened wrought steels
(Attention is drawn to the quality requirements of Table 3)
12 © ISO 2003 — All rights reserved

Figure 7 — Allowable stress numbers (contact) for through hardened cast steels
(Attention is drawn to the quality requirements of Table 4)
Figure 8 — Nominal and allowable stress numbers (bending) for through hardened cast steels
(Attention is drawn to the quality requirements of Table 4)
NOTE   Adequate case depth required, see 5.6.1.

Figure 9 — Allowable stress numbers (contact) for case hardened wrought steels
(Attention is drawn to the quality requirements of Table 5)
14 © ISO 2003 — All rights reserved

a
Core hardness W 30 HRC.
b
Core hardness W 25 HRC Jominy hardenability at J = 12 mm W HRC 28.
c
Core hardness W 25 HRC Jominy hardenability at J = 12 mm < HRC 28.
NOTE 1 Adequate case depth required, see 5.6.2.
NOTE 2 See 6.6.
Figure 10 — Nominal and allowable stress numbers (bending) for case hardened wrought steels
(Attention is drawn to the quality requirements of Table 5)
NOTE Adequate case depth required.
Figure 11 — Allowable stress numbers (contact) for flame or induction hardened wrought and cast
steels (Attention is drawn to the quality requirements of Table 6)
16 © ISO 2003 — All rights reserved

NOTE Hardened fillets only. Values for unhardened fillets are not provided. Adequate case depth required.
Figure 12 — Nominal and allowable stress numbers (bending) for flame or induction hardened
wrought and cast steels (Attention is drawn to the quality requirements of Table 6)
b) Through hardening steels: hardened, tempered and
a) Nitriding steels: hardened, tempered and gas
nitrided gas nitrided
NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 13 — Allowable stress numbers (contact) for nitrided wrought steels/nitriding steels/through
hardening steels nitrided (Attention is drawn to the quality requirements of Table 7)
18 © ISO 2003 — All rights reserved

NOTE Working trials for reliability of process are recommended. For flank hardness HV1 > 750, the allowable stress
numbers can be reduced by embrittlement when the white layer thickness exceeds 10 µm. Adequate case depth required,
see 5.6.3.
a) Nitriding steels: hardened, tempered and gas nitrided

NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
b) Through hardening steels: hardened, tempered and gas nitrided
Figure 14 — Nominal and allowable stress numbers (bending) for nitrided wrought steels/nitriding
steels/through hardening steels nitrided (Attention is drawn to the quality requirements of Table 7)
NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 15 — Allowable stress numbers (contact) for wrought steels nitrocarburized
(Attention is drawn to the quality requirements of Table 8)

NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 16 — Nominal and allowable stress numbers (bending) for wrought steels nitrocarburized
(Attention is drawn to the quality requirements of Table 8)
20 © ISO 2003 — All rights reserved

5.6 Case depth of surface hardened gears
5.6.1 General
Surface hardened gear teeth require adequate case depth to resist the stress condition in the loaded tooth.
Minimum and maximum values of case depth shall be shown on the drawing. When specifying minimum case
depth, note that the “optimum” values for bending and surface load capacity are not the same. A specified
maximum case thickness should not be exceeded, because to do so would increase risk of embrittlement of
5)
the tooth tips.
6)
5.6.2 Case depth of carburized and hardened gears
See a) to d).
a) Recommended values of case depth to avoid pittings (Eht ): Are shown in Figure 17. Eht is
H opt H opt
the optimum effective case depth relating to permissible contact stress for long life at the reference circle
after tooth finishing:
Figure 17 — Recommended values of optimum case depth Eht regarding surface load capacity
H opt
and maximum case depth Eht regarding bending and surface load capacity
max
b) Recommended values of case depth to avoid tooth breakage (Eht ): Eht is the optimum
F opt F opt
effective case depth relating to permissible bending stress for long life at the root fillet at mid face width
and on a normal to the 30° tangent (external gears), 60° tangent (internal gears) after tooth finishing:
Eht = 0,1…0,2 m
Fopt n
5) The data of 5.6 may not apply to bevel gears.
6) Definition of case depth according to Table 5, Item 9.
c) Recommended values of case depth to avoid case-crushing (Eht ): Eht is the minimum effective
c c
case depth at the reference circle after tooth finishing based on the depth of maximum shear stress from
contact load.
NOTE  Regarding case-crushing, at present there is no standardized calculation method available.
σα⋅⋅d sin z
Hw1 wt 2
Eht =
c
Uz⋅+cos β z
Hb 1 2
with
U = 66 000 N/mm for quality grades MQ/ME;
H
U = 44 000 N/mm for quality grades ML.
H
d) Recommended limits of minimum and maximum effective case depth: Eht is the effective
min/max
case depth at the reference circle after tooth finishing (values also shown in Figure 17): Eht W 0,3 mm
min
and Eht u 0,4 ⋅ m (u 6 mm).
max n
7)
5.6.3 Case depth of nitrided gears
See a) and b).
a) Recommended values of effective nitride case depth (Nht): See in Figure 18.

Figure 18 — Recommended values of nitride case depth, Nht

7) Definition of nitride case depth according to Table 7, Item 7.
22 © ISO 2003 — All rights reserved

b) Recommended values of nitride case depth to avoid case-crushing (Nht ): Nht is the minimum total
c c
case depth for nitrided gears, and is based on the depth of maximum shear stress from contact load. If
the value of Nht is less than the value for nitride case depth Nht from Figure 18, then the minimum value
c
from Figure 18 should be used.
NOTE   Regarding case-crushing, at present there is no standardized calculation method available.
Ud⋅⋅σα⋅ sin z
c H w1 wt 2
Nht =
c
z + z
1,14⋅⋅10 cos β
b
where U is the core hardness coefficient, see Figure 19.
c
Figure 19 — Core hardness coefficient for nitrided gearing, U
c
6 Requirements for material quality and heat treatment
6.1 General aspects
The three material quality grades ML, MQ and ME, stand in relationship to Figures 1 to 16, which means that
8)
they refer to the allowable stress numbers determined using Method B . See 4.2, 5.2 and 5.3.
 ML stands for modest demands on the material quality and on the material heat treatment process during
gear manufacture.
 MQ stands for requirements that can be met by experienced manufacturers at moderate cost.
 ME represents requirements that must be realized when a high degree of operating reliability is required.
NOTE This standard does not allow extrapolation of the allowable stress lines.
Frequently, special quality material such as VIM/VAR is used to achieve high reliability or load-bearing
capability.
Gear wheels which are manufactured by fabricating rims to centres using conventional welding procedures
should be stress relieved following the fabrication process.
The provisions given in 6.2 to 6.4 have been confirmed by practical experience and may be used as
guidelines. All requirements for a material grade shall be met when the allowable stress numbers are to be
9)
applied . However, depending on their experience, manufacturers may adopt methods or values other than
those listed here. The manufacturer and the customer should agree on the details, particularly for large gears.
6.2 Normalized low carbon or cast steel, plain carbon, unalloyed steels (see Figures 1 and 2)
Since the composition of these is not specified and the melting method is often unknown, the MQ line was
positioned at the lower limit (ML). Normalized low carbon steels are used only for lightly loaded gears and
secondary applications. If high quality of steel production is achieved and when justified by experience the
levels of ME may be used.
6.3 Black malleable cast iron (see Figures 3 and 4)
High quality can be achieved through controlled heat treatment. However, since it is ordinarily used for small,
lightly loaded gears, the MQ line was positioned at the lower limit (ML) to be on the safe side. When justified
by experience the levels of ME may be used.
6.4 Other materials (see Figures 5 to 16)
Material quality and heat treatment for other materials shall be in accordance with Tables 2 to 8.

8) The levels of the allowable stresses have been modified in respect of the through hardened wrought steels. The
material quality grade MX, which existed in the previous edition of this part of ISO 6336, was replaced by the ME line.
9) The material chosen is either that quoted in the relevant grade according to ISO 683-1, -9, -10 or -11 (recommended)
or an appropriate National Standard.
24 © ISO 2003 — All rights reserved

Table 2 — Cast iron materials (grey and nodular — spheroidal — graphite cast iron)
Item Requirement Grey cast iron (see Figures 3 and 4) Nodular cast iron (see Figures 3 and 4)
ML MQ ME ML MQ ME
1 Chemical Not verified 100 % verified. Not verified 100 % verified.
analysis Foundry certificate Foundry certificate
2 Melting practice No specification Electric furnace or No specification Electric furnace or equivalent
equivalent
3 Mechanical Only HBW R Only HBW
σ (σ ) σ δ ψ
m
s 0,2 b s
properties
Specific test report
Specific test report per
evaluation
on a separate test ISO 10474 of physical testing
piece from the same
on a representative sample
cast which is an integral part on
each test piece, heat treated
with the parts before being
cut. Verification of HBW on
gear teeth or as near as
practicable.
4 Structure: Specified but not Limited Not verified Limited
graphite form verified
Basic structure No specification Maximum ferrite: 5 % No specification
(alloyed grey
cast iron,
maximum ferrite:
5 %)
5 Tests for inner Not tested Tested (pores, Not tested Tested (pores, cracks, blow-
separations cracks, blow-holes), holes), limited defects
(cracks). limited defects
Acceptability
agreed between
customer and
supplier.
6 Stress relief Not required Recommended: 2 h Not required Recommended: 2 h at
at 500 °C to 530 °C. 500 °C to 560 °C
Alloyed, grey cast
iron 2 h at 530 °C to
560 °C
7 Repair welding Not permitted near tooth region; Not permitted near tooth region, elsewhere, permissible
elsewhere, permissible only with approved only with approved processes
processes
8 Surface crack Not tested Dye penetrant test by Not tested Cracks not permitted. 100 %
detection agreement between magnetic particle, fluorescent
customer and magnetic particle penetrant
supplier or dye penetrant inspection.
Statistical sampling permitted
for large production lots.
Table 3 — Through hardened wrought steels, not surface hardened (forged or rolled steels)
(see Figures 5 and 6)
Item Requirement ML MQ ME
1 Chemical Not verified Specific test report per ISO 10474 with 100 % traceability to the original cast.
a, b
analysis
2 Mechanical HBW Recommended: HBW and σ (σ ) σ δ ψ
s 0,2 b s
properties after heat either mechanical tests or
Specific test report per ISO 10474 of physical testing on
treatment hardenability test.
a representative sample from the same cast, heat
treated with the parts, for forgings or rolled bars larger
than 250 mm diameter and verification of surface
hardness (HBW) for all parts. Optional per customer/
supplier agreement. Controlling section examples are
presented in Annex A.
3 Cleanness in No The steel shall be deoxidized and refined in the ladle. Steel shall be vacuum
accordance with specification degassed. The steel shall be protected from reoxidation during the teeming or
c
ISO 4967 casting. Adding calcium when melting the steel — maximum 15 ppm (=15 µg/g) — is
permissible for castability subject to agreement by the end-user. Oxygen content
25 ppm (= 25 µg/g) maximum. Cleanness in accordance with ISO 4967, procedure in
accordance with Method B, Plate II, inspected area approximately 200 mm and the
following acceptance table. Other specifications, which ensure the equivalent
cleanliness are permitted. Test report in accordance with ISO 10474
A B C D
Fine Thick Fine Thick Fine Thick Fine Thick
MQ 3,0 3,0 2,5 1,5 2,5 1,5 2,0 1,5
ME 3,0 2,0 2,5 1,5 1,0 1,0 1,5 1,0
4 Grain size in No Fine grain, predominantly 5 and finer. Test report in accordance with ISO 10474
accordance with specification
ISO 643
5 Non destructive testing
5.1 Ultrasonic test (in No Checked after forging. Specific test report in accordance with ISO 10474:
rough machined specification recommended. Suggested for large diameter parts to detect flaws before the
condition) expense of tooth cutting. Inspection per ASTM A388, using either the back reflection
or reference blo
...


SLOVENSKI STANDARD
01-januar-2004
,]UDþXQQRVLOQRVWLUDYQR]RELKLQSRãHYQR]RELK]REQLNRYGHO7UGQRVWLQ
NDNRYRVWPDWHULDOD
Calculation of load capacity of spur and helical gears -- Part 5: Strength and quality of
materials
Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale -- Partie 5: Résistance et qualité des matériaux
Ta slovenski standard je istoveten z: ISO 6336-5:2003
ICS:
21.200 Gonila Gears
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

INTERNATIONAL ISO
STANDARD 6336-5
Second edition
2003-07-01
Calculation of load capacity of spur and
helical gears —
Part 5:
Strength and quality of materials
Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 5: Résistance et qualité des matériaux

Reference number
©
ISO 2003
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2003
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2003 — All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope. 1
2 Normative references . 1
3 Terms, definitions and symbols . 2
4 Methods for the determination of allowable stress numbers. 2
4.1 General. 2
4.2 Method A . 3
4.3 Method B. 3
4.4 Method B . 3
k
4.5 Method B . 3
p
5 Standard allowable stress numbers — Method B . 3
5.1 Application. 3
5.2 Allowable stress number (contact), σ . 4
H lim
5.3 Bending stress number values for σ and σ . 5
F lim FE
5.4 Graphs for σ and σ and σ . 5
H lim F lim FE
5.5 Calculation of σ and σ . 6
H lim F lim
5.6 Case depth of surface hardened gears. 21
6 Requirements for material quality and heat treatment. 24
6.1 General aspects. 24
6.2 Normalized low carbon or cast steel, plain carbon, unalloyed steels (see Figures 1 and 2) . 24
6.3 Black malleable cast iron (see Figures 3 and 4). 24
6.4 Other materials (see Figures 5 to 16) . 24
6.5 Coupon. 35
Annex A (normative) Considerations of size of controlling section for through hardened gearing . 37
Annex B (informative) Table of hardness conversions . 40
Annex C (informative) Testing surface hardness with a file . 41
Bibliography . 43

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 6336-5 was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear capacity
calculation.
This second edition cancels and replaces the first edition (ISO 6336-5:1996), which has been technically
revised.
ISO 6336 consists of the following parts, under the general title Calculation of load capacity of spur and helical
gears:
 Part 1: Basic principles, introduction and general influence factors
 Part 2: Calculation of surface durability (pitting)
 Part 3: Calculation of tooth bending strength
 Part 5: Strength and quality of materials
Part 6, Calculation of service life under variable load, is under preparation.

iv © ISO 2003 — All rights reserved

Introduction
This part of ISO 6336, together with ISO 6336-1, ISO 6336-2 and ISO 6336-3, provides the principles for a
coherent system of procedures for the calculation of the load capacity of cylindrical involute gears with
external or internal teeth. ISO 6336 is designed to facilitate the application of future knowledge and
developments, as well as the exchange of information gained from experience.
Allowable stress numbers, as covered by this part of ISO 6336, may vary widely. Such variation is attributable
to defects and variations of chemical composition (charge), structure, the type and extent of hot working (e.g.
bar stock, forging, reduction ratio), heat treatment, residual stress levels, etc.
Tables summarize the most important influencing variables and the requirements for the different materials
and quality grades. The effects of these influences on surface durability and tooth bending strength are
illustrated by graphs.
This part of ISO 6336 covers the most widely used ferrous gear materials and related heat treatment
processes. Recommendations on the choice of specific materials, heat treatment processes or manufacturing
processes are not included. Furthermore, no comments are made concerning the suitability or otherwise of
any materials for specific manufacturing or heat treatment processes.

INTERNATIONAL STANDARD ISO 6336-5:2003(E)

Calculation of load capacity of spur and helical gears —
Part 5:
Strength and quality of materials
1 Scope
This part of ISO 6336 describes contact and tooth-root stresses, and gives numerical values for both limit
stress numbers. It specifies requirements for material quality and heat treatment and comments on their
influences on both limit stress numbers.
Values in accordance with this part of ISO 6336 are suitable for use with the calculation procedures provided
in ISO 6336-2 and ISO 6336-3 and in the application standards for industrial, high speed and marine gears.
They are applicable to the calculation procedures given in ISO 10300 for rating the load capacity of bevel
gears. This part of ISO 6336 is applicable to all gearing, basic rack profiles, profile dimensions, design, etc.,
covered by those standards. The results are in good agreement with other methods for the range indicated in
the scope of ISO 6336-1.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 53: 1998, Cylindrical gears for general and heavy engineering — Standard basic rack tooth profile
ISO 642:1999, Steel — Hardenability test by end quenching (Jominy test)
1)
ISO 643:— , Steel — Micrographic determination of the ferritic or austenitic grain size
ISO 683-1:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 1: Direct hardening
unalloyed and low alloyed wrought steel in form of different black products
ISO 683-9:1988, Heat-treatable steels, alloy steels and free-cutting steels — Part 9: Wrought free-cutting
steels
ISO 683-10:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 10: Wrought nitriding
steels
ISO 683-11:1987, Heat-treatable steels, alloy steels and free-cutting steels — Part 11: Wrought case-
hardening steels
ISO 1122-1:1998, Vocabulary of gear terms — Part 1: Definitions related to geometry

1) To be published. (Revision of ISO 643:1983)
ISO 1328-1:1995, Cylindrical gears — ISO system of accuracy — Part 1: Definitions and allowable values of
deviations relevant to corresponding flanks of gear teeth
ISO 2639:2002, Steel — Determination and verification of the effective depth of carburized and hardened
cases
ISO 3754:1976, Steel — Determination of effective depth of hardening after flame or induction hardening
ISO 4948/2:1981, Steels — Classification — Part 2: Classification of unalloyed and alloy steels according to
main quality classes and main property or application characteristics
ISO 4967:1998, Steel — Determination of content of non-metallic inclusions — Micrographic method using
standard diagrams
2)
ISO 6336-1:— , Calculation of load capacity of spur and helical gears — Part 1: Basic principles, introduction
and general influence factors
2)
ISO 6336-2:— , Calculation of load capacity of spur and helical gears — Part 2: Calculation of surface
durability (pitting)
2)
ISO 6336-3: — , Calculation of load capacity of spur and helical gears — Part 3: Calculation of tooth bending
strength
ISO 9443:1991, Heat-treatable and alloy steels — Surface quality classes for hot-rolled round bars and wire
rods — Technical delivery conditions
ISO 10474:1991, Steel and steel products — Inspection documents
ISO 14104:1995, Gears — Surface temper etch inspection after grinding
3)
ASTM A388-01, Standard Practice for Ultrasonic Examination of Heavy Steel Forgings
ASTM E428-00, Standard Practice for Fabrication and Control of Steel Reference Blocks Used in Ultrasonic
Inspection
ASTM A609-91, Standard Practice for Castings, Carbon, Low Alloy and Martensitic Stainless Steel, Ultrasonic
Examination Thereof
ASTM E1444-01, Standard Practice for Magnetic Particle Examination
3 Terms, definitions and symbols
For the purposes of this document, the terms and definitions given in ISO 1122-1 and the symbols and units
given in ISO 6336-1 apply.
4 Methods for the determination of allowable stress numbers
4.1 General
Allowable stress numbers should be determined for each material and material condition, preferably by means
of gear running tests. Test conditions and component dimensions should equate, as nearly as is practicable,
to the operating conditions and dimensions of the gears to be rated.

2) Under preparation. (Revisions of ISO 6336-1:1996, ISO 6336-2:1996 and ISO 6336-3:1996, respectively)
3) American Society for Testing and Materials
2 © ISO 2003 — All rights reserved

When evaluating test results or data derived from field service, it is always necessary to ascertain whether or
not specific influences on permissible stresses are already included with the evaluated data, e.g. in the case
of surface durability, the effects of lubricants, surface roughness and gear geometry; in the case of tooth
bending strength, the fillet radius, surface roughness and gear geometry. Where appropriate, 1,0 should be
substituted for the relevant influence factor when calculating the permissible stresses.
4.2 Method A
The allowable stress numbers for contact and bending are derived from endurance tests of gears having
dimensions closely similar to those of the gears to be rated, under test conditions which are closely similar to
the intended operating conditions.
4.3 Method B
The allowable stress numbers for contact and bending were derived from endurance tests of reference test
gears under reference test conditions. Tooth-root allowable stress numbers were also derived from pulsator
tests. Practical experience should be taken into account. The standard allowable stress numbers specified in
5.2 and 5.3 are based on such tests and experience.
Three different classes, ME, MQ and ML, are given for the allowable stress numbers. The appropriate choice
of class will depend, as described in Clause 6, on the type of production and quality control exercised.
4.4 Method B
k
Allowable stress numbers for bending are derived from the results of testing notched test pieces. Preferably,
the ratio of the test piece notch radius to thickness should be similar to that of the fillet radius to the tooth-root
chord in the critical section and the surface condition should be similar to that of the tooth root. When
evaluating test data, it should be understood that test pieces are usually subjected to pure, alternating bending
stress, whereas in the case of a gear tooth the fillets of the teeth are subjected to combined bending, shear
and compressive stresses. Data on the various materials can be obtained from in-house testing, experience or
from the literature.
4.5 Method B
p
Allowable stress numbers for bending are derived from the results of testing un-notched test pieces. See 4.4
for comments on evaluation of test results. In order to take into account the effect of notch sensitivity, it is
necessary that actual notch form and notch factors be included in calculations; thus their results will be
influenced by the extreme unreliability of these factors. Data on the various materials can be obtained from
known test facilities or from the literature (see Bibliography).
5 Standard allowable stress numbers — Method B
5.1 Application
The allowable stress numbers shown in Figures 1 to 16 are based on the assumption that material
composition, heat treatment and inspection methods are appropriately chosen for the size of the gear.
If test values for specific materials are available they can be used in replacement of the values in Figures 1
to 16.
The data furnished in this part of ISO 6336 are well substantiated by tests and practical experience.
The values are chosen for 1 % probability of damage. Statistical analysis enables adjustment of these values
in order to correspond to other probabilities of damage.
When other probabilities of damage (reliability) are desired, the values of σ , σ , and σ are adjusted
H lim F lim FE
by an appropriate “reliability factor”. When this adjustment is made, a subscript shall to be added to indicate
the relevant percentage (e.g. σ for 10 % probability of damage).
H lim10
The allowable stress numbers indicated in Figures 9 and 10 were derived for effective case depths of about
0,15m to 0,2m on finish-machined gears.
n n
The extent to which the level of surface hardness influences the strength of contour-hardened, nitrided, carbo-
nitrided and nitro-carburized gears, cannot be reliably specified. Other surface related factors of the material
and heat treatment have a much more pronounced influence.
In some cases the full hardness range is not covered. The ranges covered are indicated by the length of the
lines in Figures 1 to 16.
For surface-hardened steels (Figures 9 to 16), the HV scale was chosen as the reference axis. The HRC
scale is included for comparison. To define the relationship between Vickers and Rockwell hardness numbers
conversion tables are included in Annex B.
5.2 Allowable stress number (contact), σ
H lim
The allowable stress number, σ , is derived from a contact pressure that may be sustained for a specified
H lim
number of cycles without the occurrence of progressive pitting. For some materials, 5 × 10 stress cycles are
considered to be the beginning of the long-life strength range (see life factor in ISO 6336-2).
Values of σ indicated in Figures 1, 3, 5, 7, 9, 11, 13 and 15 are appropriate for the reference operating
H lim
4)
conditions and dimensions of the reference test gears, as follows :
 Centre distance a = 100 mm
 Helix angle β = 0 (Z = 1)
β
 Module m = 3 mm to 5 mm (Z = 1)
x
 Mean peak-to-valley roughness of the tooth flanks Rz = 3 µm (Z = 1)
R
 Tangential velocity v = 10 m/s (Z = 1)
v
 Lubricant viscosity ν = 100 mm /s (Z = 1)
50 L
 Mating gears of the same material (Z =1)
W
 Gearing accuracy grades 4 to 6 according to ISO 1328-1
 Facewidth b = 10 mm to 20 mm
 Load influence factors K = K = K = K = 1
A v Hβ Hα
Test gears were deemed to have failed by pitting when the following conditions were met: when 2 % of the
total working flank area of through hardened gears, or when 0,5 % of the total working flank area of surface
hardened gears, or 4 % of the working flank area of a single tooth, is damaged by pitting. The percentages
refer to test evaluations; they are not intended as limits for product gears.

4) Data obtained under different conditions of testing were adjusted to be consistent with reference conditions. It is
important to note σ is not the contact pressure under continuous load, but rather the upper limit of the contact pressure
H lim
derived in accordance with ISO 6336-2, which can be sustained without progressive pitting damage, for a specified
number of load cycles.
4 © ISO 2003 — All rights reserved

5.3 Bending stress number values for σ and σ
F lim FE
5.3.1 Nominal stress numbers (bending), σ
F lim
The nominal stress number (bending), σ , was determined by testing reference test gears (see
F lim
ISO 6336-3). It is the bending stress limit value relevant to the influences of the material, the heat treatment
and the surface roughness of the test gear root fillets.
5.3.2 Allowable stress number (bending), σ
FE
The allowable stress number for bending, σ (for definition of σ , see ISO 6336-3), is the basic bending
FE FE
strength of the un-notched test piece, under the assumption that the material condition (including heat
treatment) is fully elastic:
σσ= Y (1)
FE F lim ST
For the reference test gear, the stress correction factor Y = 2,0. For most materials, 3 × 10 stress cycles
ST
are considered to be the beginning of the long-life strength range (see life factor in ISO 6336-3).
Values of σ and σ indicated in Figures 2, 4, 6, 8, 10, 12, 14 and 16 are appropriate for the reference
F lim FE
operating conditions and dimensions of the reference test gears, as shown below (see 5.2, Footnote 3):
 Helix angle β = 0 (Y = 1)
β
 Module m = 3 mm to 5 mm (Y = 1)
X
 Stress correction factor Y = 2,0
ST
 Notch parameter q = 2,5 (Y = 1)
ST δ rel T
 Mean peak-to-valley roughness of the tooth fillets Rz = 10 µm (Y = 1)
R rel T
 Gearing accuracy grades 4 to 7 according to ISO 1328-1
 Basic rack according to ISO 53
 Facewidth b = 10 mm to 50 mm
 Load factors K = K = K = K = 1
A v Fβ Fα
5.3.3 Reversed bending
The allowable stress numbers indicated in Figures 2, 4, 6, 8, 10, 12, 14 and 16 are appropriate for repeated,
unidirectional, tooth loading. When reversals of full load occur, a reduced value of σ is required. In the most
FE
severe case (e.g. an idler gear where full load reversal occurs each load cycle), the values σ and σ
F lim FE
should be reduced to 0,7 times the unidirectional value. If the number of load reversals is less frequent than
this, a different factor, depending on the number of reversals expected during the gear lifetime, can be chosen.
2)
For guidance on this, see ISO 6336-3: — , Annex B.
5.4 Graphs for σ and σ and σ
H lim F lim FE
Allowable stress numbers for hardness values which exceed the minimum and maximum hardness values in
Figures 1 to 16 are subject to agreement between manufacturer and purchaser on the basis of previous
experience.
5.5 Calculation of σ and σ
H lim F lim
The allowable stress numbers, σ , and the nominal stress numbers, σ , can be calculated by the
H lim F lim
following equation:
σ

Hlim

=⋅A x+ B (2)

σ
Flim 

where
x is the surface hardness HBW or HV;
A, B are constants (See Table 1).
The hardness ranges are restricted by the minimum and maximum hardness values given in Table 1.
Table 1 — Calculation of σ and σ
H lim F lim
No. Material Stress Type Abbre- Fig. Quality A B Hard- Min. Max.
viation ness hardness hardness
1 wNormalized contact rought normalized St 1 a) ML/MQ 1,000 190 HBW 110 210
low carbon
2 low carbon steels  ME 1,520 250 110 210
steels/cast
a
3 Scast steels t 1 b) ML/MQ 0,986 131 HBW 140 210
steels
4 (cast) ME 1,143 237 140 210
5 wbending rought normalized St 2 a) ML/MQ 0,455 69 HBW 110 210
6 low carbon steels  ME 0,386 147 110 210
7 Scast steels t 2 b) ML/MQ 0,313 62 HBW 140 210
8 (cast) ME 0,254 137 140 210
9 blCast iron contact ack malleable GTS 3 a) ML/MQ 1,371 143 HBW 135 250
materials
10 cast iron (perl.) ME 1,333 267 175 250
11 GGG nodular cast iron 3 b) ML/MQ 1,434 211 HBW 175 300
12  ME 1,500 250 200 300
13 GG grey cast iron 3 c) ML/MQ 1,033 132 HBW 150 240
14  ME 1,465 122 175 275
15 blbending ack malleable GTS 4 a) ML/MQ 0,345 77 HBW 135 250
16 cast iron (perl.) ME 0,403 128 175 250
17 GGG nodular cast iron 4 b) ML/MQ 0,350 119 HBW 175 300
18  ME 0,380 134 200 300
19 GG grey cast iron 4 c) ML/MQ 0,256 8 HBW 150 240
20  ME 0,200 53 175 275
21 VThrough contact carbon steels 5 ML 0,963 283 HV 135 210
hardened
22  MQ 0,925 360 135 210
wrought
b
23  ME 0,838 432 135 210
steels
24 Valloy steels 5 ML 1,313 188 HV 200 360
25  MQ 1,313 373 200 360
26  ME 2,213 260 200 390
27 Vbending carbon steels 6 ML 0,250 108 HV 115 215
28  MQ 0,240 163 115 215
29  ME 0,283 202 115 215
30 Valloy steels 6 ML 0,423 104 HV 200 360
31  MQ 0,425 187 200 360
32  ME 0,358 231 200 390
6 © ISO 2003 — All rights reserved

Table 1 (continued)
No. Material Stress Type Abbre- Fig. Quality A B Hard- Min. Max.
viation ness hardness hardness
33 cThrough contact arbon steels V 7 ML/MQ 0,831 300 HV 130 215
hardened cast
34 (cast) ME 0,951 345 130 215
steels
35 alloy steels V 7 ML/MQ 1,276 298 HV 200 360
36 (cast) ME 1,350 356 200 360
37 cbending arbon steels V 8 ML/MQ 0,224 117 HV 130 215
38 (cast) ME 0,286 167 130 215
39 alloy steels V 8 ML/MQ 0,364 161 HV 200 360
40 (cast) ME 0,356 186 200 360
41 Case contact Eh 9 ML 0,000 1 300 HV 600 800
hardened
42  MQ 0,000 1 500 660 800
wrought
43  ME 0,000 1 650 660 800
c
steels
44 cbending ore hardness: Eh 10 ML 0,000 312 HV 600 800
45 W 25 HRC,  MQ 0,000 425 660 800
lower
46 W 25 HRC,  0,000 461 660 800
upper
47 W 30 HRC  0,000 500 660 800
48  ME 0,000 525 660 800
49 Flame or contact IF 11 ML 0,740 602 HV 485 615
induction
50  MQ 0,541 882 500 615
hardened
51  ME 0,505 1 013 500 615
wrought and
cast steels
52 bending IF 12 ML 0,305 76 HV 485 615
53  MQ 0,138 290 500 570
54   0,000 369 570 615
55  ME 0,271 237 500 615
56 Nitrided contact nitriding NT 13 a) ML 0,000 1 125 HV 650 900
wrought steels (a)
57 (nitr.) MQ 0,000 1 250 650 900
steels/nitriding
58 d ME 0,000 1 450 650 900
steels
/through
59 through NV 13 b) ML 0,000 788 HV 450 650
hardening
hardening
60 (nitr.) MQ 0,000 998 450 650
b
steels (b)
steels
61  ME 0,000 1 217 450 650
nitrided
62 NT bending nitriding 14 a) ML 0,000 270 HV 650 900
steels (a)
63 (nitr.) MQ 0,000 420 650 900
64  ME 0,000 468 650 900
65 through NV 14 b) ML 0,000 258 HV 450 650
hardening
66 (nitr.) MQ 0,000 363 450 650
steels (b)
67  ME 0,000 432 450 650
68 wrought contact through NV 15 ML 0,000 650 HV 300 650
steels nitro- hardening
69 (nitro- MQ/ME 1,167 425 300 450
e
steels
carburized
70 car.)  0,000 950 450 650
71 bending through NV 16 ML 0,000 224 HV 300 650
hardening
72 (nitro- MQ/ME 0,653 94 300 450
steels
73 car.)  0,000 388 450 650
a
In accordance with ISO 4948-2.
b
In accordance with ISO 683-1.
c
In accordance with ISO 683-11.
d
In accordance with ISO 683-10.
e
In accordance with ISO 683-1, ISO 683-10 or ISO 683-11.
a) Wrought normalized low carbon steels b) Cast steels
Figure 1 — Allowable stress numbers (contact) for wrought normalized low carbon steels and cast
steels (Attention is drawn to the quality requirements of 6.2)
a) Wrought normalized low carbon steels b) Cast steels
Figure 2 — Nominal and allowable stress numbers (bending) for wrought normalized low carbon
steels and cast steels (Attention is drawn to the quality requirements of 6.2)
8 © ISO 2003 — All rights reserved

a) Black malleable cast iron (see 6.3) b) Nodular cast iron (see Table 2)

c) Grey cast iron (see Table 2)
NOTE Brinell hardness HBW < 180 indicates the presence of a high proportion of ferrite in the structure. For gears,
this condition is not recommended.
Figure 3 — Cast iron materials — Allowable stress numbers (contact) for cast iron materials
(Attention is drawn to the quality requirements of 6.3 and Table 2)
a) Black malleable cast iron (see 6.3) b) Nodular cast iron (see Table 2)

c) Grey cast iron (see Table 2)
NOTE Brinell hardness HBW < 180 indicates the presence of a high proportion of ferrite in the structure. For gears,
this condition is not recommended.
Figure 4 — Cast iron materials — Nominal and allowable stress numbers (bending) for cast iron
materials (Attention is drawn to the quality requirements of 6.3 and Table 2)
10 © ISO 2003 — All rights reserved

NOTE 1 Nominal carbon content
W 0,20 %.
NOTE 2 The alloy steel MX line from the
first edition of ISO 6336-5 was replaced by
the ME line.
Figure 5 — Allowable stress numbers (contact) for through hardened wrought steels
(Attention is drawn to the quality requirements of Table 3)
NOTE Nominal carbon content W 0,20 %.
Figure 6 — Nominal and allowable stress numbers (bending) for through hardened wrought steels
(Attention is drawn to the quality requirements of Table 3)
12 © ISO 2003 — All rights reserved

Figure 7 — Allowable stress numbers (contact) for through hardened cast steels
(Attention is drawn to the quality requirements of Table 4)
Figure 8 — Nominal and allowable stress numbers (bending) for through hardened cast steels
(Attention is drawn to the quality requirements of Table 4)
NOTE   Adequate case depth required, see 5.6.1.

Figure 9 — Allowable stress numbers (contact) for case hardened wrought steels
(Attention is drawn to the quality requirements of Table 5)
14 © ISO 2003 — All rights reserved

a
Core hardness W 30 HRC.
b
Core hardness W 25 HRC Jominy hardenability at J = 12 mm W HRC 28.
c
Core hardness W 25 HRC Jominy hardenability at J = 12 mm < HRC 28.
NOTE 1 Adequate case depth required, see 5.6.2.
NOTE 2 See 6.6.
Figure 10 — Nominal and allowable stress numbers (bending) for case hardened wrought steels
(Attention is drawn to the quality requirements of Table 5)
NOTE Adequate case depth required.
Figure 11 — Allowable stress numbers (contact) for flame or induction hardened wrought and cast
steels (Attention is drawn to the quality requirements of Table 6)
16 © ISO 2003 — All rights reserved

NOTE Hardened fillets only. Values for unhardened fillets are not provided. Adequate case depth required.
Figure 12 — Nominal and allowable stress numbers (bending) for flame or induction hardened
wrought and cast steels (Attention is drawn to the quality requirements of Table 6)
b) Through hardening steels: hardened, tempered and
a) Nitriding steels: hardened, tempered and gas
nitrided gas nitrided
NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 13 — Allowable stress numbers (contact) for nitrided wrought steels/nitriding steels/through
hardening steels nitrided (Attention is drawn to the quality requirements of Table 7)
18 © ISO 2003 — All rights reserved

NOTE Working trials for reliability of process are recommended. For flank hardness HV1 > 750, the allowable stress
numbers can be reduced by embrittlement when the white layer thickness exceeds 10 µm. Adequate case depth required,
see 5.6.3.
a) Nitriding steels: hardened, tempered and gas nitrided

NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
b) Through hardening steels: hardened, tempered and gas nitrided
Figure 14 — Nominal and allowable stress numbers (bending) for nitrided wrought steels/nitriding
steels/through hardening steels nitrided (Attention is drawn to the quality requirements of Table 7)
NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 15 — Allowable stress numbers (contact) for wrought steels nitrocarburized
(Attention is drawn to the quality requirements of Table 8)

NOTE Working trials for reliability of process are recommended. Adequate case depth required, see 5.6.3.
Figure 16 — Nominal and allowable stress numbers (bending) for wrought steels nitrocarburized
(Attention is drawn to the quality requirements of Table 8)
20 © ISO 2003 — All rights reserved

5.6 Case depth of surface hardened gears
5.6.1 General
Surface hardened gear teeth require adequate case depth to resist the stress condition in the loaded tooth.
Minimum and maximum values of case depth shall be shown on the drawing. When specifying minimum case
depth, note that the “optimum” values for bending and surface load capacity are not the same. A specified
maximum case thickness should not be exceeded, because to do so would increase risk of embrittlement of
5)
the tooth tips.
6)
5.6.2 Case depth of carburized and hardened gears
See a) to d).
a) Recommended values of case depth to avoid pittings (Eht ): Are shown in Figure 17. Eht is
H opt H opt
the optimum effective case depth relating to permissible contact stress for long life at the reference circle
after tooth finishing:
Figure 17 — Recommended values of optimum case depth Eht regarding surface load capacity
H opt
and maximum case depth Eht regarding bending and surface load capacity
max
b) Recommended values of case depth to avoid tooth breakage (Eht ): Eht is the optimum
F opt F opt
effective case depth relating to permissible bending stress for long life at the root fillet at mid face width
and on a normal to the 30° tangent (external gears), 60° tangent (internal gears) after tooth finishing:
Eht = 0,1…0,2 m
Fopt n
5) The data of 5.6 may not apply to bevel gears.
6) Definition of case depth according to Table 5, Item 9.
c) Recommended values of case depth to avoid case-crushing (Eht ): Eht is the minimum effective
c c
case depth at the reference circle after tooth finishing based on the depth of maximum shear stress from
contact load.
NOTE  Regarding case-crushing, at present there is no standardized calculation method available.
σα⋅⋅d sin z
Hw1 wt 2
Eht =
c
Uz⋅+cos β z
Hb 1 2
with
U = 66 000 N/mm for quality grades MQ/ME;
H
U = 44 000 N/mm for quality grades ML.
H
d) Recommended limits of minimum and maximum effective case depth: Eht is the effective
min/max
case depth at the reference circle after tooth finishing (values also shown in Figure 17): Eht W 0,3 mm
min
and Eht u 0,4 ⋅ m (u 6 mm).
max n
7)
5.6.3 Case depth of nitrided gears
See a) and b).
a) Recommended values of effective nitride case depth (Nht): See in Figure 18.

Figure 18 — Recommended values of nitride case depth, Nht

7) Definition of nitride case depth according to Table 7, Item 7.
22 © ISO 2003 — All rights reserved

b) Recommended values of nitride case depth to avoid case-crushing (Nht ): Nht is the minimum total
c c
case depth for nitrided gears, and is based on the depth of maximum shear stress from contact load. If
the value of Nht is less than the value for nitride case depth Nht from Figure 18, then the minimum value
c
from Figure 18 should be used.
NOTE   Regarding case-crushing, at present there is no standardized calculation method available.
Ud⋅⋅σα⋅ sin z
c H w1 wt 2
Nht =
c
z + z
1,14⋅⋅10 cos β
b
where U is the core hardness coefficient, see Figure 19.
c
Figure 19 — Core hardness coefficient for nitrided gearing, U
c
6 Requirements for material quality and heat treatment
6.1 General aspects
The three material quality grades ML, MQ and ME, stand in relationship to Figures 1 to 16, which means that
8)
they refer to the allowable stress numbers determined using Method B . See 4.2, 5.2 and 5.3.
 ML stands for modest demands on the material quality and on the material heat treatment process during
gear manufacture.
 MQ stands for requirements that can be met by experienced manufacturers at moderate cost.
 ME represents requirements that must be realized when a high degree of operating reliability is required.
NOTE This standard does not allow extrapolation of the allowable stress lines.
Frequently, special quality material such as VIM/VAR is used to achieve high reliability or load-bearing
capability.
Gear wheels which are manufactured by fabricating rims to centres using conventional welding procedures
should be stress relieved following the fabrication process.
The provisions given in 6.2 to 6.4 have been confirmed by practical experience and may be used as
guidelines. All requirements for a material grade shall be met when the allowable stress numbers are to be
9)
applied . However, depending on their experience, manufacturers may adopt methods or values other than
those listed here. The manufacturer and the customer should agree on the details, particularly for large gears.
6.2 Normalized low carbon or cast steel, plain carbon, unalloyed steels (see Figures 1 and 2)
Since the composition of these is not specified and the melting method is often unknown, the MQ line was
positioned at the lower limit (ML). Normalized low carbon steels are used only for lightly loaded gears and
secondary applications. If high quality of steel production is achieved and when justified by experience the
levels of ME may be used.
6.3 Black malleable cast iron (see Figures 3 and 4)
High quality can be achieved through controlled heat treatment. However, since it is ordinarily used for small,
lightly loaded gears, the MQ line was positioned at the lower limit (ML) to be on the safe side. When justified
by experience the levels of ME may be used.
6.4 Other materials (see Figures 5 to 16)
Material quality and heat treatment for other materials shall be in accordance with Tables 2 to 8.

8) The levels of the allowable stresses have been modified in respect of the through hardened wrought steels. The
material quality grade MX, which existed in the previous edition of this part of ISO 6336, was replaced by the ME line.
9) The material chosen is either that quoted in the relevant grade according to ISO 683-1, -9, -10 or -11 (recommended)
or an appropriate National Standard.
24 © ISO 2003 — All rights reserved

Table 2 — Cast iron materials (grey and nodular — spheroidal — graphite cast iron)
Item Requirement Grey cast iron (see Figures 3 and 4) Nodular cast iron (see Figures 3 and 4)
ML MQ ME ML MQ ME
1 Chemical Not verified 100 % verified. Not verified 100 % verified.
analysis Foundry certificate Foundry certificate
2 Melting practice No specification Electric furnace or No specification Electric furnace or equivalent
equivalent
3 Mechanical Only HBW R Only HBW
σ (σ ) σ δ ψ
m
s 0,2 b s
properties
Specific test report
Specific test report per
evaluation
on a separate test ISO 10474 of physical testing
piece from the same
on a representative sample
cast which is an integral part on
each test piece, heat treated
with the parts before being
cut. Verification of HBW on
gear teeth or as near as
practicable.
4 Structure: Specified but not Limited Not verified Limited
graphite form verified
Basic structure No specification Maximum ferrite: 5 % No specification
(alloyed grey
cast iron,
maximum ferrite:
5 %)
5 Tests for inner Not tested Tested (pores, Not tested Tested (pores, cracks, blow-
separations cracks, blow-holes), holes), limited defects
(cracks). limited defects
Acceptability
agreed between
customer and
supplier.
6 Stress relief Not required Recommended: 2 h Not required Recommended: 2 h at
at 500 °C to 530 °C. 500 °C to 560 °C
Alloyed, grey cast
iron 2 h at 530 °C to
560 °C
7 Repair welding Not permitted near tooth region; Not permitted near tooth region, elsewhere, permissible
elsewhere, permissible only with approved only with approved processes
processes
8 Surface crack Not tested Dye penetrant test by Not tested Cracks not permitted. 100 %
detection agreement between magnetic particle, fluorescent
customer and magnetic particle penetrant
supplier or dye penetrant inspection.
Statistical sampling permitted
for large production lots.
Table 3 — Through hardened wrought steels, not surface hardened (forged or rolled steels)
(see Figures 5 and 6)
Item Requirement ML MQ ME
1 Chemical Not verified Specific test report per ISO 10474 with 100 % traceability to the original cast.
a, b
analysis
2 Mechanical HBW Recommended: HBW and σ (σ ) σ δ ψ
s 0,2 b s
properties after heat either mechanical tests or
Specific test report per ISO 10474 of physical testing on
treatment hardenability test.
a representative sample from the same cast, heat
trea
...


NORME ISO
INTERNATIONALE 6336-5
Deuxième édition
2003-07-01
Calcul de la capacité de charge des
engrenages cylindriques à dentures
droite et hélicoïdale —
Partie 5:
Résistance et qualité des matériaux
Calculation of load capacity of spur and helical gears —
Part 5: Strength and quality of materials

Numéro de référence
©
ISO 2003
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.

©  ISO 2003
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax. + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Publié en Suisse
ii © ISO 2003 — Tous droits réservés

Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application. 1
2 Références normatives. 1
3 Termes, définitions et symboles . 2
4 Méthode pour la détermination des contraintes admissibles. 2
4.1 Généralités. 2
4.2 Méthode A. 3
4.3 Méthode B. 3
4.4 Méthode B . 3
k
4.5 Méthode B . 3
P
5 Valeurs normalisées pour la contrainte admissible de référence — Méthode B . 3
5.1 Application. 3
5.2 Contrainte admissible de référence (pression de contact), σ . 4
H lim
5.3 Contraintes de flexion σ et σ . 5
F lim FE
5.4 Abaques de représentation de σ , σ et σ . 5
H lim F lim FE
5.5 Calcul de σ et σ . 6
H lim F lim
5.6 Profondeur de durcissement des roues dentées durcies superficiellement. 21
6 Exigences pour la qualité et le traitement thermique du matériau. 24
6.1 Généralités. 24
6.2 Aciers normalisés à faible teneur en carbone ou aciers moulés, aciers au carbone, aciers
non alliés (voir Figures 1 et 2) . 25
6.3 Fonte malléable (voir Figures 3 et 4). 25
6.4 Autres matériaux (voir Figures 5 à 16) . 25
6.5 Témoin de traitement. 37
6.6 Décapage mécanique . 38
6.7 Grenaillage de précontrainte . 38
Annexe A (normative) Dimensions de la section de contrôle pour les roues traitées dans
la masse . 39
Annexe B (informative) Tableau de conversions de dureté . 42
Annexe C (informative) Mesure de la dureté superficielle à l'aide d'une lime. 43
Bibliographie . 45

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 6336-5 a été élaborée par le comité technique ISO/TC 60, Engrenages, sous-comité SC 2, Calcul de la
capacité des engrenages.
L'ISO 6336 comprend les parties suivantes, présentées sous le titre général Calcul de la capacité de charge
des engrenages cylindriques à dentures droite et hélicoïdale:
 Partie 1: Principes de base, introduction et facteurs généraux d’influence
 Partie 2: Calcul de la résistance à la pression de contact (piqûres)
 Partie 3: Calcul de la résistance à la flexion en pied de dent
 Partie 5: Résistance et qualité des matériaux
La partie 6: Calcul de la durée de vie en service sous charge variable, est en préparation.
iv © ISO 2003 — Tous droits réservés

Introduction
La présente partie de l’ISO 6336 ainsi que l’ISO 6336-1, l’ISO 6336-2 et l’ISO 6336-3 donnent les principes
pour un système cohérent de méthodes pour le calcul de la capacité de charge des engrenages à profil en
développante de cercle à denture extérieure ou intérieure. L’ISO 6336 est conçue pour faciliter l’application
des connaissances et développements futurs, également pour échanger les informations issues de
l’expérience.
Les contraintes admissibles, telles que celles décrites dans la présente partie de l’ISO 6336, peuvent varier
très largement. De tels écarts sont dus aux défauts et aux variations de la composition chimique (charge), de
la structure, de la nature et du processus d’élaboration (par exemple laminage, forgeage, taux de corroyage),
du traitement thermique, des niveaux de contrainte résiduelle, etc.
Les tableaux résument les paramètres d’influence les plus importants et les exigences relatives aux
différentes classes de qualité pour chaque catégorie de matériau. Les effets de ces paramètres sur la
résistance à la pression de contact et la résistance à la flexion en pied de dent sont illustrés par des
graphiques.
La présente partie de l’ISO 6336 concerne les aciers pour engrenage qui sont les plus employés et traite des
méthodes de traitement thermique associées. Les recommandations sur le choix d’un matériau particulier,
d’une méthode de traitement thermique ou d’un procédé d’élaboration sont exclues. De plus, il n’est fait
aucune mention concernant l’aptitude ou tout autre paramètre de tout matériau vis-à-vis d’une méthode de
taillage spécifique ou d’une méthode de traitement thermique.

NORME INTERNATIONALE ISO 6336-5:2003(F)

Calcul de la capacité de charge des engrenages cylindriques à
dentures droite et hélicoïdale —
Partie 5:
Résistance et qualité des matériaux
1 Domaine d'application
La présente partie de l’ISO 6336 décrit les pressions de contact et les contraintes en pied de dent, et donne
des valeurs numériques pour ces deux contraintes limites de référence. Elle spécifie les exigences pour la
qualité du matériau et le traitement thermique, et elle fournit des indications concernant leur influence sur
chacune des contraintes limites de référence.
Les valeurs données dans la présente partie de l’ISO 6336 sont valables pour les méthodes de calcul définies
dans l’ISO 6336-2 et l’ISO 6336-3 ainsi que dans les normes d’application pour engrenages industriels,
engrenages grande vitesse et engrenages marins. Elles sont applicables aux méthodes de calcul données
dans l’ISO 10300 pour déterminer la capacité de charge des engrenages coniques. La présente partie de
l’ISO 6336 est applicable à tous les engrenages, aux tracés de référence, aux dimensions, conception, etc.,
définis dans ces normes. Les résultats sont en bon accord avec d’autres méthodes pour le sujet tel qu’indiqué
dans le domaine d’application de l’ISO 6336-1.
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 53:1998, Engrenages cylindriques de mécanique générale et de grosse mécanique — Tracé de
référence
ISO 642:1999, Acier — Essai de trempabilité par trempe en bout (Essai Jominy)
1)
ISO 643:— , Aciers — Détermination micrographique de la grosseur de grain apparente
ISO 683-1:1987, Aciers pour traitement thermique, aciers alliés et aciers pour décolletage — Partie 1: Aciers
corroyés non alliés et faiblement alliés à durcissement par trempe directe se présentant sous la forme de
différents produits noirs
ISO 683-9:1988, Aciers pour traitement thermique, aciers alliés et aciers pour décolletage — Partie 9: Aciers
corroyés pour décolletage
ISO 683-10:1987, Aciers pour traitement thermique, aciers alliés et aciers pour décolletage — Partie 10:
Aciers corroyés pour nitruration
ISO 683-11:1987, Aciers pour traitement thermique, aciers alliés et aciers pour décolletage — Partie 11:
Aciers corroyés pour cémentation

1) À publier. (Révision de l’ISO 643:1983)
ISO 1122-1:1998, Vocabulaire des engrenages — Partie 1: Définitions géométriques
ISO 1328-1:1995, Engrenages cylindriques — Système ISO de précision — Partie 1: Définitions et valeurs
admissibles des écarts pour les flancs homologues de la denture
ISO 2639:2002, Acier — Détermination et vérification de la profondeur de cémentation
ISO 3754:1976, Acier — Détermination de la profondeur conventionnelle de trempe après chauffage
superficiel
ISO 4948-2:1981, Aciers — Classification — Partie 2: Classification des aciers alliés et aciers non alliés en
fonction des principales classes de qualité et des caractéristiques principales de propriété ou d'application
ISO 4967:1998, Acier — Détermination de la teneur en inclusions non métalliques — Méthode
micrographique à l'aide d'images types
2)
ISO 6336-1:— , Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale — Partie 1: Principes de base, introduction et facteurs généraux d'influence
2)
ISO 6336-2:— , Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale — Partie 2: Calcul de la résistance à la pression superficielle (piqûre)
2)
ISO 6336-3:— , Calcul de la capacité de charge des engrenages cylindriques à dentures droite et
hélicoïdale — Partie 3: Calcul de la résistance à la flexion des dents
ISO 9443:1991, Aciers pour traitements thermiques et aciers alliés — Classes de qualité de surface des ronds
et fils-machine laminés à chaud — Conditions techniques de livraison
ISO 10474:1991, Aciers et produits sidérurgiques — Documents de contrôle
ISO 14104:1995, Engrenages — Contrôle par attaque chimique des zones revenues lors de la rectification
3)
ASTM A388-01, Standard practice for ultrasonic examination of heavy steel forgings
ASTM E428-00, Standard practice for fabrication and control of steel reference blocks used in ultrasonic
inspection
ASTM A609-91, Practice for castings, carbon, low alloy and martensitic stainless steel, ultrasonic examination
thereof
ASTM E1444-01, Standard practice for magnetic particle examination
3 Termes, définitions et symboles
Pour les besoins du présent document, les termes et définitions donnés dans l’ISO 1122-1 et les symboles et
unités donnés dans l’ISO 6336-1 s’appliquent.
4 Méthode pour la détermination des contraintes admissibles
4.1 Généralités
Il convient de déterminer le plus souvent possible par des essais d’engrenages, les contraintes admissibles
de référence, pour chaque matériau et chaque état de matériau. Il convient que les conditions d’essai et les
dimensions des roues d’essai soient aussi proches que possible des conditions et des dimensions de
fonctionnement des roues faisant l’objet du calcul.

2) En préparation. (Révisions de l'ISO 6336-1:1996, de l'ISO 6336-2:1996 et de l'ISO 6336-3:1996, respectivement)
3) American Society for Testing and Materials
2 © ISO 2003 — Tous droits réservés

Dans l’exploitation des résultats d’essai ou de données issues du fonctionnement en service, il est
indispensable d’examiner si certains facteurs d’influence sur les contraintes admissibles sont déjà inclus ou
non dans la donnée évaluée. Par exemple, pour la pression de contact, l’influence du film de lubrifiant, de la
rugosité des flancs et de la géométrie de l’engrenage; pour la résistance à la flexion en pied de dent, le rayon
et la rugosité de l’arrondi en pied de dent, ainsi que la géométrie de l’engrenage. Il convient de substituer 1,0
au facteur d’influence au cours du calcul des contraintes admissibles quand cela est pertinent.
4.2 Méthode A
Les valeurs de contraintes admissibles de référence pour la pression de contact et la flexion sont déterminées
par des essais d’endurance avec des roues dont les dimensions sont voisines de celles des roues devant
faire l’objet du calcul dans des conditions d’essai qui sont proches des conditions de fonctionnement prévues.
4.3 Méthode B
Les contraintes admissibles de référence, pour la pression de contact et la flexion, sont déterminées sur la
base des essais d’endurance effectués avec des roues dentées de référence dans des conditions d’essai de
référence. Les contraintes admissibles de référence en pied de dent sont également déterminées par des
essais au pulsateur. Il convient de prendre en considération l’expérience pratique. Les contraintes admissibles
de référence normalisées spécifiées en 5.2 et 5.3 reposent sur de tels essais et une telle expérience.
Trois classes différentes, ME, MQ et ML, sont définies pour les contraintes admissibles de référence. Le choix
approprié de la classe dépend du type de production et des contrôles de qualité réalisés tels que décrits à
l’Article 6.
4.4 Méthode B
k
Les contraintes admissibles de référence, pour une sollicitation en flexion, sont calculées à partir des résultats
d’essais réalisés sur des éprouvettes entaillées. Il convient que le rapport du rayon d’entaille de l’éprouvette
sur l’épaisseur soit de préférence comparable à celui du rayon d’arrondi à l’épaisseur à la corde dans la
section critique, et il convient que la condition de surface soit similaire au pied de dent. Au cours de
l’exploitation des résultats, il convient de tenir compte du fait que les éprouvettes sont habituellement
soumises à une charge alternée de flexion simple alors que les pieds de dent sont soumis à une combinaison
de sollicitations répétées, en flexion, cisaillement et compression. Les caractéristiques des différents
matériaux peuvent être obtenues au moyen d’essais internes, de l’expérience acquise ou de la documentation
disponible.
4.5 Méthode B
P
Les contraintes admissibles de référence, pour une sollicitation en flexion, sont calculées à partir des résultats
d’essais réalisés sur des éprouvettes non entaillées. Voir 4.4 en ce qui concerne l’interprétation de
l’exploitation des résultats d’essai. Pour prendre en considération l’influence de la sensibilité à l’entaille, il est
nécessaire d’inclure dans les calculs la forme et les facteurs d’entaille réels, ainsi leurs résultats seront
influencés par la grande incertitude de ces facteurs. Les caractéristiques des différents matériaux peuvent
être obtenues auprès de laboratoires d’essais connus ou de la documentation disponible (voir la
Bibliographie).
5 Valeurs normalisées pour la contrainte admissible de référence — Méthode B
5.1 Application
Les contraintes admissibles de référence, représentées aux Figures 1 à 16, reposent sur l’hypothèse d’une
composition du matériau, d’un traitement thermique et de méthodes de contrôle adaptés à la dimension de la
roue dentée.
Lorsque des valeurs d’essai sont disponibles pour des matériaux spécifiques, elles peuvent être utilisées en
lieu et place des valeurs des Figures 1 à 16.
Les données fournies dans la présente partie de l’ISO 6336 sont tout à fait justifiées par des essais et par
l’expérience pratique.
Les valeurs sont choisies pour une probabilité d'endommagement de 1 %. Une analyse statistique permet
l’ajustement de ces valeurs afin qu’elles correspondent à d’autres probabilités d’endommagement.
Lorsque d’autres probabilités d’endommagement (fiabilité) sont souhaitées, les valeurs de σ , σ et σ
H lim F lim FE
sont ajustées à l’aide d’un «facteur de fiabilité» adapté. Lorsque tel est le cas, un indice doit être ajouté pour
indiquer le pourcentage approprié (par exemple σ pour une probabilité d’endommagement de 10 %).

H lim 10
Les contraintes admissibles indiquées dans les Figures 9 et 10 sont calculées pour des profondeurs de
cémentation effectives d’environ 0,15m à 0,2m sur des roues dentées après finition.
n n
La façon dont le niveau de dureté superficielle influence la résistance des roues durcies superficiellement,
nitrurées, carbonitrurées et nitrocarburées ne peut pas être quantifiée avec fiabilité. Les autres facteurs du
matériau et du traitement thermique relatifs à la surface ont une influence nettement plus marquée.
Dans certains cas, la totalité du domaine de dureté n’est pas couverte. Les intervalles admissibles sont définis
par la longueur des droites représentées aux Figures 1 à 16.
Pour les aciers durcis superficiellement (Figures 9 à 16), l’échelle de dureté HV a été choisie comme axe de
référence. L’échelle de dureté HRC est donnée à titre de comparaison. Pour définir la relation entre l’échelle
des duretés Vickers et Rockwell, des tables de conversion sont données dans l’Annexe B.
5.2 Contrainte admissible de référence (pression de contact), σ
H lim
La contrainte admissible de référence, σ , est issue de la pression de contact qui peut être supportée par

H lim
la dent pour un nombre spécifique de cycles sans apparition de piqûres évolutives. Pour certains matériaux,
5 × 10 cycles de contrainte sont considérés comme étant le début du domaine de résistance pour les
grandes durées de vie (voir le facteur de durée de vie dans l’ISO 6336-2).
Les valeurs de σ données aux Figures 1, 3, 5, 7, 9, 11, 13 et 15 sont valables pour les conditions de

H lim
4)
fonctionnement et les dimensions de référence des roues d’essai, telles qu’indiquées ci-après :
 entraxe a = 100 mm
 angle d’hélice β = 0 (Z = 1)

β
 module m = 3 mm à 5 mm (Z = 1)
X
 rugosité moyenne crête à crête des flancs de dent Rz = 3 µm (Z = 1)
R
 vitesse tangentielle v = 10 m/s (Z = 1)
v
 viscosité du lubrifiant ν = 100 mm /s (Z = 1)
50 L
 roues conjuguées de même matériau (Z = 1)
W
 classes de précision de la roue dentée 4 à 6 conformément à l’ISO 1328-1
 largeur de denture b = 10 mm à 20 mm
 facteurs généraux d’influence K = K = K = K = 1
A v Hβ Hα
Les roues d’essai sont déclarées détruites par piqûres, dans les conditions suivantes: lorsque 2 % de la
totalité des surfaces actives des flancs pour des roues traitées dans la masse, ou lorsque 0,5 % de la totalité
des surfaces actives des flancs pour les roues durcies superficiellement, ou 4 % de la surface du flanc d’une

4) Les données obtenues sous différentes conditions d’essai ont été ajustées pour être conformes aux conditions
normalisées. Il est important de noter que σ n’est pas la pression de contact sous une charge continue, mais bien

H lim
plutôt la limite supérieure de la pression de contact calculée conformément à l'ISO 6336-2 qui peut être supportée sans
endommagement par piqûres évolutives, pour un nombre de cycles de mise en charge spécifié.
4 © ISO 2003 — Tous droits réservés

dent sont dégradés par piqûres. Les pourcentages donnés font référence à des évaluations d’essai; ils ne
sont pas définis comme des limites pour les roues dentées de production.
5.3 Contraintes de flexion σ et σ
F lim FE
5.3.1 Contrainte nominale de référence (flexion), σ
F lim
La contrainte nominale de référence (flexion), σ , est déterminée en soumettant les roues de référence à
F lim
des essais (voir l’ISO 6336-3). Il s’agit de la valeur limite de contrainte de flexion en fonction des influences du
matériau, du traitement thermique et de la rugosité de surface des pieds de dent de la roue d’essai.
5.3.2 Contrainte admissible de référence (flexion), σ
FE
La contrainte admissible de référence (flexion), σ , (voir l’ISO 6336-3 pour la définition de σ ) est la
FE FE
résistance à la flexion de base d’une éprouvette non entaillée, avec l’hypothèse que les conditions de
traitement du matériau (y compris le traitement thermique) sont entièrement dans le domaine élastique:
σ = σ Y (1)
FE F lim ST
Pour la roue d’essai de référence, le facteur de concentration de contrainte est Y = 2,0. Pour la plupart des
ST
matériaux, 3 × 10 cycles de contrainte sont considérés comme le début du domaine de résistance pour les
grandes durées de vie (voir le facteur de durée de vie dans l’ISO 6336-3).
Les valeurs de σ et σ indiquées aux Figures 2, 4, 6, 8, 10, 12, 14 et 16 sont valables pour les conditions
F lim FE
de fonctionnement et les dimensions de référence des roues d’essai, telles qu’indiquées ci-après [voir 5.2,
note de bas de page 2)]:
 angle d’hélice β = 0 (Y = 1)
β
 module m = 3 mm à 5 mm (Y = 1)
X
 facteur de concentration de contrainte Y = 2,0
ST
 paramètre d’entaille q = 2,5 (Y = 1)
ST δ rel T
 rugosité moyenne crête à crête des pieds de dent Rz = 10 µm (Y = 1)
R rel T
 classes de précision des roues dentées 4 à 7 conformément à l’ISO 1328-1
 tracé de référence conformément à l’ISO 53
 largeur de denture b = 10 mm à 50 mm
 facteurs généraux d’influence K = K = K = K = 1
A v Fβ Fα
5.3.3 Contrainte de flexion alternée
Les contraintes admissibles de référence, données aux Figures 2, 4, 6, 8, 10, 12, 14 et 16, sont valables pour
les roues soumises à un chargement unidirectionnel et répété. Lorsque des charges alternées existent, il est
exigé une valeur plus faible pour σ . Dans les cas les plus sévères (comme par exemple les roues
FE
intermédiaires où une charge alternée est exercée à chaque cycle), il convient de réduire les valeurs de σ
F lim
et σ à 0,7 fois la valeur pour une sollicitation unidirectionnelle. Si le nombre de charges alternées est moins

FE
fréquent, on peut employer un autre facteur en fonction du nombre de ces charges pendant la durée de vie
2)
souhaitée. Pour une aide, voir ISO 6336-3:— , Annexe B.
5.4 Abaques de représentation de σ , σ et σ
H lim F lim FE
Les contraintes admissibles de référence pour des valeurs de dureté en dehors des valeurs limites minimale
et maximale correspondantes des Figures 1 à 16 sont soumises à un accord préalable entre le fabricant et
l’acheteur sur la base de l’expérience acquise dans le domaine.
5.5 Calcul de σ et σ
H lim F lim
Les contraintes admissibles de référence, σ , et nominale de référence, σ , peuvent être calculées à

H lim F lim
l’aide de l’équation suivante:
σ 
Hlim

=⋅A x+ B (2)

σ
Flim 


x est la dureté superficielle HBW ou HV;
A, B sont des constantes (voir Tableau 1).
Les classes de dureté sont limitées par les valeurs minimale et maximale correspondantes données dans le
Tableau 1.
Tableau 1 — Calcul de σ et σ
H lim F lim
Dureté
Abré-
o
N Matériau Contrainte Type Fig. Qualité A B
viation
min. max.
1 SAciers à faible Contact Aciers à faible teneur en t 1 a) ML/MQ 1,000 190 HBW 110 210
teneur en carbone normalisés
2  ME 1,520 250 110 210
carbone/aciers forgés
moulés
3 SAciers moulés t 1 b) ML/MQ 0,986 131 HBW 140 210
a
normalisés
4 (moulé) ME 1,143 237 140 210
5 SFlexion Aciers à faible teneur en t 2 a) ML/MQ 0,455 69 HBW 110 210
carbone normalisés
6  ME 0,386 147 110 210
forgés
7 SAciers moulés t 2 b) ML/MQ 0,313 62 HBW 140 210
8 (moulé) ME 0,254 137 140 210
9 GTSFontes Contact Fonte malléable 3 a) ML/MQ 1,371 143 HBW 135 250
10 (perl.) ME 1,333 267 175 250
11 GGG Fonte à graphite 3 b) ML/MQ 1,434 211 HBW 175 300
sphéroïdal
12  ME 1,500 250 200 300
13 GG Fonte grise 3 c) ML/MQ 1,033 132 HBW 150 240
14  ME 1,465 122 175 275
15 GTSFlexion Fonte malléable 4 a) ML/MQ 0,345 77 HBW 135 250
16 (perl.) ME 0,403 128 175 250
17 GGG Fonte à graphite 4 b) ML/MQ 0,350 119 HBW 175 300
sphéroïdal
18  ME 0,380 134 200 300
19 GG Fonte grise 4 c) ML/MQ 0,256 8 HBW 150 240
20  ME 0,200 53 175 275
21 VAciers forgés Contact Aciers au carbone 5 ML 0,963 283 HV 135 210
traités dans la
22  MQ 0,925 360 135 210
b
masse
23  ME 0,838 432 135 210
24 VAciers alliés 5 ML 1,313 188 HV 200 360
25  MQ 1,313 373 200 360
26  ME 2,213 260 200 390
27 VFlexion Aciers au carbone 6 ML 0,250 108 HV 115 215
28  MQ 0,240 163 115 215
29  ME 0,283 202 115 215
30 VAciers alliés 6 ML 0,423 104 HV 200 360
31  MQ 0,425 187 200 360
32  ME 0,358 231 200 390
6 © ISO 2003 — Tous droits réservés

Tableau 1 (suite)
Dureté
Abré-
o
N Matériau Contrainte Type Fig. Qualité A B
viation
min. max.
33 AAciers moulés Contact ciers au carbone V 7 ML/MQ 0,831 300 HV 130 215
traités dans la
34 (moulé) ME 0,951 345 130 215
masse
35 Aciers alliés V 7 ML/MQ 1,276 298 HV 200 360
36 (moulé) ME 1,350 356 200 360
Flexion
37 Aciers au carbone V 8 ML/MQ 0,224 117 HV 130 215
38 (moulé) ME 0,286 167 130 215
39 Aciers alliés V 8 ML/MQ 0,364 161 HV 200 360
40 (moulé) ME 0,356 186 200 360
Aciers forgés Contact
41 Eh 9 ML 0,000 1 300 HV 600 800
c
cémentés
42  MQ 0,000 1 500 660 800
43  ME 0,000 1 650 660 800
44 Flexion Dureté à cœur: Eh 10 ML 0,000 312 HV 600 800
45 W 25 HRC, inférieure  MQ 0,000 425 660 800
46 W 25 HRC, supérieure  0,000 461 660 800
47 W 30 HRC  0,000 500 660 800
48  ME 0,000 525 660 800
49 Aciers forgés Contact IF 11 ML 0,740 602 HV 485 615
et aciers
50  MQ 0,541 882 500 615
moulés durcis
51  ME 0,505 1 013 500 615
à la flamme ou
par induction
Flexion
52 IF 12 ML 0,305 76 HV 485 615
53  MQ 0,138 290 500 570
54  0,000 369 570 615
55  ME 0,271 237 500 615
56 NT Aciers forgés Contact Aciers nitrurés (a) 13 a) ML 0,000 1 125 HV 650 900
nitrurés/aciers
57 (nitr.) MQ 0,000 1 250 650 900
d
nitrurés /
58  ME 0,000 1 450 650 900
aciers traités
dans la
59 NVAciers traités dans 13 b) ML 0,000 788 HV 450 650
b
masse
la masse (b)
60 (nitr.) MQ 0,000 998 450 650
nitrurés
61  ME 0,000 1 217 450 650
62 NT Flexion Aciers nitrurés (a) 14 a) ML 0,000 270 HV 650 900
63 (nitr.) MQ 0,000 420 650 900
64  ME 0,000 468 650 900
Aciers traités dans
65 NV 14 b) ML 0,000 258 HV 450 650
la masse (b)
66 (nitr.) MQ 0,000 363 450 650
67  ME 0,000 432 450 650
Contact
68 NVAciers forgés Aciers traités dans 15 ML 0,000 650 HV 300 650
e
nitro-carburés la masse
69 (nitro- MQ/ME 1,167 425 300 450
70 car.)  0,000 950 450 650
71 NVFlexion Aciers traités dans 16 ML 0,000 224 HV 300 650
la masse
72 (nitro- MQ/ME 0,653 94 300 450
73 car.)  0,000 388 450 650
a
Conformément à l’ISO 4948-2.
b
Conformément à l’ISO 683-1.
c
Conformément à l’ISO 683-11.
d
Conformément à l’ISO 683-10.
e
Conformément à l’ISO 683-1, l’ISO 683-10 ou l’ISO 683-11.
a) Aciers à faible teneur en carbone forgés normalisés b) Aciers moulés
Figure 1 — Contraintes admissibles de référence (pression de contact) pour les aciers à faible teneur
en carbone forgés normalisés et les aciers moulés
(Accorder une attention toute particulière aux exigences de qualité de 6.2)
a) Aciers à faible teneur en carbone forgés normalisés b) Aciers moulés
Figure 2 — Contraintes nominales et admissibles de référence (flexion) pour les aciers à faible teneur
en carbone forgés normalisés et les aciers moulés
(Accorder une attention toute particulière aux exigences de qualité de 6.2)
8 © ISO 2003 — Tous droits réservés

a) Fonte malléable (voir 6.3) b) Fonte à graphite sphéroïdal (voir Tableau 2)

c) Fonte grise (voir Tableau 2)
NOTE Une dureté Brinell HBW < 180 indique la présence d’une grande proportion de ferrite dans la structure. Pour
les engrenages, cette situation n’est pas souhaitable.
Figure 3 — Fontes — Contraintes admissibles de référence (pression de contact)
(Accorder une attention toute particulière aux exigences de qualité de 6.3 et du Tableau 2)
a) Fonte malléable (voir 6.3) b) Fonte à graphite sphéroïdal (voir Tableau 2)

c) Fonte grise (voir Tableau 2)
NOTE Une dureté Brinell HBW < 180 indique la présence d’une grande proportion de ferrite dans la structure. Pour
les engrenages, cette situation n’est pas souhaitable.
Figure 4 — Fontes — Contraintes nominales et admissibles de référence (flexion)
(Accorder une attention toute particulière aux exigences de qualité de 6.3 et du Tableau 2)
10 © ISO 2003 — Tous droits réservés

NOTE 1 Teneur nominale en carbone
W 0,20 %.
NOTE 2 La ligne MX relative aux aciers
alliés, figurant dans la première édition de
l’ISO 6336-5, a été remplacée par la
ligne ME.
Figure 5 — Contraintes admissibles de référence (pression de contact) pour les aciers forgés traités
dans la masse (Accorder une attention toute particulière aux exigences de qualité du Tableau 3)
NOTE Teneur nominale en carbone W 0,20%.
Figure 6 — Contraintes nominales et admissibles de référence (flexion) pour les aciers forgés
traités dans la masse
(Accorder une attention toute particulière aux exigences de qualité du Tableau 3)
12 © ISO 2003 — Tous droits réservés

Figure 7 — Contraintes admissibles de référence (pression de contact) pour les aciers moulés
traités dans la masse
(Accorder une attention toute particulière aux exigences de qualité du Tableau 4)
Figure 8 — Contraintes nominales et admissibles de référence (flexion) pour les aciers moulés traités
dans la masse (Accorder une attention toute particulière aux exigences de qualité du Tableau 4)
NOTE Profondeur de cémentation
adéquate exigée, voir 5.6.2.
Figure 9 — Contraintes admissibles de référence (pression de contact) pour les aciers forgés
cémentés (Accorder une attention toute particulière aux exigences de qualité du Tableau 5)
14 © ISO 2003 — Tous droits réservés

a
Dureté à cœur W 30 HRC
b
Dureté à cœur W 25 HRC
Trempabilité Jomini à J = 12 mm W 28 HRC.
c
Dureté à cœur W 25 HRC
Trempabilité Jomini à J = 12 mm < 28 HRC.
NOTE 1 Profondeur de cémentation adéquate exigée, voir 5.6.2.
NOTE 2 Voir 6.6.
Figure 10 — Contraintes nominales et admissibles de référence (flexion)
pour les aciers forgés cémentés
(Accorder une attention toute particulière aux exigences de qualité du Tableau 5)
NOTE Profondeur de durcissement adéquate exigée.
Figure 11 — Contraintes admissibles de référence (pression de contact) pour les aciers forgés
durcis à la flamme ou par induction
(Accorder une attention toute particulière aux exigences de qualité du Tableau 6)
16 © ISO 2003 — Tous droits réservés

NOTE Uniquement dans le cas d’un durcissement de l’arrondi de raccordement. Il n’est pas fourni de valeurs lorsque
l’arrondi de raccordement n’est pas durci. Profondeur de durcissement adéquate exigée.
Figure 12 — Contraintes nominales et admissibles de référence (flexion)
pour les aciers forgés durcis à la flamme ou par induction
(Accorder une attention toute particulière aux exigences de qualité du Tableau 6)
b) Aciers traités dans la masse: durcis,
a) Aciers de nitruration: durcis,
revenus et nitrurés au gaz revenus et nitrurés au gaz
NOTE Des essais de faisabilité pour s’assurer de la fiabilité du procédé sont recommandés. Profondeur de
durcissement adéquate exigée, voir 5.6.3.
Figure 13 — Contraintes admissibles de référence (pression de contact) pour les aciers forgés
nitrurés/les aciers de nitruration/les aciers traités dans la masse nitrurés
(Accorder une attention toute particulière aux exigences de qualité du Tableau 7)
18 © ISO 2003 — Tous droits réservés

NOTE Des essais de faisabilité pour s’assurer de la fiabilité du procédé sont recommandés. Pour une dureté sur
flanc HV 1 > 750, les contraintes admissibles de référence peuvent être réduites par fragilisation lorsque l’épaisseur de
couche blanche est supérieure à 10 µm. Profondeur de durcissement adéquate exigée, voir 5.6.3.
a) Aciers de nitruration: durcis, revenus et nitrurés au gaz

NOTE Des essais de faisabilité pour s’assurer de la fiabilité du procédé sont recommandés. Profondeur de
durcissement adéquate exigée, voir 5.6.3.
b) Aciers traités dans la masse: durcis, revenus et nitrurés au gaz
Figure 14 — Contraintes nominales et admissibles de référence (flexion)
pour les aciers forgés nitrurés/les aciers de nitruration/les aciers traités dans la masse nitrurés
(Accorder une attention toute particulière aux exigences du Tableau 7)
NOTE Des essais de faisabilité pour s’assurer de la fiabilité du procédé sont recommandés. Profondeur de
durcissement adéquate exigée, voir 5.6.3.
Figure 15 — Contraintes admissibles de référence (pression de contact)
pour les aciers forgés nitrocarburés
(Accorder une attention toute particulière aux exigences de qualité du Tableau 8)
20 © ISO 2003 — Tous droits réservés

NOTE Des essais de faisabilité pour s’assurer de la fiabilité du procédé sont recommandés. Profondeur de
durcissement adéquate exigée, voir 5.6.3.
Figure 16 — Contraintes nominales et admissibles de référence (flexion)
pour les aciers forgés nitrocarburés
(Accorder une attention toute particulière aux exigences de qualité du Tableau 8)
5.6 Profondeur de durcissement des roues dentées durcies superficiellement
5.6.1 Généralités
La denture des roues durcies superficiellement requiert une profondeur de durcissement adéquate pouvant
résister à la contrainte qui s’exerce sur elle lorsqu’elle est soumise à une charge. La valeur minimale de la
profondeur de durcissement doit être indiquée sur le dessin. Lorsqu’une profondeur de durcissement
minimale est spécifiée, noter que les valeurs «optimales» pour la flexion et la pression superficielle sont
différentes. Il convient de ne pas dépasser une épaisseur de durcissement maximale spécifiée dans la
5)
mesure où un tel dépassement augmente le risque de fragilisation des sommets de la denture .
6)
5.6.2 Profondeur de cémentation des engrenages cementés et trempés
Voir a) à d).
a) Valeurs recommandées pour la profondeur de cémentation afin d’éviter toute formation de
piqûres (Eht ): indiquées à la Figure 17. Eht est la profondeur de cémentation effective optimale
H opt H opt
relative à la pression de contact admissible pour une longue durée de vie au niveau du cercle de
référence après finition de la denture:

5) Les données de 5.6 ne peuvent s’appliquer aux engrenages coniques.
6) Définition de la profondeur de cémentation selon le Tableau 5, point 9.
Figure 17 — Valeurs recommandées pour la profondeur de cémentation optimale Eht
H opt
relative à la capacité de charge superficielle et pour la profondeur de cémentation maximale Eht
max
relative à la flexion et à la capacité de charge superficielle
b) Valeurs recommandées pour la profondeur de cémentation afin d’éviter toute rupture en pied de
dent (Eht ): Eht est la profondeur de cémentation effective optimale relative à la contrainte de

F opt F opt
flexion admissible pour une longue durée de vie au niveau de l’arrondi en pied de dent à mi-largeur de
denture et sur une perpendiculaire à la tangente à 30° (engrenages extérieurs), à la tangente à 60°
(engrenages intérieurs) après finition de la denture:
Eht = 0,1 … 0,2 × m .
F opt n
c) Valeurs recommandées pour la profondeur de cémentation afin d’éviter toute dislocation de la
couche durcie (Eht ): Eht est la profondeur de cémentation effective minimale au niveau du cercle de
c c
référence après finition de la denture basée sur la profondeur de la contrainte de cisaillement maximale
due à la pression de contact.
NOTE   Il n’existe actuellement aucune méthode de calcul normalisée contre la dislocation de la couche durcie.
..
σαdzsin
Hw1 wt 2
Eht =
c
.
Uzcos β +z
Hb 1 2
avec
U = 66 000 N/mm pour les classes de qualité MQ/ME;
H
U = 44 000 N/mm pour la classe de qualité ML.
H
d) Limites recommandées pour les profondeurs effectives minimale et maximale de cémentation:
Eht est la profondeur de cémentation effective au niveau du cercle de référence après finition de la
min/max
denture (valeurs également indiquées à la Figure 17):
Eht W 0,3 mm et Eht u 0,4 × m (u 6 mm)
min max n
22 © ISO 2003 — Tous droits réservés

7)
5.6.3 Profondeur de nitruration des roues dentées nitrurées
Voir a) et b).
a) Valeurs recommandées pour la profondeur de durcissement effective des roues dentées nitrurées
(Nht): voir Figure 18.
Figure 18 — Valeurs recommandées pour la profondeur de nitruration
des roues dentées nitrurées, Nht
b) Valeurs recommandées pour la profondeur de durcissement des roues dentées nitrurées afin
d’éviter toute dislocation (Nht ): Nht est la profondeur de durcissement totale minimale pour les roues
c c
dentées nitrurées, basée sur la profondeur de la contrainte de cisaillement maximale due à la pression de
contact. Lorsque la valeur de Nht est inférieure à la valeur de la profondeur de durcissement des roues
c
dentées nitrurées Nht indiquée à la Figure 18, il est alors recommandé d’utiliser la valeur minimale
indiquée à la Figure 18.
NOTE   Il n’existe actuellement aucune méthode de calcul normalisée contre la dislocation.
Uz⋅⋅σαsin
cH wt 2
Nht =
c
z + z
1,14⋅⋅10 cos β 12
b
où U est le coefficient de dureté à cœur, voir Figure 19.
c
7) Définition de la profondeur de nitruration des roues dentées nitrurés selon le Tableau 7, point 7.
Figure 19 — Coefficient de dureté à cœur dans le cas des engrenages nitrurés, U
c
6 Exigences pour la qualité et le traitement thermique du matériau
6.1 Généralités
Les trois classes de qualité de matériau ML, MQ et ME sont données par rapport aux Figures 1 à 16, ce qui
8)
signifie qu’elles se réfèrent aux contraintes admissibles de référence déterminées par la Méthode B . Voir 4.2,
5.2 et 5.3:
 ML: utilisée pour de faibles exigences concernant la qualité et le traitement thermique du matériau lors
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...