Petroleum, petrochemical and natural gas industries - Production assurance and reliability management

ISO 20815:2008 introduces the concept of production assurance within the systems and operations associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and natural gas resources. ISO 20815:2008 covers upstream (including subsea), midstream and downstream facilities and activities. It focuses on production assurance of oil and gas production, processing and associated activities and covers the analysis of reliability and maintenance of the components. ISO 20815:2008 provides processes and activities, requirements and guidelines for systematic management, effective planning, execution and use of production assurance and reliability technology. This is to achieve cost-effective solutions over the life cycle of an asset-development project structured around the following main elements: production-assurance management for optimum economy of the facility through all of its life-cycle phases, while also considering constraints arising from health, safety, environment, quality and human factors; planning, execution and implementation of reliability technology; application of reliability and maintenance data; and reliability-based design and operation improvement. For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series. ISO 20815:2008 designates 12 processes, of which seven are defined as core production-assurance processes and addressed in ISO 20815:2008. The remaining five processes are denoted as interacting processes and are outside the scope of ISO 20815:2008. The interaction of the core production-assurance processes with these interacting processes, however, is within the scope of ISO 20815:2008 as the information flow to and from these latter processes is required to ensure that production-assurance requirements can be fulfilled. ISO 20815:2008 recommends that the listed processes and activities be initiated only if they can be considered to add value. The only requirements mandated by ISO 20815:2008 are the establishment and execution of the production-assurance programme (PAP).

Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance de la production et management de la fiabilité

L'ISO 20815:2008 introduit le concept d'assurance production dans les systèmes et les opérations liés au forage, à l'exploitation, au traitement et au transport des ressources pétrolières, pétrochimiques et en gaz naturel. L'ISO 20815:2008 couvre les installations et les activités amont (y compris sous-marines), intermédiaires et aval. Elle est axée sur l'assurance production relative à la production du pétrole et du gaz, sur le traitement et les opérations associées et couvre l'analyse de la fiabilité et de la maintenance des composants. Elle fournit des processus et des activités, des exigences et des lignes directrices pour la gestion systématique, la planification, l'exécution et l'utilisation efficaces de l'assurance production et des techniques fiabilistes. Le but en est d'obtenir des solutions rentables sur tout le cycle de vie d'un projet de développement d'une installation de production structurée autour des éléments principaux suivants: gestion de l'assurance production pour une économie optimale de l'installation durant toutes les phases de son cycle de vie, tout en tenant compte des contraintes résultant de facteurs liés à santé, à la sécurité, à l'environnement et à la qualité ainsi qu'aux facteurs humains; planification, exécution et mise en œuvre des techniques fiabilistes; application des données de fiabilité et de maintenance; et amélioration de la conception et de l'exploitation basée sur la fiabilité. Pour les normes relatives à la fiabilité des équipements et à l'exécution de la maintenance, voir la série CEI 60300-3. L'ISO 20815:2008 définie douze processus, dont sept sont définis comme des processus fondamentaux de l'assurance production et sont y abordés. Les cinq processus restants sont appelés processus en interaction et ne relèvent pas du domaine d'application de l'ISO 20815:2008. L'interaction des processus fondamentaux de l'assurance production avec ces processus interactifs s'inscrit toutefois dans le domaine d'application de la norme car le flux d'informations à destination et en provenance de ces derniers processus est requis pour s'assurer que les exigences de l'assurance production peuvent être remplies. L'ISO 20815:2008 recommande de ne lancer les processus et activités qu'elle énumère que s'ils apportent de la valeur ajoutée. Les seules exigences obligatoires stipulées par l'ISO 20815:2008 concernent l'établissement et l'exécution du programme d'assurance production (PAP).

General Information

Status
Withdrawn
Publication Date
13-May-2008
Withdrawal Date
13-May-2008
Current Stage
9599 - Withdrawal of International Standard
Start Date
18-Oct-2018
Completion Date
13-Dec-2025
Ref Project

Relations

Standard
ISO 20815:2008 - Petroleum, petrochemical and natural gas industries -- Production assurance and reliability management
English language
65 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 20815:2008 - Petroleum, petrochemical and natural gas industries -- Production assurance and reliability management
English language
65 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 20815:2008 - Industries du pétrole, de la pétrochimie et du gaz naturel -- Assurance de la production et management de la fiabilité
French language
71 pages
sale 15% off
Preview
sale 15% off
Preview

Frequently Asked Questions

ISO 20815:2008 is a standard published by the International Organization for Standardization (ISO). Its full title is "Petroleum, petrochemical and natural gas industries - Production assurance and reliability management". This standard covers: ISO 20815:2008 introduces the concept of production assurance within the systems and operations associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and natural gas resources. ISO 20815:2008 covers upstream (including subsea), midstream and downstream facilities and activities. It focuses on production assurance of oil and gas production, processing and associated activities and covers the analysis of reliability and maintenance of the components. ISO 20815:2008 provides processes and activities, requirements and guidelines for systematic management, effective planning, execution and use of production assurance and reliability technology. This is to achieve cost-effective solutions over the life cycle of an asset-development project structured around the following main elements: production-assurance management for optimum economy of the facility through all of its life-cycle phases, while also considering constraints arising from health, safety, environment, quality and human factors; planning, execution and implementation of reliability technology; application of reliability and maintenance data; and reliability-based design and operation improvement. For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series. ISO 20815:2008 designates 12 processes, of which seven are defined as core production-assurance processes and addressed in ISO 20815:2008. The remaining five processes are denoted as interacting processes and are outside the scope of ISO 20815:2008. The interaction of the core production-assurance processes with these interacting processes, however, is within the scope of ISO 20815:2008 as the information flow to and from these latter processes is required to ensure that production-assurance requirements can be fulfilled. ISO 20815:2008 recommends that the listed processes and activities be initiated only if they can be considered to add value. The only requirements mandated by ISO 20815:2008 are the establishment and execution of the production-assurance programme (PAP).

ISO 20815:2008 introduces the concept of production assurance within the systems and operations associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and natural gas resources. ISO 20815:2008 covers upstream (including subsea), midstream and downstream facilities and activities. It focuses on production assurance of oil and gas production, processing and associated activities and covers the analysis of reliability and maintenance of the components. ISO 20815:2008 provides processes and activities, requirements and guidelines for systematic management, effective planning, execution and use of production assurance and reliability technology. This is to achieve cost-effective solutions over the life cycle of an asset-development project structured around the following main elements: production-assurance management for optimum economy of the facility through all of its life-cycle phases, while also considering constraints arising from health, safety, environment, quality and human factors; planning, execution and implementation of reliability technology; application of reliability and maintenance data; and reliability-based design and operation improvement. For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series. ISO 20815:2008 designates 12 processes, of which seven are defined as core production-assurance processes and addressed in ISO 20815:2008. The remaining five processes are denoted as interacting processes and are outside the scope of ISO 20815:2008. The interaction of the core production-assurance processes with these interacting processes, however, is within the scope of ISO 20815:2008 as the information flow to and from these latter processes is required to ensure that production-assurance requirements can be fulfilled. ISO 20815:2008 recommends that the listed processes and activities be initiated only if they can be considered to add value. The only requirements mandated by ISO 20815:2008 are the establishment and execution of the production-assurance programme (PAP).

ISO 20815:2008 is classified under the following ICS (International Classification for Standards) categories: 75.180.01 - Equipment for petroleum and natural gas industries in general; 75.200 - Petroleum products and natural gas handling equipment. The ICS classification helps identify the subject area and facilitates finding related standards.

ISO 20815:2008 has the following relationships with other standards: It is inter standard links to ISO 20815:2018. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.

You can purchase ISO 20815:2008 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of ISO standards.

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 20815
First edition
2008-06-01
Corrected version
2009-06-15
Petroleum, petrochemical and natural gas
industries — Production assurance and
reliability management
Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance
de la production et management de la fiabilité

Reference number
©
ISO 2008
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2008 – All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 Terms and definitions. 2
3.2 Abbreviations . 7
4 Production assurance and decision support . 8
4.1 Framework conditions. 8
4.2 Optimization process . 9
4.3 Production-assurance programme . 11
4.4 Alternative standards . 15
5 Production-assurance processes and activities . 15
Annex A (informative) Contents of production-assurance programme (PAP) . 17
Annex B (informative) Core production-assurance processes and activities . 19
Annex C (informative) Interacting production-assurance processes and activities. 26
Annex D (informative) Production-performance analyses. 30
Annex E (informative) Reliability and production-performance data . 34
Annex F (informative) Performance objectives and requirements . 36
Annex G (informative) Performance measures for production availability. 38
Annex H (informative) Catastrophic events. 47
Annex I (informative) Outline of techniques. 49
Bibliography . 64

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 20815 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
This corrected version of ISO 20815:2008 incorporates the following corrections:
⎯ 3.1.13 “(t + ∆t)” modified to “[t, (t + ∆t)]”;
⎯ 3.1.46, Equation (1) symbols and definitions modified;
⎯ Clause G.2, Equation (G.2) symbols and definitions modified.

iv © ISO 2008 – All rights reserved

Introduction
The petroleum and natural gas industries involve large capital investment costs as well as operational
expenditures. The profitability of these industries is dependent upon the reliability, availability and
maintainability of the systems and components that are used. Therefore, for optimal production availability in
the oil and gas business, a standardized, integrated reliability approach is required.
The concept of production assurance, introduced in this International Standard, enables a common
understanding with respect to use of reliability technology in the various life-cycle phases and covers the
activities implemented to achieve and maintain a performance level that is at its optimum in terms of the
overall economy and, at the same time, consistent with applicable regulatory and framework conditions.
Annexes A through I are for information only.

INTERNATIONAL STANDARD ISO 20815:2008(E)

Petroleum, petrochemical and natural gas industries —
Production assurance and reliability management
1 Scope
This International Standard introduces the concept of production assurance within the systems and operations
associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and
natural gas resources. This International Standard covers upstream (including subsea), midstream and
downstream facilities and activities. It focuses on production assurance of oil and gas production, processing
and associated activities and covers the analysis of reliability and maintenance of the components.
It provides processes and activities, requirements and guidelines for systematic management, effective
planning, execution and use of production assurance and reliability technology. This is to achieve cost-
effective solutions over the life cycle of an asset-development project structured around the following main
elements:
⎯ production-assurance management for optimum economy of the facility through all of its life-cycle phases,
while also considering constraints arising from health, safety, environment, quality and human factors;
⎯ planning, execution and implementation of reliability technology;
⎯ application of reliability and maintenance data;
⎯ reliability-based design and operation improvement.
For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series.
This International Standard designates 12 processes, of which seven are defined as core production-
assurance processes and addressed in this International Standard. The remaining five processes are denoted
as interacting processes and are outside the scope of this International Standard. The interaction of the core
production-assurance processes with these interacting processes, however, is within the scope of this
International Standard as the information flow to and from these latter processes is required to ensure that
production-assurance requirements can be fulfilled.
This International Standard recommends that the listed processes and activities be initiated only if they can be
considered to add value.
The only requirements mandated by this International Standard are the establishment and execution of the
production-assurance programme (PAP).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 14224:2006, Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability
and maintenance data for equipment
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1.1
availability
ability of an item to be in a state to perform a required function under given conditions at a given instant of
time, or in average over a given time interval, assuming that the required external resources are provided
See Figure G.1 for further information.
3.1.2
common cause failure
failures of different items resulting from the same direct cause, occurring within a relatively short time, where
these failures are not consequences of each other
3.1.3
corrective maintenance
maintenance that is carried out after a fault recognition and intended to put an item into a state in which it can
perform a required function
[2]
See IEC 60050-191:1990, Figure 191-10 , for more specific information.
3.1.4
deliverability
ratio of deliveries to planned deliveries over a specified period of time, when the effect of compensating
elements, such as substitution from other producers and downstream buffer storage, is included
See Figure G.1 for further information.
3.1.5
design life
planned usage time for the total system
NOTE Design life should not be confused with MTTF (3.1.25), which is comprised of several items that may be
allowed to fail within the design life of the system as long as repair or replacement is feasible.
3.1.6
down state
internal disabled state of an item characterized either by a fault or by a possible inability to perform a required
[2]
function during preventive maintenance
NOTE This state is related to availability performance.
3.1.7
downtime
[2]
time interval during which an item is in a non-working state
NOTE The downtime includes all the delays between the item failure and the restoration of its service. Downtime can
be either planned or unplanned.
3.1.8
downstream
business process, most commonly in the petroleum industry, associated with post-production activities
EXAMPLES Refining, transportation and marketing of petroleum products.
2 © ISO 2008 – All rights reserved

3.1.9
failure
termination of the ability of an item to perform a required function
NOTE 1 After failure, the item has a fault.
NOTE 2 “Failure” is an event, as distinguished from “fault”, which is a state.
3.1.10
failure cause
root cause
[2]
circumstances during design, manufacture or use that have led to a failure
NOTE Generic failure cause codes applicable for equipment failures are defined in ISO 14224:2006, B.2.3.
3.1.11
failure data
data characterizing the occurrence of a failure event
3.1.12
failure mode
effect by which a failure is observed on the failed item
NOTE Failure-mode codes are defined for some equipment classes in ISO 14224:2006, B.2.6.
3.1.13
failure rate
limit, if this exists, of the ratio of the conditional probability that the instant of time, T, of a failure of an item falls
within a given time interval, [t, (t + ∆t)] and the length of this interval, ∆t, when ∆t tends to zero, given that the
item is in an up state at the beginning of the time interval
See ISO 14224:2006, Clause C.3 for further explanation of the failure rate.
NOTE 1 In this definition, t may also denote the time to failure or the time to first failure.
NOTE 2 A practical interpretation of failure rate is the number of failures relative to the corresponding operational time.
In some cases, time can be replaced by units of use. In most cases, the reciprocal of MTTF (3.1.25) can be used as the
predictor for the failure rate, i.e. the average number of failures per unit of time in the long run if the units are replaced by
an identical unit at failure.
NOTE 3 The failure rate can be based on operational time or calendar time.
3.1.14
fault
state of an item characterized by inability to perform a required function, excluding the inability during
[2]
preventive maintenance or other planned actions, or due to lack of external resources
NOTE A fault is often a result of a failure of the item itself but the state can exist without a failure.
3.1.15
fault tolerance
attribute of an item that makes it able to perform a required function in the presence of certain given sub-item
[2]
faults
3.1.16
item
any part, component, device, subsystem, functional unit, equipment or system that can be individually
[2]
considered
3.1.17
logistic delay
accumulated time during which maintenance cannot be carried out due to the necessity to acquire
[29]
maintenance resources, excluding any administrative delay
NOTE Logistic delays can be due to, for example, travelling to unattended installations; pending arrival of spare parts,
specialist, test equipment and information; or delays due to unsuitable environmental conditions (e.g. waiting on weather).
3.1.18
lost revenue
LOSTREV
total cost of lost or deferred production due to downtime
3.1.19
maintainable item
item that constitutes a part, or an assembly of parts, that is normally the lowest level in the equipment
hierarchy during maintenance
See ISO 14224:2006, Annex A, for examples of maintainable items for a variety of equipment.
3.1.20
maintenance
combination of all technical and administrative actions, including supervisory actions, intended to retain an
[2]
item in, or restore it to, a state in which it can perform a required function
3.1.21
maintenance data
data characterizing the maintenance action planned or done
3.1.22
maintainability
〈general〉 ability of an item under given conditions of use, to be retained in, or restored to, a state in which it
can perform a required function, when maintenance is performed under given conditions and using stated
[2]
procedures and resources
See Figure G.1 for further information.
3.1.23
maintenance support performance
ability of a maintenance organization, under given conditions, to provide upon demand, the resources required
[2]
to maintain an item, under a given maintenance policy
NOTE The given conditions are related to the item itself and to the conditions under which the item is used and
maintained.
3.1.24
mean time between failures
MTBF
[2]
expectation of the time between failures
NOTE The MTBF of an item can be longer or shorter than the design life of the system.
3.1.25
mean time to failure
MTTF
[2]
expectation of the time to failure
NOTE The MTTF of an item can be longer or shorter than the design life of the system.
4 © ISO 2008 – All rights reserved

3.1.26
mean time to repair
MTTR
[2]
expectation of the time to restoration
3.1.27
midstream
business category involving the processing, storage and transportation sectors of the petroleum industry
EXAMPLES Transportation pipelines, terminals, gas processing and treatment, LNG, LPG and GTL.
3.1.28
modification
[2]
combination of all technical and administrative actions intended to change an item
3.1.29
observation period
time period during which production performance and reliability data are recorded
3.1.30
operating state
[2]
state when an item is performing a required function
3.1.31
operating time
[2]
time interval during which an item is in an operating state
3.1.32
performance objectives
indicative level for the desired performance
NOTE Objectives are expressed in qualitative or quantitative terms. Objectives are not absolute requirements and
may be modified based on cost or technical constraints.
3.1.33
performance requirements
required minimum level for the performance of a system
NOTE Requirements are normally quantitative but may also be qualitative.
3.1.34
petrochemicals
business category producing the chemicals derived from petroleum and used as feedstock for the
manufacture of a variety of plastics and other related products
EXAMPLES Methanol, polypropylene.
3.1.35
preventive maintenance
maintenance carried out at predetermined intervals or according to prescribed criteria and intended to reduce
[2]
the probability of failure or the degradation of the functioning of an item
3.1.36
production-performance analysis
systematic evaluations and calculations carried out to assess the production performance of a system
NOTE The term should be used primarily for analysis of total systems, but may also be used for analysis of
production unavailability of a partial system.
3.1.37
production assurance
activities implemented to achieve and maintain a performance that is at its optimum in terms of the overall
economy and at the same time consistent with applicable framework conditions
3.1.38
production availability
ratio of production to planned production, or any other reference level, over a specified period of time
NOTE This measure is used in connection with analysis of delimited systems without compensating elements such
as substitution from other producers and downstream buffer storage. Battery limits need to be defined in each case.
See Figure G.1 for further information.
3.1.39
production performance
capacity of a system to meet demand for deliveries or performance
NOTE 1 Production availability, deliverability or other appropriate measures can be used to express production
performance.
NOTE 2 The use of production-performance terms should specify whether it represents a predicted or historic
production performance.
3.1.40
redundancy
[2]
existence of more than one means for performing a required function
3.1.41
reliability
[2]
ability of an item to perform a required function under given conditions for a given time interval
NOTE 1 The term “reliability” is also used as a measure of reliability performance and may also be expressed as a
probability.
NOTE 2 See Figure G.1 for further information.
3.1.42
reliability data
data for reliability, maintainability and maintenance support performance
NOTE Reliability and maintainability (RM) data is the term applied by ISO 14224:2006.
3.1.43
required function
[2]
function, or combination of functions, of an item that is considered necessary to provide a given service
3.1.44
risk
[20]
combination of the probability of an event and the consequences of the event
3.1.45
risk register
tool to log, follow up and close out relevant risks
NOTE Each entry in the risk register should typically include
⎯ description of the risk,
⎯ description of the action(s),
6 © ISO 2008 – All rights reserved

⎯ responsible party,
⎯ due date,
⎯ action status.
3.1.46
survival probability
R(t)
likelihood of the continued functioning of an item, as given by Equation (1):
RtT=>Pr t (1)
() ( )
where Pr is the probability that T, the time to failure of an item, is greater than t, a time equal to or greater
than 0
3.1.47
up state
state of an item characterized by the fact it can perform a required function, assuming that the external
[2]
resources, if required, are provided
NOTE This relates to availability performance.
3.1.48
upstream
business category of the petroleum industry involving exploration and production
EXAMPLES Offshore oil/gas production facility, drilling rig, intervention vessel.
3.1.49
uptime
[2]
time interval during which an item is in the up state
3.1.50
variability
variations in performance measures for different time periods under defined framework conditions
NOTE The variations can be a result of the downtime pattern for equipment and systems or operating factors, such
as wind, waves and access to certain repair resources.
3.2 Abbreviations
BOP blowout preventer
CAPEX capital expenditures
ESD emergency shut down
FMEA failure modes and effects analysis
FMECA failure modes, effects and criticality analysis
FNA flow-network analysis
FTA fault-tree analysis
GTL gas to liquid
HAZID hazard identification
HAZOP hazard and operability study
HSE health, safety, environment
LCC life-cycle cost
LNG liquefied natural gases
LOSTREV lost revenue
LPG liquefied petroleum gases
MPA Markov process analysis
MTBF mean time between failure
MTTF mean time to failure
MTTR mean time to repair
OPEX operational expenditure
PAP production-assurance programme
PNA petri net analysis
POR performance and operability review
RBD reliability block diagram
RBI risk-based inspection
RCM reliability-centred maintenance
ROV remote operated vehicle
SIMOPS simultaneous operations
SRA structural-reliability analysis
QA quality assurance
4 Production assurance and decision support
4.1 Framework conditions
The objective associated with systematic production assurance is to contribute to the alignment of design and
operational decisions with corporate business objectives.
In order to fulfil this objective, technical and operational measures as indicated in Figure 1 may be used during
design or operation to change the production performance. Figure 1 shows 21 factors that to a greater or
lesser degree can have an effect on production performance. Some of these factors are purely technical and it
is necessary that they be adhered to in design; others are related purely to operation. Most of the factors have
both technical and operational aspects, e.g. a bypass cannot be used in the operational phase unless
provisions have been made for it in the design phase. In addition, there are dependencies between many of
the listed factors.
8 © ISO 2008 – All rights reserved

This imposes two important recommendations for production assurance to be efficient.
⎯ Production assurance should be carried out throughout all project design and operational phases.
⎯ Production assurance should have a broad coverage of project activities.

Figure 1 — Design and operational measures that affect production performance
4.2 Optimization process
The main principle for optimization of design or selection between alternative design solutions is economic
optimization within given constraints and framework conditions. The achievement of high performance is of
limited importance unless the associated costs are considered. This International Standard can, therefore, be
considered together with ISO 15663 (all parts).
Examples of constraints and framework conditions that affect the optimization process are
⎯ statutory health, safety and environmental regulations;
⎯ requirements for safety equipment resulting from the risk analysis and the overall safety acceptance
criteria;
⎯ requirements to design or operation given by statutory and other regulatory bodies' regulations;
⎯ project constraints, such as budget, implementation time, national and international agreements;
⎯ conditions in the sales contracts;
⎯ technical constraints.
The optimization process can be seen as a series of steps as follows (see Figure 2 for an illustration).
a) Assess the project requirements and generate designs that are capable of meeting the project
requirements.
b) Identify all statutory, regulatory and other framework requirements that apply to the project.
c) Predict the appropriate production-assurance parameters.
d) Identify the preferred design solution based on an economical evaluation/analysis, such as net present
value analysis or another optimization criterion.
e) Apply the optimization process as illustrated in Figure 2. Be aware that the execution of the optimization
process requires that the production assurance and reliability function be addressed by qualified team
members.
f) If required, the process can be iterative, where the selected alternative is further refined and alternative
solutions identified. The iterative process is typical for “gated” or threshold project-execution phases.
g) Sensitivity analyses may be performed to take account of uncertainty in important input parameters.
10 © ISO 2008 – All rights reserved

a
Typical project constraints include HSE requirements; technical feasibility; compliance with acts, rules and regulations;
economical constraints; schedule constraints.
Figure 2 — Optimization process
4.3 Production-assurance programme
4.3.1 Objectives
A production-assurance programme (PAP) shall serve as a management tool in the process of complying with
this International Standard. It may be either a document established for the various life-cycle phases of a new
asset-development project or a document established for assets already in operation. As production
assurance is a continuous activity throughout all life-cycle phases, it shall be updated as and when required. It
may contain the following:
⎯ systematic planning of production-assurance work within the scope of the programme;
⎯ definition of optimization criteria;
⎯ definition of performance objectives and requirements, if any;
⎯ description of the production-assurance activities necessary to fulfil the objectives, how they are carried
out, by whom and when;
⎯ statements and considerations on interfaces of production assurance and reliability with other activities;
⎯ methods for verification and validation;
⎯ a level of detail that facilitates easy updating and overall coordination.
Annex A of this International Standard suggests a model for the production-assurance programme (PAP)
contents.
The PAP is the only mandatory deliverable from this International Standard.
The life-cycle phases indicated in Table 2 apply for a typical asset-development project. If the phases in a
specific project differ from those below, the activities should be defined and applied as appropriate.
Major modifications may be considered as a project with phases similar to those of an asset-development
project. The requirements to production-assurance activities as given for the relevant life-cycle phases apply.
4.3.2 Project risk categorization
It is necessary to define the level of effort to invest in a production-assurance program to meet the business
objectives for each life-cycle phase. In practice, the production-assurance effort required is closely related to
the level of technical risk in a project. It is, therefore, recommended that one of the first tasks to be performed
is an initial categorization of the technical risks in a project. This enables project managers to make a general
assessment of the level of investment in reliability resources that may have to be made in a project.
The project risk categorization typically varies depending on a number of factors such as financial situation,
risk attitude, etc. Hence, specific risk categorization schemes may be established. However, to provide some
guidance on the process, a simple risk categorization scheme is outlined below.
Projects can be divided into three risk classes:
⎯ high risk;
⎯ medium risk;
⎯ low risk.
The features that describe the three risk classes are further outlined in Table 1. Typically, there is a gradual
transition from one risk class to another. Hence, a certain degree of subjective assessment is required.
However, the justification for the selected risk class for a project should be included in the production-
assurance programme issued during the feasibility or concept phase.
The project risk categorization (high, medium and low) is further applied in Table 2 (see 4.3.3) to indicate what
processes should be performed for the different project categories.

12 © ISO 2008 – All rights reserved

Table 1 — Project risk categorization
a
Technology Operating Technical Organizational Description
Risk class
envelope system scale scale and
and complexity complexity
Mature Typical Small scale, low Small and Low Low-budget, low-risk project
technology operating complexity, consistent using field-proven equipment in
conditions minimal change organization, low the same configuration and with
of system complexity the same team under operating
configuration condition similar to previous
projects.
Mature Typical Moderate scale Small to medium Low or Low- to moderate-risk project
technology operating and complexity organization, medium using field-proven equipment in
conditions moderate an operating envelope similar to
complexity previous projects but with some
system and organizational
complexity.
Medium or
Novel or non- New, Large scale, high Large organization, Moderate- to high-risk project
b
mature extended or complexity high complexity high using either novel or non-mature
technology for aggressive equipment or with new or
a new or operating extended operating conditions.
extended environment Project involves large, complex
operating systems and management
environment organizations.
a
The term “low or medium” indicates that projects comprising the indicated features can be classified as either low-risk or medium-
risk projects, likewise for the term “medium or high”.
b
The novel or non-mature technology should have a potential significant impact on the project outcome to be classified as high-risk.

4.3.3 Programme activities
Production-assurance activities should be carried out in all phases of the life cycle of facilities to provide input
to decisions regarding feasibility, concept, design, manufacturing, construction, installation, operation,
maintenance and modification. Processes and activities shall be initiated only if they are considered to
contribute to added value of the project.
The production-assurance activities specified in the PAP shall be defined in view of the actual needs,
available personnel resources, budget framework, interfaces, milestones and access to data and general
information. This is necessary to reach a sound balance between the cost and benefit of the activity.
Production assurance should consider organizational and human factors as well as technical aspects.
Important tasks of production assurance are to monitor the overall performance level, manage reliability and
the continuous identification of the need for production-assurance activities. A further objective of production
assurance is to contribute technical, operational or organizational recommendations.
The processes and activities specified in the PAP shall focus on the main technical risk items initially identified
through a top-down screening process (see 4.3.2). A risk-classification activity can assist in identifying
performance-critical systems that should be subject to more detailed analysis and follow-up.
The emphasis of the production-assurance activities changes for the various life-cycle phases. Early activities
should focus on optimization of the overall configuration, while attention to critical detail increases in the later
phases.
In the feasibility and concept phases, the field layout configuration should be identified. This also includes
defining the degree of redundancy (fault tolerance), overcapacity and flexibility, on a system level. This
requires establishing the CAPEX, OPEX, LOSTREV, expected cost or benefit of risks and revenue for each
alternative.
These financial values are, in turn, fed back into the operators’ profitability tools, for evaluation of profitability
and selection of the alternative that best fits with the attitude towards risk. Optimal production availability for
field layouts requires that overemphasis on CAPEX is avoided, and it is recommended that this be achieved
through long-term partnering between suppliers and operators, as well as between suppliers and their sub-
suppliers. Such long-term relationships ensure mutual confidence and maturing of the technology. Early direct
involvement of the above parties with focus on the overall revenue in a life-cycle perspective is advised. This
means, for example, implementing the resulting recommendations as specifications in the invitations to tender.
An overview of the production-assurance processes is given in Table 2 and Clause 5, while descriptions of the
recommended activities for the processes are given in Annex B and Annex C.
The production-assurance processes defined in this International Standard are divided into two main classes:
core processes and interacting processes. The main reason for this split is to indicate for which processes a
potential production-assurance discipline is normally responsible and for which processes other disciplines
(e.g. project management, QA, etc.) are normally responsible. However, all processes can be equally
important to ensure success.
Table 2 provides recommendations (indicated by an “X”) on which processes should be performed as a
function of the project risk categorization (see 4.3.2). The table also provides recommendations (indicated by
an “X”) as to when the processes should be applied (in what life-cycle phase).
Production-assurance requirements (process 1) can be used to illustrate the interpretation of the table. This
process, which is further described in Annex B, should be implemented for medium- and high-risk projects,
and performed in the feasibility, concept design, engineering and procurement life-cycle phases.
Table 2 — Overview of production-assurance processes versus risk levels and life-cycle phases
Life-cycle phase
Pre-
Production-assurance processes for asset development
contract Post-contract award
award
c
Process name and number
— X X 1. Production-assurance requirements X X X X — — —
X X X 2. Production-assurance planning X X X X X X x
— X X 3. Design and manufacture for production assurance — X X — X X X
X X X 4. Production assurance X X X X X X X
— X X 5. Risk and reliability analysis X X X — — — —
X X X 6. Verification and validation X X X — — — —
X X X 7. Project risk management X X X X X X X
— — X 8. Qualification and testing X X X X
X X X 9. Performance data tracking and analysis — — — — — X X
— — X 10. Supply-chain management — — — X — — —
X X X 11. Management of change — X X X X X X
X X X 12. Organizational learning X X X X X X X
a
Including front-end engineering and design (FEED).
b
Including pre-engineering and detailed engineering.
c
The following production-assurance processes are within the main scope of work for this International Standard: 1, 2, 3, 4, 5,
6 and 9.
NOTE It should be noted that a process can be applicable for a certain risk class or life-cycle phase although no “X” is indicated
in this table. Likewise, if it can be argued that a certain process does not add value to a project, it may be omitted.
14 © ISO 2008 – All rights reserved

Low-risk projects
Medium-risk projects
High-risk projects
Feasibility
a
Conceptual design
b
Engineering
Procurement
Fabrication/Assembly/Testing
Installation and commissioning
Operation
4.4 Alternative standards
There are a number of national standards and International Standards and guidelines that support and direct
the implementation of production assurance and reliability activities in projects.
Table 3 shows how the production-assurance and reliability processes described within this International
Standard link to some of these standards. Work processes carried out in accordance with these standards can
be considered to also satisfy the requirements for relevant processes in this International Standard.
The alternative standards listed in Table 3 are not normative for this International Standard.
The list of standards in Table 3 is non-exhaustive. Other standards may also cover specific requirements in
this International Standard. If alternative standards are referred to for compliance to specific requirements, it is
the responsibility of the user to demonstrate such compliance.
Table 3 — Alternative standards
Standard
[3]
IEC 60300-1 X X — — — — — — — — — —
[4]
IEC 60300-2 — X — X — X — — — — — —
[5]
IEC 60300-3-2 — — — — — — — — X — — —
[7]
IEC 60300-3-4 X — — — — X — — — — — —
[30]
IEC 60300-3-9 — — — — X — X — — — — —
[9]
IEC 60300-3-14 — — — — X — — — — — — —
[22]
DNV-RP-A203 — — — — — — — X — — — —
[32]
API RP 17N X X X X X X X X X X X X

5 Production-assurance processes and activities
The production-assurance processes defined in this International Standard are divided into two main classes,
i.e. core processes and interacting processes. The main reason for this split is to indicate for which processes
a potential production-assurance discipline is normally responsible and for which processes other disciplines
(e.g. project management, QA, etc.) are normally responsible.
Annex B provides recommendations for the core production-assurance processes and activities that may be
carried out as part of a production-assurance program in the various life-cycle phases of a typical asset-
development project.
Projects other than asset developments, e.g. drilling units, transportation networks, major modifications, etc.,
have phases that more or less coincide with those described in the following. The activities carried out can,
however, differ from those described.
Hence, the production-assurance program may be adapted for each part involved to ensure that it fulfils the
business needs.
1. Production-
assurance
requirements
2. Production-
assurance planning
3. Design and
manufacture for
production assurance
4. Production assurance
5. Risk and
reliability analysis
6. Verification and
validation
7. Project risk
management
8. Qualification and
testing
9. Performance data
tracking and analysis
10. Supply chain
management
11. Management of
change
12. Organizational
learning
In addition to the core production-assurance processes and activities described in Annex B, a number of
interacting processes is described in Annex C. These processes are normally outside the responsibility of the
production-assurance discipline, but information flow to and from these processes is required to ensure that
production-performance and reliability requirements can be fulfilled.
Figure 3 illustrates which processes are defined as core production-assurance processes and which are
considered interacting processes. Details regarding objectives, input, output and activities for each of the
processes are further described in Annexes B and C.

Figure 3 — Core and interacting production-assurance processes

16 © ISO 2008 – All rights reserved

Annex A
(informative)
Contents of production-assurance programme (PAP)
A.1 General
This International Standard introduces the concept of production assurance (see Scope) and provides
processes and activities that culminate in a production-assurance programme (PAP) document (see 4.3.1).
This annex suggests a model for that document. A PAP (see 4.3) should cover the topics covered in A.2
through A.8.
A.2 Title
Production-assurance programme (PAP) for . [insert the description of the project].
A.3 Terms of reference
A general description of the PAP similar to the following may be given:
a) purpose and scope;
b) system boundaries and life-cycle status;
c) revision control showing major changes since last update;
d) distribution list which, depending on the content, shows which parties receive all or parts of the PAP.
A.4 Production-assurance philosophy and performance objectives
A description of the philosophy and performance objectives similar to the following may be given:
a) description of overall optimization criteria (see 4.2);
b) definition of performance objectives and requirements (see Annex F) with references to performance
targets, objectives and requirements in contract documents and any separate documents that may further
specify the targets, objectives and requirements, e.g. loss categories and battery limits to define what is
included and what is excluded in the targets;
c) definition of performance measures.
A.5 Project risk categorization
A description of the project risk categorization (see 4.3.2) should be included in the PAP to justify the selection
of production-assurance programme activities.
A.6 Organization and responsibilities
A description of the production-assurance organization with corresponding authorities and responsibilities
should be clearly stated in the PAP. Descriptions similar to the following may be given:
a) description of the organization and responsibilities, focusing on production performance, internal and
external communication, responsibilities given to managers and key personnel, functions, disciplines,
sub-projects, contractors and suppliers;
b) description of the action management system, defining how the production-assurance activities
reco
...


INTERNATIONAL ISO
STANDARD 20815
First edition
2008-06-01
Petroleum, petrochemical and natural gas
industries — Production assurance and
reliability management
Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance
de la production et management de la fiabilité

Reference number
©
ISO 2008
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2008 – All rights reserved

Contents Page
Foreword. iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 Terms and definitions. 2
3.2 Abbreviations . 7
4 Production assurance and decision support . 8
4.1 Framework conditions. 8
4.2 Optimization process . 9
4.3 Production-assurance programme . 11
4.4 Alternative standards . 15
5 Production-assurance processes and activities . 15
Annex A (informative) Contents of production-assurance programme (PAP) . 17
Annex B (informative) Core production-assurance processes and activities . 19
Annex C (informative) Interacting production-assurance processes and activities. 26
Annex D (informative) Production-performance analyses. 30
Annex E (informative) Reliability and production-performance data . 34
Annex F (informative) Performance objectives and requirements . 36
Annex G (informative) Performance measures for production availability. 38
Annex H (informative) Catastrophic events. 47
Annex I (informative) Outline of techniques. 49
Bibliography . 64

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 20815 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
iv © ISO 2008 – All rights reserved

Introduction
The petroleum and natural gas industries involve large capital investment costs as well as operational
expenditures. The profitability of these industries is dependent upon the reliability, availability and
maintainability of the systems and components that are used. Therefore, for optimal production availability in
the oil and gas business, a standardized, integrated reliability approach is required.
The concept of production assurance, introduced in this International Standard, enables a common
understanding with respect to use of reliability technology in the various life-cycle phases and covers the
activities implemented to achieve and maintain a performance level that is at its optimum in terms of the
overall economy and, at the same time, consistent with applicable regulatory and framework conditions.
Annexes A through I are for information only.

INTERNATIONAL STANDARD ISO 20815:2008(E)

Petroleum, petrochemical and natural gas industries —
Production assurance and reliability management
1 Scope
This International Standard introduces the concept of production assurance within the systems and operations
associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and
natural gas resources. This International Standard covers upstream (including subsea), midstream and
downstream facilities and activities. It focuses on production assurance of oil and gas production, processing
and associated activities and covers the analysis of reliability and maintenance of the components.
It provides processes and activities, requirements and guidelines for systematic management, effective
planning, execution and use of production assurance and reliability technology. This is to achieve cost-
effective solutions over the life cycle of an asset-development project structured around the following main
elements:
⎯ production-assurance management for optimum economy of the facility through all of its life-cycle phases,
while also considering constraints arising from health, safety, environment, quality and human factors;
⎯ planning, execution and implementation of reliability technology;
⎯ application of reliability and maintenance data;
⎯ reliability-based design and operation improvement.
For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series.
This International Standard designates 12 processes, of which seven are defined as core production-
assurance processes and addressed in this International Standard. The remaining five processes are denoted
as interacting processes and are outside the scope of this International Standard. The interaction of the core
production-assurance processes with these interacting processes, however, is within the scope of this
International Standard as the information flow to and from these latter processes is required to ensure that
production-assurance requirements can be fulfilled.
This International Standard recommends that the listed processes and activities be initiated only if they can be
considered to add value.
The only requirements mandated by this International Standard are the establishment and execution of the
production-assurance programme (PAP).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 14224:2006, Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability
and maintenance data for equipment
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1.1
availability
ability of an item to be in a state to perform a required function under given conditions at a given instant of
time, or in average over a given time interval, assuming that the required external resources are provided
See Figure G.1 for further information.
3.1.2
common cause failure
failures of different items resulting from the same direct cause, occurring within a relatively short time, where
these failures are not consequences of each other
3.1.3
corrective maintenance
maintenance that is carried out after a fault recognition and intended to put an item into a state in which it can
perform a required function
[2]
See IEC 60050-191:1990, Figure 191-10 , for more specific information.
3.1.4
deliverability
ratio of deliveries to planned deliveries over a specified period of time, when the effect of compensating
elements, such as substitution from other producers and downstream buffer storage, is included
See Figure G.1 for further information.
3.1.5
design life
planned usage time for the total system
NOTE Design life should not be confused with MTTF (3.1.25), which is comprised of several items that may be
allowed to fail within the design life of the system as long as repair or replacement is feasible.
3.1.6
down state
internal disabled state of an item characterized either by a fault or by a possible inability to perform a required
[2]
function during preventive maintenance
NOTE This state is related to availability performance.
3.1.7
downtime
[2]
time interval during which an item is in a non-working state
NOTE The downtime includes all the delays between the item failure and the restoration of its service. Downtime can
be either planned or unplanned.
3.1.8
downstream
business process, most commonly in the petroleum industry, associated with post-production activities
EXAMPLES Refining, transportation and marketing of petroleum products.
2 © ISO 2008 – All rights reserved

3.1.9
failure
termination of the ability of an item to perform a required function
NOTE 1 After failure, the item has a fault.
NOTE 2 “Failure” is an event, as distinguished from “fault”, which is a state.
3.1.10
failure cause
root cause
[2]
circumstances during design, manufacture or use that have led to a failure
NOTE Generic failure cause codes applicable for equipment failures are defined in ISO 14224:2006, B.2.3.
3.1.11
failure data
data characterizing the occurrence of a failure event
3.1.12
failure mode
effect by which a failure is observed on the failed item
NOTE Failure-mode codes are defined for some equipment classes in ISO 14224:2006, B.2.6.
3.1.13
failure rate
limit, if this exists, of the ratio of the conditional probability that the instant of time, T, of a failure of an item falls
within a given time interval, (t + ∆t) and the length of this interval, ∆t, when ∆t tends to zero, given that the item
is in an up state at the beginning of the time interval
See ISO 14224:2006, Clause C.3 for further explanation of the failure rate.
NOTE 1 In this definition, t may also denote the time to failure or the time to first failure.
NOTE 2 A practical interpretation of failure rate is the number of failures relative to the corresponding operational time.
In some cases, time can be replaced by units of use. In most cases, the reciprocal of MTTF (3.1.25) can be used as the
predictor for the failure rate, i.e. the average number of failures per unit of time in the long run if the units are replaced by
an identical unit at failure.
NOTE 3 The failure rate can be based on operational time or calendar time.
3.1.14
fault
state of an item characterized by inability to perform a required function, excluding the inability during
[2]
preventive maintenance or other planned actions, or due to lack of external resources
NOTE A fault is often a result of a failure of the item itself but the state can exist without a failure.
3.1.15
fault tolerance
attribute of an item that makes it able to perform a required function in the presence of certain given sub-item
[2]
faults
3.1.16
item
any part, component, device, subsystem, functional unit, equipment or system that can be individually
[2]
considered
3.1.17
logistic delay
accumulated time during which maintenance cannot be carried out due to the necessity to acquire
[29]
maintenance resources, excluding any administrative delay
NOTE Logistic delays can be due to, for example, travelling to unattended installations; pending arrival of spare parts,
specialist, test equipment and information; or delays due to unsuitable environmental conditions (e.g. waiting on weather).
3.1.18
lost revenue
LOSTREV
total cost of lost or deferred production due to downtime
3.1.19
maintainable item
item that constitutes a part, or an assembly of parts, that is normally the lowest level in the equipment
hierarchy during maintenance
See ISO 14224:2006, Annex A, for examples of maintainable items for a variety of equipment.
3.1.20
maintenance
combination of all technical and administrative actions, including supervisory actions, intended to retain an
[2]
item in, or restore it to, a state in which it can perform a required function
3.1.21
maintenance data
data characterizing the maintenance action planned or done
3.1.22
maintainability
〈general〉 ability of an item under given conditions of use, to be retained in, or restored to, a state in which it
can perform a required function, when maintenance is performed under given conditions and using stated
[2]
procedures and resources
See Figure G.1 for further information.
3.1.23
maintenance support performance
ability of a maintenance organization, under given conditions, to provide upon demand, the resources required
[2]
to maintain an item, under a given maintenance policy
NOTE The given conditions are related to the item itself and to the conditions under which the item is used and
maintained.
3.1.24
mean time between failures
MTBF
[2]
expectation of the time between failures
NOTE The MTBF of an item can be longer or shorter than the design life of the system.
3.1.25
mean time to failure
MTTF
[2]
expectation of the time to failure
NOTE The MTTF of an item can be longer or shorter than the design life of the system.
4 © ISO 2008 – All rights reserved

3.1.26
mean time to repair
MTTR
[2]
expectation of the time to restoration
3.1.27
midstream
business category involving the processing, storage and transportation sectors of the petroleum industry
EXAMPLES Transportation pipelines, terminals, gas processing and treatment, LNG, LPG and GTL.
3.1.28
modification
[2]
combination of all technical and administrative actions intended to change an item
3.1.29
observation period
time period during which production performance and reliability data are recorded
3.1.30
operating state
[2]
state when an item is performing a required function
3.1.31
operating time
[2]
time interval during which an item is in an operating state
3.1.32
performance objectives
indicative level for the desired performance
NOTE Objectives are expressed in qualitative or quantitative terms. Objectives are not absolute requirements and
may be modified based on cost or technical constraints.
3.1.33
performance requirements
required minimum level for the performance of a system
NOTE Requirements are normally quantitative but may also be qualitative.
3.1.34
petrochemicals
business category producing the chemicals derived from petroleum and used as feedstock for the
manufacture of a variety of plastics and other related products
EXAMPLES Methanol, polypropylene.
3.1.35
preventive maintenance
maintenance carried out at predetermined intervals or according to prescribed criteria and intended to reduce
[2]
the probability of failure or the degradation of the functioning of an item
3.1.36
production-performance analysis
systematic evaluations and calculations carried out to assess the production performance of a system
NOTE The term should be used primarily for analysis of total systems, but may also be used for analysis of
production unavailability of a partial system.
3.1.37
production assurance
activities implemented to achieve and maintain a performance that is at its optimum in terms of the overall
economy and at the same time consistent with applicable framework conditions
3.1.38
production availability
ratio of production to planned production, or any other reference level, over a specified period of time
NOTE This measure is used in connection with analysis of delimited systems without compensating elements such
as substitution from other producers and downstream buffer storage. Battery limits need to be defined in each case.
See Figure G.1 for further information.
3.1.39
production performance
capacity of a system to meet demand for deliveries or performance
NOTE 1 Production availability, deliverability or other appropriate measures can be used to express production
performance.
NOTE 2 The use of production-performance terms should specify whether it represents a predicted or historic
production performance.
3.1.40
redundancy
[2]
existence of more than one means for performing a required function
3.1.41
reliability
[2]
ability of an item to perform a required function under given conditions for a given time interval
NOTE 1 The term “reliability” is also used as a measure of reliability performance and may also be expressed as a
probability.
NOTE 2 See Figure G.1 for further information.
3.1.42
reliability data
data for reliability, maintainability and maintenance support performance
NOTE Reliability and maintainability (RM) data is the term applied by ISO 14224:2006.
3.1.43
required function
[2]
function, or combination of functions, of an item that is considered necessary to provide a given service
3.1.44
risk
[20]
combination of the probability of an event and the consequences of the event
3.1.45
risk register
tool to log, follow up and close out relevant risks
NOTE Each entry in the risk register should typically include
⎯ description of the risk,
⎯ description of the action(s),
6 © ISO 2008 – All rights reserved

⎯ responsible party,
⎯ due date,
⎯ action status.
3.1.46
survival probability
R(t)
likelihood of the continued functioning of an item, as given by Equation (1):
Rtf=>T t (1)
() ( )
Pr
where
f is a probability function;
Pr
T is the time to failure of an item;
t is a time equal to or greater than 0.
3.1.47
up state
state of an item characterized by the fact it can perform a required function, assuming that the external
[2]
resources, if required, are provided
NOTE This relates to availability performance.
3.1.48
upstream
business category of the petroleum industry involving exploration and production
EXAMPLES Offshore oil/gas production facility, drilling rig, intervention vessel.
3.1.49
uptime
[2]
time interval during which an item is in the up state
3.1.50
variability
variations in performance measures for different time periods under defined framework conditions
NOTE The variations can be a result of the downtime pattern for equipment and systems or operating factors, such
as wind, waves and access to certain repair resources.
3.2 Abbreviations
BOP blowout preventer
CAPEX capital expenditures
ESD emergency shut down
FMEA failure modes and effects analysis
FMECA failure modes, effects and criticality analysis
FNA flow-network analysis
FTA fault-tree analysis
GTL gas to liquid
HAZID hazard identification
HAZOP hazard and operability study
HSE health, safety, environment
LCC life-cycle cost
LNG liquefied natural gases
LOSTREV lost revenue
LPG liquefied petroleum gases
MPA Markov process analysis
MTBF mean time between failure
MTTF mean time to failure
MTTR mean time to repair
OPEX operational expenditure
PAP production-assurance programme
PNA petri net analysis
POR performance and operability review
RBD reliability block diagram
RBI risk-based inspection
RCM reliability-centred maintenance
ROV remote operated vehicle
SIMOPS simultaneous operations
SRA structural-reliability analysis
QA quality assurance
4 Production assurance and decision support
4.1 Framework conditions
The objective associated with systematic production assurance is to contribute to the alignment of design and
operational decisions with corporate business objectives.
In order to fulfil this objective, technical and operational measures as indicated in Figure 1 may be used during
design or operation to change the production performance. Figure 1 shows 21 factors that to a greater or
lesser degree can have an effect on production performance. Some of these factors are purely technical and it
is necessary that they be adhered to in design; others are related purely to operation. Most of the factors have
8 © ISO 2008 – All rights reserved

both technical and operational aspects, e.g. a bypass cannot be used in the operational phase unless
provisions have been made for it in the design phase. In addition, there are dependencies between many of
the listed factors.
This imposes two important recommendations for production assurance to be efficient.
⎯ Production assurance should be carried out throughout all project design and operational phases.
⎯ Production assurance should have a broad coverage of project activities.

Figure 1 — Design and operational measures that affect production performance
4.2 Optimization process
The main principle for optimization of design or selection between alternative design solutions is economic
optimization within given constraints and framework conditions. The achievement of high performance is of
limited importance unless the associated costs are considered. This International Standard can, therefore, be
considered together with ISO 15663 (all parts).
Examples of constraints and framework conditions that affect the optimization process are
⎯ statutory health, safety and environmental regulations;
⎯ requirements for safety equipment resulting from the risk analysis and the overall safety acceptance
criteria;
⎯ requirements to design or operation given by statutory and other regulatory bodies' regulations;
⎯ project constraints, such as budget, implementation time, national and international agreements;
⎯ conditions in the sales contracts;
⎯ technical constraints.
The optimization process can be seen as a series of steps as follows (see Figure 2 for an illustration).
a) Assess the project requirements and generate designs that are capable of meeting the project
requirements.
b) Identify all statutory, regulatory and other framework requirements that apply to the project.
c) Predict the appropriate production-assurance parameters.
d) Identify the preferred design solution based on an economical evaluation/analysis, such as net present
value analysis or another optimization criterion.
e) Apply the optimization process as illustrated in Figure 2. Be aware that the execution of the optimization
process requires that the production assurance and reliability function be addressed by qualified team
members.
f) If required, the process can be iterative, where the selected alternative is further refined and alternative
solutions identified. The iterative process is typical for “gated” or threshold project-execution phases.
g) Sensitivity analyses may be performed to take account of uncertainty in important input parameters.
10 © ISO 2008 – All rights reserved

a
Typical project constraints include HSE requirements; technical feasibility; compliance with acts, rules and regulations;
economical constraints; schedule constraints.
Figure 2 — Optimization process
4.3 Production-assurance programme
4.3.1 Objectives
A production-assurance programme (PAP) shall serve as a management tool in the process of complying with
this International Standard. It may be either a document established for the various life-cycle phases of a new
asset-development project or a document established for assets already in operation. As production
assurance is a continuous activity throughout all life-cycle phases, it shall be updated as and when required. It
may contain the following:
⎯ systematic planning of production-assurance work within the scope of the programme;
⎯ definition of optimization criteria;
⎯ definition of performance objectives and requirements, if any;
⎯ description of the production-assurance activities necessary to fulfil the objectives, how they are carried
out, by whom and when;
⎯ statements and considerations on interfaces of production assurance and reliability with other activities;
⎯ methods for verification and validation;
⎯ a level of detail that facilitates easy updating and overall coordination.
Annex A of this International Standard suggests a model for the production-assurance programme (PAP)
contents.
The PAP is the only mandatory deliverable from this International Standard.
The life-cycle phases indicated in Table 2 apply for a typical asset-development project. If the phases in a
specific project differ from those below, the activities should be defined and applied as appropriate.
Major modifications may be considered as a project with phases similar to those of an asset-development
project. The requirements to production-assurance activities as given for the relevant life-cycle phases apply.
4.3.2 Project risk categorization
It is necessary to define the level of effort to invest in a production-assurance program to meet the business
objectives for each life-cycle phase. In practice, the production-assurance effort required is closely related to
the level of technical risk in a project. It is, therefore, recommended that one of the first tasks to be performed
is an initial categorization of the technical risks in a project. This enables project managers to make a general
assessment of the level of investment in reliability resources that may have to be made in a project.
The project risk categorization typically varies depending on a number of factors such as financial situation,
risk attitude, etc. Hence, specific risk categorization schemes may be established. However, to provide some
guidance on the process, a simple risk categorization scheme is outlined below.
Projects can be divided into three risk classes:
⎯ high risk;
⎯ medium risk;
⎯ low risk.
The features that describe the three risk classes are further outlined in Table 1. Typically, there is a gradual
transition from one risk class to another. Hence, a certain degree of subjective assessment is required.
However, the justification for the selected risk class for a project should be included in the production-
assurance programme issued during the feasibility or concept phase.
The project risk categorization (high, medium and low) is further applied in Table 2 (see 4.3.3) to indicate what
processes should be performed for the different project categories.

12 © ISO 2008 – All rights reserved

Table 1 — Project risk categorization
a
Technology Operating Technical Organizational Description
Risk class
envelope system scale scale and
and complexity complexity
Mature Typical Small scale, low Small and Low Low-budget, low-risk project
technology operating complexity, consistent using field-proven equipment in
conditions minimal change organization, low the same configuration and with
of system complexity the same team under operating
configuration condition similar to previous
projects.
Mature Typical Moderate scale Small to medium Low or Low- to moderate-risk project
technology operating and complexity organization, medium using field-proven equipment in
conditions moderate an operating envelope similar to
complexity previous projects but with some
system and organizational
complexity.
Medium or
Novel or non- New, Large scale, high Large organization, Moderate- to high-risk project
b
mature extended or complexity high complexity high using either novel or non-mature
technology for aggressive equipment or with new or
a new or operating extended operating conditions.
extended environment Project involves large, complex
operating systems and management
environment organizations.
a
The term “low or medium” indicates that projects comprising the indicated features can be classified as either low-risk or medium-
risk projects, likewise for the term “medium or high”.
b
The novel or non-mature technology should have a potential significant impact on the project outcome to be classified as high-risk.

4.3.3 Programme activities
Production-assurance activities should be carried out in all phases of the life cycle of facilities to provide input
to decisions regarding feasibility, concept, design, manufacturing, construction, installation, operation,
maintenance and modification. Processes and activities shall be initiated only if they are considered to
contribute to added value of the project.
The production-assurance activities specified in the PAP shall be defined in view of the actual needs,
available personnel resources, budget framework, interfaces, milestones and access to data and general
information. This is necessary to reach a sound balance between the cost and benefit of the activity.
Production assurance should consider organizational and human factors as well as technical aspects.
Important tasks of production assurance are to monitor the overall performance level, manage reliability and
the continuous identification of the need for production-assurance activities. A further objective of production
assurance is to contribute technical, operational or organizational recommendations.
The processes and activities specified in the PAP shall focus on the main technical risk items initially identified
through a top-down screening process (see 4.3.2). A risk-classification activity can assist in identifying
performance-critical systems that should be subject to more detailed analysis and follow-up.
The emphasis of the production-assurance activities changes for the various life-cycle phases. Early activities
should focus on optimization of the overall configuration, while attention to critical detail increases in the later
phases.
In the feasibility and concept phases, the field layout configuration should be identified. This also includes
defining the degree of redundancy (fault tolerance), overcapacity and flexibility, on a system level. This
requires establishing the CAPEX, OPEX, LOSTREV, expected cost or benefit of risks and revenue for each
alternative.
These financial values are, in turn, fed back into the operators’ profitability tools, for evaluation of profitability
and selection of the alternative that best fits with the attitude towards risk. Optimal production availability for
field layouts requires that overemphasis on CAPEX is avoided, and it is recommended that this be achieved
through long-term partnering between suppliers and operators, as well as between suppliers and their sub-
suppliers. Such long-term relationships ensure mutual confidence and maturing of the technology. Early direct
involvement of the above parties with focus on the overall revenue in a life-cycle perspective is advised. This
means, for example, implementing the resulting recommendations as specifications in the invitations to tender.
An overview of the production-assurance processes is given in Table 2 and Clause 5, while descriptions of the
recommended activities for the processes are given in Annex B and Annex C.
The production-assurance processes defined in this International Standard are divided into two main classes:
core processes and interacting processes. The main reason for this split is to indicate for which processes a
potential production-assurance discipline is normally responsible and for which processes other disciplines
(e.g. project management, QA, etc.) are normally responsible. However, all processes can be equally
important to ensure success.
Table 2 provides recommendations (indicated by an “X”) on which processes should be performed as a
function of the project risk categorization (see 4.3.2). The table also provides recommendations (indicated by
an “X”) as to when the processes should be applied (in what life-cycle phase).
Production-assurance requirements (process 1) can be used to illustrate the interpretation of the table. This
process, which is further described in Annex B, should be implemented for medium- and high-risk projects,
and performed in the feasibility, concept design, engineering and procurement life-cycle phases.
Table 2 — Overview of production-assurance processes versus risk levels and life-cycle phases
Life-cycle phase
Pre-
Production-assurance processes for asset development
contract Post-contract award
award
c
Process name and number
— X X 1. Production-assurance requirements X X X X — — —
X X X 2. Production-assurance planning X X X X X X x
— X X 3. Design and manufacture for production assurance — X X — X X X
X X X 4. Production assurance X X X X X X X
— X X 5. Risk and reliability analysis X X X — — — —
X X X 6. Verification and validation X X X — — — —
X X X 7. Project risk management X X X X X X X
— — X 8. Qualification and testing X X X X
X X X 9. Performance data tracking and analysis — — — — — X X
— — X 10. Supply-chain management — — — X — — —
X X X 11. Management of change — X X X X X X
X X X 12. Organizational learning X X X X X X X
a
Including front-end engineering and design (FEED).
b
Including pre-engineering and detailed engineering.
c
The following production-assurance processes are within the main scope of work for this International Standard: 1, 2, 3, 4, 5,
6 and 9.
NOTE It should be noted that a process can be applicable for a certain risk class or life-cycle phase although no “X” is indicated
in this table. Likewise, if it can be argued that a certain process does not add value to a project, it may be omitted.
14 © ISO 2008 – All rights reserved

Low-risk projects
Medium-risk projects
High-risk projects
Feasibility
a
Conceptual design
b
Engineering
Procurement
Fabrication/Assembly/Testing
Installation and commissioning
Operation
4.4 Alternative standards
There are a number of national standards and International Standards and guidelines that support and direct
the implementation of production assurance and reliability activities in projects.
Table 3 shows how the production-assurance and reliability processes described within this International
Standard link to some of these standards. Work processes carried out in accordance with these standards can
be considered to also satisfy the requirements for relevant processes in this International Standard.
The alternative standards listed in Table 3 are not normative for this International Standard.
The list of standards in Table 3 is non-exhaustive. Other standards may also cover specific requirements in
this International Standard. If alternative standards are referred to for compliance to specific requirements, it is
the responsibility of the user to demonstrate such compliance.
Table 3 — Alternative standards
Standard
[3]
IEC 60300-1 X X — — — — — — — — — —
[4]
IEC 60300-2 — X — X — X — — — — — —
[5]
IEC 60300-3-2 — — — — — — — — X — — —
[7]
IEC 60300-3-4 X — — — — X — — — — — —
[30]
IEC 60300-3-9 — — — — X — X — — — — —
[9]
IEC 60300-3-14 — — — — X — — — — — — —
[22]
DNV-RP-A203 — — — — — — — X — — — —
[32]
API RP 17N X X X X X X X X X X X X

5 Production-assurance processes and activities
The production-assurance processes defined in this International Standard are divided into two main classes,
i.e. core processes and interacting processes. The main reason for this split is to indicate for which processes
a potential production-assurance discipline is normally responsible and for which processes other disciplines
(e.g. project management, QA, etc.) are normally responsible.
Annex B provides recommendations for the core production-assurance processes and activities that may be
carried out as part of a production-assurance program in the various life-cycle phases of a typical asset-
development project.
Projects other than asset developments, e.g. drilling units, transportation networks, major modifications, etc.,
have phases that more or less coincide with those described in the following. The activities carried out can,
however, differ from those described.
Hence, the production-assurance program may be adapted for each part involved to ensure that it fulfils the
business needs.
1. Production-
assurance
requirements
2. Production-
assurance planning
3. Design and
manufacture for
production assurance
4. Production assurance
5. Risk and
reliability analysis
6. Verification and
validation
7. Project risk
management
8. Qualification and
testing
9. Performance data
tracking and analysis
10. Supply chain
management
11. Management of
change
12. Organizational
learning
In addition to the core production-assurance processes and activities described in Annex B, a number of
interacting processes is described in Annex C. These processes are normally outside the responsibility of the
production-assurance discipline, but information flow to and from these processes is required to ensure that
production-performance and reliability requirements can be fulfilled.
Figure 3 illustrates which processes are defined as core production-assurance processes and which are
considered interacting processes. Details regarding objectives, input, output and activities for each of the
processes are further described in Annexes B and C.

Figure 3 — Core and interacting production-assurance processes

16 © ISO 2008 – All rights reserved

Annex A
(informative)
Contents of production-assurance programme (PAP)
A.1 General
This International Standard introduces the concept of production assurance (see Scope) and provides
processes and activities that culminate in a production-assurance programme (PAP) document (see 4.3.1).
This annex suggests a model for that document. A PAP (see 4.3) should cover the topics covered in A.2
through A.8.
A.2 Title
Production-assurance programme (PAP) for . [insert the description of the project].
A.3 Terms of reference
A general description of the PAP similar to the following may be given:
a) purpose and scope;
b) system boundaries and life-cycle status;
c) revision control showing major changes since last update;
d) distribution list which, depending on the content, shows which parties receive all or parts of the PAP.
A.4 Production-assurance philosophy and performance objectives
A description of the philosophy and performance objectives similar to the following may be given:
a) description of overall optimization criteria (see 4.2);
b) definition of performance objectives and requirements (see Annex F) with references to performance
targets, objectives and requirements in contract documents and any separate documents that may further
specify the targets, objectives and requirements, e.g. loss categories and battery limits to define what is
included and what is excluded in the targets;
c) definition of performance measures.
A.5 Project risk categorization
A description of the project risk categorization (see 4.3.2) should be included in the PAP to justify the selection
of production-assurance programme activities.
A.6 Organization and responsibilities
A description of the production-assurance organization with corresponding authorities and responsibilities
should be clearly stated in the PAP. Descriptions similar to the following may be given:
a) description of the organization and responsibilities, focusing on production performance, internal and
external communication, responsibilities given to managers and key personnel, functions, disciplines,
sub-projects, contractors and suppliers;
b) description of the action management system, defining how the production-assurance activities
recommendations and actions are communicated, evaluated and implemented;
c) description of the verification and validation functions specifying planned third-party verification activities
related to production assurance/reliability (if any).
A.7 Activity schedule
A description of the activit
...


NORME ISO
INTERNATIONALE 20815
Première édition
2008-06-01
Industries du pétrole, de la pétrochimie et
du gaz naturel — Assurance de la
production et management de la fiabilité
Petroleum, petrochemical and natural gas industries — Production
assurance and reliability management

Numéro de référence
©
ISO 2008
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.

DOCUMENT PROTÉGÉ PAR COPYRIGHT

©  ISO 2008
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Version française parue en 2009
Publié en Suisse
ii © ISO 2008 – Tous droits réservés

Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application. 1
2 Références normatives . 2
3 Termes, définitions et termes abrégés. 2
3.1 Termes et définitions. 2
3.2 Abréviations . 8
4 Assurance production et aide à la décision .9
4.1 Conditions de travail . 9
4.2 Processus d'optimisation . 10
4.3 Programme d'assurance production .12
4.4 Normes alternatives. 17
5 Processus et activités de l'assurance production . 17
Annexe A (informative) Contenu du programme d'assurance production (PAP) . 19
Annexe B (informative) Processus et activités fondamentaux de l'assurance production. 21
Annexe C (informative) Activités et processus d'assurance production en interaction . 29
Annexe D (informative) Analyses de la performance de production . 33
Annexe E (informative) Données de fiabilité et de performance de production. 37
Annexe F (informative) Objectifs et exigences de performance . 39
Annexe G (informative) Mesures de performance pour la disponibilité de production. 41
Annexe H (informative) Événements catastrophiques. 52
Annexe I (informative) Présentation des techniques. 54
Bibliographie . 70

Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 20815 a été élaborée par le comité technique ISO/TC 67, Matériel, équipement et structures en mer
pour les industries pétrolière, pétrochimique et du gaz naturel.
La présente version française de l'ISO 20815:2008 correspond à la version anglaise publiée le 2008-06-01 et
corrigée le 2009-06-15.
iv © ISO 2008 – Tous droits réservés

Introduction
Les industries du pétrole et du gaz naturel impliquent des niveaux élevés de coûts d'investissements et de
dépenses opérationnelles. La rentabilité de ces industries dépend de la fiabilité, de la disponibilité et de la
maintenabilité des systèmes et des composants qui sont utilisés. Par conséquent, la disponibilité de
production optimale dans les activités liées au pétrole et au gaz exige une approche fiabiliste intégrée et
normalisée.
Le concept de l'assurance production, présenté dans la présente Norme internationale, permet une
compréhension commune de l'utilisation des techniques fiabilistes dans les diverses phases du cycle de vie et
couvre les activités mises en œuvre pour atteindre et maintenir un niveau de performances qui soit à la fois
optimal en termes d'économie globale et cohérent avec les conditions applicables de la réglementation et du
cadre de travail.
Les Annexes A à I sont informatives.

NORME INTERNATIONALE ISO 20815:2008(F)

Industries du pétrole, de la pétrochimie et du gaz naturel —
Assurance de la production et management de la fiabilité
1 Domaine d'application
La présente Norme internationale introduit le concept d'assurance production dans les systèmes et les
opérations liés au forage, à l'exploitation, au traitement et au transport des ressources pétrolières,
pétrochimiques et en gaz naturel. La présente Norme internationale couvre les installations et les activités
amont (y compris sous-marines), intermédiaires et aval. Elle est axée sur l'assurance production relative à la
production du pétrole et du gaz, sur le traitement et les opérations associées et couvre l'analyse de la fiabilité
et de la maintenance des composants.
Elle fournit des processus et des activités, des exigences et des lignes directrices pour la gestion
systématique, la planification, l'exécution et l'utilisation efficaces de l'assurance production et des techniques
fiabilistes. Le but en est d'obtenir des solutions rentables sur tout le cycle de vie d'un projet de développement
d'une installation de production structurée autour des éléments principaux suivants:
⎯ gestion de l'assurance production pour une économie optimale de l'installation durant toutes les phases
de son cycle de vie, tout en tenant compte des contraintes résultant de facteurs liés à la santé, à la
sécurité, à l'environnement et à la qualité ainsi qu'aux facteurs humains;
⎯ planification, exécution et mise en œuvre des techniques fiabilistes;
⎯ application des données de fiabilité et de maintenance;
⎯ amélioration de la conception et de l'exploitation basée sur la fiabilité.
Pour les normes relatives à la fiabilité des équipements et à l'exécution de la maintenance, voir la série
CEI 60300-3.
La présente Norme internationale définie douze processus, dont sept sont définis comme des processus
fondamentaux de l'assurance production et sont abordés dans la présente Norme internationale. Les cinq
processus restants sont appelés processus en interaction et ne relèvent pas du domaine d'application de la
présente Norme internationale. L'interaction des processus fondamentaux de l'assurance production avec ces
processus interactifs s'inscrit toutefois dans le domaine d'application de la norme car le flux d'informations à
destination et en provenance de ces derniers processus est requis pour s'assurer que les exigences de
l'assurance production peuvent être remplies.
La présente Norme internationale recommande de ne lancer les processus et activités qu'elle énumère que
s'ils apportent de la valeur ajoutée.
Les seules exigences obligatoires stipulées par la présente Norme internationale concernent l'établissement
et l'exécution du programme d'assurance production (PAP).
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 14224:2006, Industries du pétrole, de la pétrochimie et du gaz naturel — Recueil et échange de données
de fiabilité et de maintenance des équipements
3 Termes, définitions et termes abrégés
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1.1
disponibilité
aptitude d'une entité à être en état d'accomplir une fonction requise dans des conditions données, à un instant
donné ou, en moyenne, pendant un intervalle de temps donné, en supposant que la fourniture des ressources
externes nécessaires est assurée
Voir Figure G.1 pour de plus amples informations.
3.1.2
défaillance de cause commune
défaillances de différentes entités résultant de la même cause directe, se produisant en un court laps de
temps et n'étant pas les conséquences les unes des autres
3.1.3
maintenance corrective
maintenance effectuée après une détection de panne et destinée à mettre une entité dans un état lui
permettant d'accomplir une fonction requise
[2]
Voir la CEI 60050-191:1990, Figure 191-10 , pour des informations plus spécifiques.
3.1.4
livrabilité
capacité de livraison
rapport des livraisons effectives aux livraisons prévues sur une durée spécifiée, lorsque l'effet d'éléments de
compensation tels que la substitution provenant d'autres producteurs et le stockage aval en tampon est inclus
Voir Figure G.1 pour de plus amples informations.
3.1.5
durée de vie de conception
durée d'utilisation planifiée pour l'ensemble du système
NOTE Il convient de ne pas confondre la durée de vie de conception avec le MTTF (3.1.25) du système qui comporte
plusieurs entités autorisées à tomber en panne durant la durée de vie de conception tant que la réparation ou le
remplacement est faisable.
3.1.6
état d'indisponibilité (down state)
état d'incapacité interne d'une entité caractérisée soit par une panne, soit par l'inaptitude éventuelle à
[2]
accomplir une fonction requise pendant la maintenance préventive
NOTE Cet état est lié à la performance de disponibilité.
2 © ISO 2008 – Tous droits réservés

3.1.7
temps d'indisponibilité (downtime)
[2]
intervalle de temps pendant lequel une entité n'est pas en état de fonctionner
NOTE Le temps d'indisponibilité inclut toute la durée entre la défaillance de l'entité et la restauration de son service.
Le temps d'arrêt peut être planifié ou non.
3.1.8
aval
procédé industriel, le plus généralement dans l'industrie du pétrole, pour décrire les activités de post
production
EXEMPLE Raffinage, transport et mise sur le marché de produits pétroliers.
3.1.9
défaillance
cessation de l'aptitude d'une entité à accomplir une fonction requise
NOTE 1 Après défaillance d'une entité, celle-ci est en état de panne.
NOTE 2 Une «défaillance» est un passage d'un état à un autre, par opposition à une «panne», qui est un état.
3.1.10
cause de défaillance
cause fondamentale
ensemble des circonstances associées à la conception, la fabrication ou l'utilisation qui ont entraîné une
[2]
défaillance
NOTE L'ISO 14224:2006, B.2.3, définit les codes de causes de défaillance applicables aux défaillances des
équipements.
3.1.11
données de défaillance
données caractérisant l'occurrence d'un événement de défaillance
3.1.12
mode de défaillance
effet par lequel une défaillance est observée sur l'élément défectueux
NOTE Les codes des modes de défaillance spécifiques à chaque équipement sont définis dans l'ISO 14224:2006,
B.2.6.
3.1.13
taux de défaillance
limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant, T, d'une défaillance d'une entité
soit compris dans un intervalle de temps donné, [t, (t + ∆t)] par la longueur de cet intervalle, ∆t, lorsque ∆t tend
vers zéro, en supposant que l'entité a fonctionné sans interruption sur [0, t].
Voir l'ISO 14224:2206, Article C.3, pour plus d'explications sur le taux de défaillance.
NOTE 1 Dans cette définition, T représente la durée de fonctionnement avant défaillance ou la durée de
fonctionnement avant la première défaillance.
NOTE 2 Une interprétation pratique du taux de défaillance est le nombre de défaillances relatives au temps de
fonctionnement correspondant. Dans certains cas, le temps peut être remplacé par le nombre d'utilisations. Dans la
plupart des cas, pour les entités individuelles, l'inverse du MTTF (3.1.25) peut servir de valeur prédictive pour le taux de
défaillance, à savoir le nombre de défaillances par unité de temps à long terme si les entités sont remplacées par une
entité identique au moment de la défaillance.
NOTE 3 Le taux de défaillance peut être basé sur le temps opérationnel ou sur le temps calendaire.
3.1.14
panne
état d'une entité caractérisant son inaptitude à accomplir une fonction requise, non compris l'inaptitude due à
[2]
la maintenance préventive ou à d'autres actions programmées ou dues à un manque de moyens extérieurs
NOTE Une panne est souvent la conséquence d'une défaillance de l'entité elle-même, mais elle peut exister sans
défaillance préalable.
3.1.15
tolérance aux défaillances
[2]
capacité d'une entité à accomplir une fonction requise malgré certaines pannes de ses sous-entités
3.1.16
entité
dispositif
individu
tout élément, composant, sous-système, unité fonctionnelle, équipement ou système que l'on peut considérer
[2]
individuellement
3.1.17
délai logistique
durée cumulée pendant laquelle la maintenance ne peut être effectuée en raison de la nécessité d'acquérir
[29]
des ressources de maintenance, à l'exclusion du retard administratif
NOTE Les délais logistiques peuvent être dus, par exemple, aux déplacements vers des installations inhabitées, à
l'attente de l'arrivée des pièces de rechange, d'un spécialiste, de l'équipement d'essai et d'informations ou à des retards
dus à des conditions environnementales extrêmes (par exemple, attente pour cause de mauvais temps).
3.1.18
revenu perdu
LOSTREV
coût total de la production perdue ou reportée en raison du temps d'indisponibilité
3.1.19
élément maintenable
entité qui constitue une pièce, ou un ensemble de pièces, qui est normalement le niveau le plus bas de la
hiérarchie d'équipement pendant la maintenance
Voir des exemples d'entités maintenables pour divers équipements dans l'Annexe A de l'ISO 14224:2006.
3.1.20
maintenance
combinaison de toutes les actions techniques et administratives, y compris les opérations de supervision,
[2]
destinées à maintenir ou à remettre une entité dans un état lui permettant d'accomplir une fonction requise
3.1.21
données de maintenance
données caractérisant l'action de maintenance prévue ou effectuée
3.1.22
maintenabilité
〈général〉 dans des conditions données d'utilisation, aptitude générale d'une entité à être maintenue ou
rétablie dans un état dans lequel elle peut accomplir une fonction requise, lorsque la maintenance est
[2]
accomplie dans des conditions données, avec des procédures et des moyens prescrits
Voir Figure G.1 pour de plus amples informations.
4 © ISO 2008 – Tous droits réservés

3.1.23
performance de la logistique de maintenance
aptitude d'une organisation de maintenance à fournir sur demande, dans des conditions données, les moyens
[2]
nécessaires à la maintenance d'une entité conformément à une politique de maintenance donnée
NOTE Les conditions données sont liées à l'entité proprement dite et aux conditions d'utilisation et de maintenance
de l'entité.
3.1.24
temps moyen entre défaillances
MTBF
[2]
espérance mathématique du temps entre défaillances
NOTE Le MTBF d'une entité peut être plus long ou plus court que la durée de vie de conception du système.
3.1.25
durée moyenne de fonctionnement avant défaillance
MTTF
[2]
espérance mathématique de la durée de fonctionnement avant défaillance
NOTE Le MTTF d'une entité peut être plus long ou plus court que la durée de vie de conception du système.
3.1.26
moyenne des temps de réparation
MTTR
[2]
espérance mathématique de la durée du temps de restauration
3.1.27
activités intermédiaires
catégorie d'activités entre amont et aval impliquant les secteurs de transformation, stockage et transport de
l'industrie du pétrole
EXEMPLES Conduites de transport d'hydrocarbures, terminaux, traitement et transformation de gaz, GNL, GPL et
GTL.
3.1.28
modification
[2]
combinaison de toutes les actions techniques et administratives effectuées pour modifier une entité
3.1.29
période d'observation
période de temps pendant laquelle sont enregistrées les données relatives à la fiabilité et aux performances
de production
3.1.30
(état de) fonctionnement
[2]
état d'une entité accomplissant une fonction requise
3.1.31
temps de fonctionnement
[2]
intervalle de temps pendant lequel une entité est en état de fonctionnement
3.1.32
objectifs de performance
niveau pré-établi pour la performance souhaitée
NOTE Les objectifs sont exprimés en termes qualitatifs ou quantitatifs. Les objectifs ne sont pas des exigences
absolues et on peut s'en écarter en raison de contraintes de coût ou de contraintes techniques.
3.1.33
exigences de performance
niveau minimal exigé pour la performance d'un système
NOTE Les exigences sont normalement quantitatives mais elles peuvent être aussi qualitatives.
3.1.34
pétrochimie
catégorie d'activités produisant des produits chimiques dérivés du pétrole et utilisés comme intermédiaires
dans la fabrication de diverses matières plastiques et autres produits connexes
EXEMPLES Méthanol, polypropylène.
3.1.35
maintenance préventive
maintenance effectuée à intervalles prédéterminés ou selon des critères prescrits et destinée à réduire la
[2]
probabilité de défaillance ou la dégradation du fonctionnement d'une entité
3.1.36
analyse de performance de production
évaluations et calculs systématiques effectués pour évaluer la performance de production d'un système
NOTE Il convient d'utiliser ce terme principalement pour l'analyse de systèmes complets mais il peut l'être aussi pour
les analyses des indisponibilités de production d'un système partiel.
3.1.37
assurance production
activités mises en œuvre pour atteindre et maintenir un niveau de performance optimal en termes d'économie
tout en étant compatible avec les conditions de travail applicables
3.1.38
disponibilité de production
rapport de la production effective à la production prévue ou tout autre niveau de référence, sur une période
spécifiée
NOTE Cette mesure est utilisée en liaison avec l'analyse des systèmes délimités, sans éléments compensateurs tels
que la substitution provenant d'autres producteurs et le stockage tampon aval. Il est nécessaire de définir les batteries
limites dans chaque cas.
Voir Figure G.1 pour de plus amples informations.
3.1.39
performance de production
capacité d'un système à satisfaire à la demande de livraisons ou de performance
NOTE 1 La performance de production peut être exprimée par la disponibilité de production, la livrabilité (capacité de
livraison) ou autres mesures appropriées.
NOTE 2 Lors de l'utilisation des termes de performance de production, il convient de préciser s'il s'agit d'une
performance de production prédite ou opérationnelle.
3.1.40
redondance
[2]
existence de plus d'un moyen d'accomplir une fonction requise
6 © ISO 2008 – Tous droits réservés

3.1.41
fiabilité
aptitude d'une entité à accomplir sa fonction requise dans des conditions données pendant un intervalle de
[2]
temps donné
NOTE 1 Le terme «fiabilité» est également utilisé comme une mesure de la performance de fiabilité et peut aussi être
exprimé sous la forme d'une probabilité.
NOTE 2 Voir Figure G.1 pour de plus amples informations.
3.1.42
données de fiabilité
données de fiabilité, maintenabilité et de performance de la logistique de maintenance
NOTE RM (Reliability and Maintainability) est le terme appliqué par l'ISO 14224:2006 pour les données de fiabilité et
de maintenance.
3.1.43
fonction requise
fonction, ou ensemble de fonctions, d'une entité dont l'accomplissement est considéré comme nécessaire
[2]
pour la fourniture d'un service donné
3.1.44
risque
[20]
combinaison de la probabilité d'un événement et des conséquences de cet événement
3.1.45
registre des risques
outil pour enregistrer, suivre et clore les risques pertinents
NOTE Il convient que chaque entrée du registre des risques comporte typiquement:
⎯ la description du risque;
⎯ la description de l'action (ou des actions);
⎯ la partie responsable;
⎯ la date d'échéance;
⎯ l'état des actions.
3.1.46
probabilité de survie
R(t)
probabilité de fonctionnement continu d'une entité, selon l'Équation (1):
RtT=>Pr t (1)
() ( )
où Pr est la probabilité d’avoir T, le temps de fonctionnement avant défaillance de l'entité, supérieur à t, un
instant égal ou supérieur à 0
3.1.47
état de disponibilité (up state)
état d'une entité caractérisé par l'aptitude de cette entité à accomplir une fonction requise, en supposant que
[2]
la fourniture des moyens extérieurs éventuellement nécessaires est assurée
NOTE Cela se rapporte à la performance de disponibilité.
3.1.48
amont
catégorie d'activités de l'industrie du pétrole impliquant l'exploration et la production
EXEMPLES Installation de production de pétrole/gaz en mer, plate-forme de forage, navire d'intervention.
3.1.49
temps de disponibilité (uptime)
[2]
intervalle de temps pendant lequel une entité est en état de disponibilité
3.1.50
variabilité
variations des mesures de performance pendant des durées différentes dans des conditions définies du cadre
de travail
NOTE Les variations peuvent être le résultat de la configuration des temps d'indisponibilité pour les équipements et
les systèmes, des facteurs de fonctionnement tels que le vent, les vagues et de l'accès à certaines ressources pour les
réparations.
3.2 Abréviations
BOP Bloc d'obturation de puits
CAPEX Frais d'investissement (CAPital Expenditures)
AU Arrêt d'urgence
AMDE Analyse des modes de défaillance et de leurs effets
AMDEC Analyse des modes de défaillance, de leurs effets et de leur criticité
FNA Analyse par diagramme de flux (Flow Network Analysis)
AAD Analyse par arbre de défaillances
GTL Gaz transformé en carburant liquide (Gas To Liquid)
HAZID Identification des dangers (HAZard IDentification)
HAZOP Étude des dangers et de l'exploitabilité (HAZard and Operability Study)
HSE Hygiène/santé, sécurité, environnement
LCC Coût du cycle de vie (Life Cycle Cost)
GNL Gaz naturel liquéfié
LOSTREV Revenu perdu
GPL Gaz de pétrole liquéfié
MPA Analyse par processus de Markov (Markov Process Analysis)
MTBF Temps moyen entre défaillances (Mean Time Between Failure)
MTTF Temps moyen de fonctionnement avant défaillance (Mean Time To Failure)
MTTR Temps moyen de réparation (Mean Time To Repair)
8 © ISO 2008 – Tous droits réservés

OPEX Dépenses opérationnelles (OPerational EXpenditures)
PAP Programme d'assurance production
PNA Analyse par réseaux de Petri (Petri Net Analysis)
POR Contrôle des performances et de l'exploitabilité (Performance and Operability Review)
RBD Diagramme (fonctionnel) de fiabilité (Reliability Block Diagram)
RBI Inspection basée sur les risques (Risk Based Inspection)
OMF Optimisation de la maintenance par la fiabilité
ROV Véhicule commandé à distance (Remote Operated Vehicle)
SIMOPS Opérations simultanées (SIMultaneous OPerationS)
SRA Analyse de la fiabilité des structures (Structural Reliability Analysis)
AQ Assurance qualité
4 Assurance production et aide à la décision
4.1 Conditions de travail
L'objectif associé à l'assurance production systématique est de contribuer à l'alignement de la conception et
des décisions opérationnelles sur les objectifs professionnels de l'entreprise.
Afin d'accomplir cet objectif, des mesures techniques et opérationnelles comme indiquées à la Figure 1
peuvent être utilisées pendant la conception ou en cours d'exploitation pour changer la performance de
production. La Figure 1 montre 21 facteurs qui à un degré plus ou moins grand peuvent avoir un effet sur la
performance de production. Certains de ces facteurs sont purement techniques et il est nécessaire d'y
adhérer pour la conception; d'autres sont purement liés à l'exploitation. La plupart des facteurs ont des
aspects tant techniques qu'opérationnels, par exemple un by-pass ne peut être utilisé dans la phase
opérationnelle à moins que des dispositions n'aient été prises dans la phase de conception. En outre, il existe
des dépendances entre plusieurs des facteurs énumérés.
Il en résulte deux recommandations importantes pour que l'assurance production soit efficace:
⎯ il convient que l'assurance production soit réalisée tout au long de toutes les phases de conception et
opérationnelles du projet;
⎯ il convient que l'assurance production couvre largement les activités du projet.
Figure 1 — Mesures de conception et opérationnelles affectant la performance de production
4.2 Processus d'optimisation
Le principe essentiel pour l'optimisation de la conception ou du choix entre diverses solutions de conception
est l'optimisation économique dans les limites données de contraintes et de conditions du cadre de travail.
L'accomplissement d'une haute performance n'a d'importance limitée que tant que les coûts associés ne sont
pas pris en compte. Aussi la présente Norme internationale peut-elle être prise en compte conjointement avec
l'ISO 15663 (toutes les parties).
Les exemples de contraintes et de conditions de cadre de travail qui vont affecter le processus d'optimisation
sont:
⎯ les réglementations légales relatives à la santé, à la sécurité et à l'environnement;
⎯ les exigences pour les équipements de sécurité résultant de l'analyse des risques et les critères globaux
d'acceptation de sécurité;
⎯ les exigences relatives à la conception ou à l'exploitation données par les réglementations d'organismes
officiels et autres organismes normatifs;
⎯ les contraintes de projet telles que le budget, le temps de mise en œuvre, les accords nationaux et
internationaux;
⎯ les conditions exprimées dans les contrats de vente;
⎯ les contraintes techniques.
10 © ISO 2008 – Tous droits réservés

Le processus d'optimisation peut être vu comme la série d'étapes suivante (voir Figure 2 pour une illustration).
a) Évaluer les exigences du projet et produire des conceptions capables d'y répondre.
b) Identifier les exigences légales, réglementaires et autres exigences de cadre de travail qui s'appliquent
au projet.
c) Prédire les paramètres appropriés de l'assurance production.
d) Identifier la solution de conception préférée en se basant sur une évaluation/analyse économique comme
l'analyse de la valeur actualisée nette ou un autre critère d'optimisation.
e) Appliquer le processus d'optimisation comme illustré à la Figure 2. Être conscient que l'exécution du
processus d'optimisation exige que la fonction d'assurance production et de fiabilité soit traitée par les
membres d'une équipe qualifiée.
f) S'il y a lieu, le processus peut être itératif, l'alternative choisie étant raffinée progressivement et les
solutions de rechange identifiées. Le processus itératif est typique des phases d'exécution de projet
soumises à un seuil ou «criblées».
g) Des analyses de sensibilité peuvent être effectuées pour tenir compte de l'incertitude associée aux
paramètres d'entrée importants.
a
Les contraintes typiques de projet sont notamment: les exigences HSE; la faisabilité technique; la conformité aux lois,
règles et réglementations; les contraintes économiques; les contraintes de calendrier.
Figure 2 — Processus d'optimisation
4.3 Programme d'assurance production
4.3.1 Objectifs
Un programme d'assurance production (PAP) doit servir d'outil de gestion dans le processus de conformité à
la présente Norme internationale. Ce peut être un document établi pour les diverses phases du cycle de vie
d'un nouveau projet de développement, ou un document établi pour des installations déjà en exploitation.
L'assurance production est une activité continue tout au long des phases du cycle de vie, aussi le PAP doit-il
être mis à jour de la manière et au moment prescrits. Il peut contenir ce qui suit:
⎯ la planification systématique de la tâche d'assurance production dans le cadre du programme;
12 © ISO 2008 – Tous droits réservés

⎯ la définition des critères d'optimisation;
⎯ la définition des objectifs et des exigences de performance, le cas échéant;
⎯ la description des activités d'assurance production nécessaires pour atteindre les objectifs, comment
elles seront réalisées, par qui et quand;
⎯ les présentations et considérations concernant les interfaces entre l'assurance production et la fiabilité
avec d'autres activités;
⎯ les méthodes de vérification et de validation;
⎯ un niveau de détail qui favorise une mise à jour et une coordination globale aisées.
L'Annexe A de la présente Norme internationale conseille un modèle pour le contenu du programme
d'assurance production (PAP).
Le PAP est le seul document obligatoire à fournir de la présente Norme internationale.
Les phases de cycle de vie indiquées dans le Tableau 2 s'appliquent pour un projet typique de
développement d'une installation de production. Si les phases dans un projet spécifique diffèrent de celles
indiquées ci-dessous, il convient de définir et appliquer les activités de la manière appropriée.
Des modifications majeures peuvent être considérées comme un projet comportant des phases similaires à
celles d'un projet de développement. Les exigences relatives aux activités d'assurance production telles
qu'indiquées pour les phases de cycle de vie appropriées s'appliqueront.
4.3.2 Catégorisation des risques projet
Pour chaque phase du cycle de vie, il est nécessaire de définir le niveau de l'effort à investir dans un
programme d'assurance production pour atteindre les objectifs industriels. Dans la pratique, l'effort
d'assurance production requis sera étroitement lié au niveau du risque technique du projet. Il est donc
recommandé que l'une des premières tâches à exécuter soit une catégorisation initiale des risques
techniques du projet afin de permettre aux chefs de projet de faire une évaluation générale du niveau
d'investissement en ressources fiabilistes à assurer.
La catégorisation des risques projet change typiquement en fonction d'un certain nombre de facteurs tels que
la situation financière, l'attitude face au risque, etc. Par conséquent, il est permis d'établir spécifiquement les
plans de catégorisation des risques. Toutefois, pour fournir quelques lignes directrices sur le processus, un
plan simple de catégorisation des risques est proposé ci-dessous.
Les projets peuvent être répartis en trois classes de risque:
⎯ risque élevé;
⎯ risque moyen;
⎯ faible risque.
Les caractéristiques qui décrivent les trois classes de risque sont détaillées dans le Tableau 1. I y a
typiquement une transition progressive d'une classe de risque à une autre. Par conséquent, un certain degré
d'évaluation subjective est requis. Il convient toutefois que la justification pour la classe de risque choisie pour
un projet soit incluse dans le programme d'assurance production publié durant la phase de faisabilité ou de
conception.
La catégorisation des risques projet (élevé, moyen et faible) est appliquée dans le Tableau 2 (voir 4.3.3) pour
indiquer quels processus il convient de réaliser pour les différentes catégories de projet.
Tableau 1 — Catégorisation des risques projet
Technologie Enveloppe Taille et Échelle et Classe Description
a
de la tâche complexité complexité de risque
techniques organisationnelles
du système
Technologie Conditions de Petite taille, Petite organisation Faible Projet à faible budget, à faible
mature fonctionnement faible cohérente, faible risque, utilisant des équipements
typiques complexité, complexité éprouvés sur le terrain dans la
changement même configuration et la même
minimal de la équipe avec des conditions de
configuration fonctionnement similaires à celles
du système des projets antérieurs.
Technologie Conditions de Taille et Petite à moyenne Faible ou Projet de risque faible à modéré
mature fonctionnement complexité organisation, moyen utilisant des équipements
typiques modérées complexité modérée éprouvés sur le terrain dans une
enveloppe de tâche similaire à
celle de projets antérieurs mais
avec un certain degré de
complexité système et
organisationnelle.
Technologie Environnement Grande taille, Grande Moyen ou Projet de risque moyen à élevé
b
nouvelle ou de complexité organisation, élevé utilisant un équipement nouveau
non mature fonctionnement élevée complexité élevée ou non mature ou avec des
pour un nouveau, conditions de fonctionnement
environnement étendu ou nouvelles ou étendues. Le projet
de agressif implique de grands systèmes et
fonctionnement organisations de gestion
nouveau ou complexes.
étendu
a
Le terme «faible ou moyen» indique que des projets comportant les caractéristiques indiquées peuvent être classés soit comme
des projets à faible risque, soit comme des projets à risque moyen. Il en est de même lorsque le terme «moyen ou élevé» est utilisé.
b
Il convient qu'une technologie nouvelle ou non mature ait un impact significatif potentiel sur l'évolution du projet pour être classée
comme un risque élevé.
4.3.3 Activités du programme
Il convient que des activités d'assurance production soient effectuées dans toutes les phases du cycle de vie
des installations pour fournir des données d'entrée aux décisions concernant la faisabilité, le concept, la
conception, la fabrication, la construction, l'installation, l'exploitation, la maintenance et la modification. Les
processus et les activités ne doivent être lancés que s'ils sont considérés contribuer à la valeur ajoutée du
projet.
Les activités d'assurance production spécifiées dans le PAP doivent être définies eu égard aux besoins réels,
aux ressources en personnel disponibles, au cadre du budget, aux interfaces, aux différentes étapes et à
l'accès aux données et aux informations générales. Cela est nécessaire pour atteindre un bon équilibre entre
le coût et le profit de l'activité.
Il convient que l'assurance production prenne en compte les facteurs humains et organisationnels autant que
les aspects techniques.
Des tâches importantes de l'assurance production sont de surveiller le niveau global de performance, de
gérer la fiabilité et d'identifier en continu le besoin d'activités d'assurance production. Un autre objectif de
l'assurance production est de formuler des recommandations techniques, opérationnelles ou
organisationnelles.
14 © ISO 2008 – Tous droits réservés

Les processus et les activités spécifiés dans le PAP doivent être axés sur les principaux éléments de risque
technique qui ont été identifiés initialement par un processus de tri allant du général au particulier (top-down)
(voir 4.3.2). La classification des risques peut aider à identifier les systèmes critiques pour la performance et
qu'il convient de soumettre à une analyse et un suivi plus détaillés.
Le point central des activités d'assurance production change selon les diverses phases de cycle de vie. Il
convient que les activités du début soient axées sur l'optimisation de la configuration globale tandis que
l'attention portée aux détails critiques s'accentue dans les phases ultérieures.
Dans les phases de faisabilité et de concept, il convient d'identifier la configuration du schéma de
développement sur le terrain. Cela inclut aussi la définition du degré de redondance (tolérance aux
défaillances), de surcapacité et de flexibilité, au niveau système. Cela requiert d'établir les CAPEX, les OPEX,
la perte de revenu (LOSTREV), le coût ou le bénéfice prévu des risques et le revenu pour chaque variante.
Ces valeurs financières sont à leur tour réinjectées dans les outils de calcul de rentabilité des opérateurs, en
vue d'évaluer la rentabilité et de sélectionner la variante qui s'ajuste le mieux à l'attitude face au risque.
L'optimisation de la disponibilité de production du schéma de développement sur le terrain exige d'éviter de
porter une attention excessive aux CAPEX et il est recommandé de le faire par le biais d'un partenariat à long
terme entre fournisseurs et opérateurs ainsi qu'entre fournisseurs et leurs sous-traitants. Ces relations à long
terme assureront à la fois la confiance mutuelle et la maturation de la technologie. Les parties ci-dessus sont
invitées à s'impliquer directement à un stade précoce en mettant l'accent sur le revenu global dans une
perspective de cycle de vie. Cela signifie, par exemple, de mettre en œuvre les recommandations résultantes
sous forme de spécifications dans les appels d'offres.
Une vue d'ensemble des processus de l'assurance production est donnée dans le Tableau 2 et à l'Article 5,
alors que des descriptions des activités recommandées pour les processus sont données dans l'Annexe B et
dans l'Annexe C.
Les processus d'assurance production définis dans la présente Norme internationale sont divisés en deux
classes principales: les processus fondamentaux et les processus en interaction. La raison principale de cette
division est d'indiquer de quels processus une discipline d'assurance production potentielle serait
normalement responsable, et de quels processus les autres disciplines (par exemple gestion de projet, AQ,
etc.) auraient normalement la responsabilité. Cependant, tous les processus peuvent être également
importants pour assurer le succès.
Le Tableau 2 fournit les recommandations (indiquées par des «X») sur les processus qu'il convient d'effectuer
en fonction de la catégorisation des risques projet (voir 4.3.2). Le tableau fournit également des
recommandations (indiquées par des «X») quant au moment où il convient d'appliquer les processus (dans
quelle phase de cycle de vie).
Les exigences de l'assurance production (processus 1) peuvent être utilisées pour illustrer l'interprétation du
tableau. Il convient que ce processus, qui est décrit plus en détail dans l'Annexe B, soit mis en œuvre pour les
projets à risque moyen et élevé et réalisé dans les phases de cycle de vie de faisabilité, de concept, de
conception, d'ingénierie et d'approvisionnement.
Tableau 2 — Vue d'ensemble des processus d'assurance production
en fonction des niveaux de risque et des phases de cycle de vie
Phase de cycle de vie
Processus d'assurance production pour le développement
Pré- Post-
des installations de production
adjudication adjudication
c
Numéro et nom du processus
— X X 1. Exigences d'assurance production X X X X — — —
X X X 2. Planification d'assurance production X X X X X X X
3. Conception et fabrication pour l'assurance
— X X — X X — X X X
production
X X X 4. Assurance production X X X X X X X
— X X 5. Analyse de risques et de fiabilité X X X — — — —
X X X 6. Vérification et validation X X X — — — —
X X X 7. Gestion des risques projet X X X X X X X
— — X 8. Qualification et essais X X X X
X X X 9. Suivi et analyse des données de performance — — — — — X X
— — X 10. Gestion de la chaîne d'approvisionnement — — — X — — —
X X X 11. Gestion du changement — X X X X X X
X X X 12. Apprentissage organisationnel X X X X X X X
a
Y compris la conception et l'ingénierie de base (FEED).
b
Y compris la préingénierie et l'ingénierie détaillée.
c
Les processus suivants d'assurance production se situent dans le cadre de la présente Norme internationale: 1, 2, 3, 4, 5, 6 et 9.
NOTE Il convient de noter qu'un processus peut être applicable pour une certaine classe de risque ou de cycle de vie bien
qu'aucune X ne soit indiquée dans ce tableau. De même, si l'on peut démontrer qu'un certain processus n'ajoutera pas de valeu
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...