Petroleum, petrochemical and natural gas industries — Production assurance and reliability management

ISO 20815:2008 introduces the concept of production assurance within the systems and operations associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and natural gas resources. ISO 20815:2008 covers upstream (including subsea), midstream and downstream facilities and activities. It focuses on production assurance of oil and gas production, processing and associated activities and covers the analysis of reliability and maintenance of the components. ISO 20815:2008 provides processes and activities, requirements and guidelines for systematic management, effective planning, execution and use of production assurance and reliability technology. This is to achieve cost-effective solutions over the life cycle of an asset-development project structured around the following main elements: production-assurance management for optimum economy of the facility through all of its life-cycle phases, while also considering constraints arising from health, safety, environment, quality and human factors; planning, execution and implementation of reliability technology; application of reliability and maintenance data; and reliability-based design and operation improvement. For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series. ISO 20815:2008 designates 12 processes, of which seven are defined as core production-assurance processes and addressed in ISO 20815:2008. The remaining five processes are denoted as interacting processes and are outside the scope of ISO 20815:2008. The interaction of the core production-assurance processes with these interacting processes, however, is within the scope of ISO 20815:2008 as the information flow to and from these latter processes is required to ensure that production-assurance requirements can be fulfilled. ISO 20815:2008 recommends that the listed processes and activities be initiated only if they can be considered to add value. The only requirements mandated by ISO 20815:2008 are the establishment and execution of the production-assurance programme (PAP).

Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance de la production et management de la fiabilité

L'ISO 20815:2008 introduit le concept d'assurance production dans les systèmes et les opérations liés au forage, à l'exploitation, au traitement et au transport des ressources pétrolières, pétrochimiques et en gaz naturel. L'ISO 20815:2008 couvre les installations et les activités amont (y compris sous-marines), intermédiaires et aval. Elle est axée sur l'assurance production relative à la production du pétrole et du gaz, sur le traitement et les opérations associées et couvre l'analyse de la fiabilité et de la maintenance des composants. Elle fournit des processus et des activités, des exigences et des lignes directrices pour la gestion systématique, la planification, l'exécution et l'utilisation efficaces de l'assurance production et des techniques fiabilistes. Le but en est d'obtenir des solutions rentables sur tout le cycle de vie d'un projet de développement d'une installation de production structurée autour des éléments principaux suivants: gestion de l'assurance production pour une économie optimale de l'installation durant toutes les phases de son cycle de vie, tout en tenant compte des contraintes résultant de facteurs liés à santé, à la sécurité, à l'environnement et à la qualité ainsi qu'aux facteurs humains; planification, exécution et mise en œuvre des techniques fiabilistes; application des données de fiabilité et de maintenance; et amélioration de la conception et de l'exploitation basée sur la fiabilité. Pour les normes relatives à la fiabilité des équipements et à l'exécution de la maintenance, voir la série CEI 60300-3. L'ISO 20815:2008 définie douze processus, dont sept sont définis comme des processus fondamentaux de l'assurance production et sont y abordés. Les cinq processus restants sont appelés processus en interaction et ne relèvent pas du domaine d'application de l'ISO 20815:2008. L'interaction des processus fondamentaux de l'assurance production avec ces processus interactifs s'inscrit toutefois dans le domaine d'application de la norme car le flux d'informations à destination et en provenance de ces derniers processus est requis pour s'assurer que les exigences de l'assurance production peuvent être remplies. L'ISO 20815:2008 recommande de ne lancer les processus et activités qu'elle énumère que s'ils apportent de la valeur ajoutée. Les seules exigences obligatoires stipulées par l'ISO 20815:2008 concernent l'établissement et l'exécution du programme d'assurance production (PAP).

General Information

Status
Withdrawn
Publication Date
13-May-2008
Withdrawal Date
13-May-2008
Current Stage
9599 - Withdrawal of International Standard
Completion Date
18-Oct-2018
Ref Project

Relations

Buy Standard

Standard
ISO 20815:2008 - Petroleum, petrochemical and natural gas industries -- Production assurance and reliability management
English language
65 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 20815:2008 - Petroleum, petrochemical and natural gas industries -- Production assurance and reliability management
English language
65 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 20815:2008 - Industries du pétrole, de la pétrochimie et du gaz naturel -- Assurance de la production et management de la fiabilité
French language
71 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 20815
First edition
2008-06-01
Corrected version
2009-06-15


Petroleum, petrochemical and natural gas
industries — Production assurance and
reliability management
Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance
de la production et management de la fiabilité





Reference number
ISO 20815:2008(E)
©
ISO 2008

---------------------- Page: 1 ----------------------
ISO 20815:2008(E)
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.


COPYRIGHT PROTECTED DOCUMENT


©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO 2008 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 20815:2008(E)
Contents Page
Foreword. iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 Terms and definitions. 2
3.2 Abbreviations . 7
4 Production assurance and decision support . 8
4.1 Framework conditions. 8
4.2 Optimization process . 9
4.3 Production-assurance programme . 11
4.4 Alternative standards . 15
5 Production-assurance processes and activities . 15
Annex A (informative) Contents of production-assurance programme (PAP) . 17
Annex B (informative) Core production-assurance processes and activities . 19
Annex C (informative) Interacting production-assurance processes and activities. 26
Annex D (informative) Production-performance analyses. 30
Annex E (informative) Reliability and production-performance data . 34
Annex F (informative) Performance objectives and requirements . 36
Annex G (informative) Performance measures for production availability. 38
Annex H (informative) Catastrophic events. 47
Annex I (informative) Outline of techniques. 49
Bibliography . 64

© ISO 2008 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 20815:2008(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 20815 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
This corrected version of ISO 20815:2008 incorporates the following corrections:
⎯ 3.1.13 “(t + ∆t)” modified to “[t, (t + ∆t)]”;
⎯ 3.1.46, Equation (1) symbols and definitions modified;
⎯ Clause G.2, Equation (G.2) symbols and definitions modified.

iv © ISO 2008 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 20815:2008(E)
Introduction
The petroleum and natural gas industries involve large capital investment costs as well as operational
expenditures. The profitability of these industries is dependent upon the reliability, availability and
maintainability of the systems and components that are used. Therefore, for optimal production availability in
the oil and gas business, a standardized, integrated reliability approach is required.
The concept of production assurance, introduced in this International Standard, enables a common
understanding with respect to use of reliability technology in the various life-cycle phases and covers the
activities implemented to achieve and maintain a performance level that is at its optimum in terms of the
overall economy and, at the same time, consistent with applicable regulatory and framework conditions.
Annexes A through I are for information only.

© ISO 2008 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 20815:2008(E)

Petroleum, petrochemical and natural gas industries —
Production assurance and reliability management
1 Scope
This International Standard introduces the concept of production assurance within the systems and operations
associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and
natural gas resources. This International Standard covers upstream (including subsea), midstream and
downstream facilities and activities. It focuses on production assurance of oil and gas production, processing
and associated activities and covers the analysis of reliability and maintenance of the components.
It provides processes and activities, requirements and guidelines for systematic management, effective
planning, execution and use of production assurance and reliability technology. This is to achieve cost-
effective solutions over the life cycle of an asset-development project structured around the following main
elements:
⎯ production-assurance management for optimum economy of the facility through all of its life-cycle phases,
while also considering constraints arising from health, safety, environment, quality and human factors;
⎯ planning, execution and implementation of reliability technology;
⎯ application of reliability and maintenance data;
⎯ reliability-based design and operation improvement.
For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series.
This International Standard designates 12 processes, of which seven are defined as core production-
assurance processes and addressed in this International Standard. The remaining five processes are denoted
as interacting processes and are outside the scope of this International Standard. The interaction of the core
production-assurance processes with these interacting processes, however, is within the scope of this
International Standard as the information flow to and from these latter processes is required to ensure that
production-assurance requirements can be fulfilled.
This International Standard recommends that the listed processes and activities be initiated only if they can be
considered to add value.
The only requirements mandated by this International Standard are the establishment and execution of the
production-assurance programme (PAP).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 14224:2006, Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability
and maintenance data for equipment
© ISO 2008 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 20815:2008(E)
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1.1
availability
ability of an item to be in a state to perform a required function under given conditions at a given instant of
time, or in average over a given time interval, assuming that the required external resources are provided
See Figure G.1 for further information.
3.1.2
common cause failure
failures of different items resulting from the same direct cause, occurring within a relatively short time, where
these failures are not consequences of each other
3.1.3
corrective maintenance
maintenance that is carried out after a fault recognition and intended to put an item into a state in which it can
perform a required function
[2]
See IEC 60050-191:1990, Figure 191-10 , for more specific information.
3.1.4
deliverability
ratio of deliveries to planned deliveries over a specified period of time, when the effect of compensating
elements, such as substitution from other producers and downstream buffer storage, is included
See Figure G.1 for further information.
3.1.5
design life
planned usage time for the total system
NOTE Design life should not be confused with MTTF (3.1.25), which is comprised of several items that may be
allowed to fail within the design life of the system as long as repair or replacement is feasible.
3.1.6
down state
internal disabled state of an item characterized either by a fault or by a possible inability to perform a required
[2]
function during preventive maintenance
NOTE This state is related to availability performance.
3.1.7
downtime
[2]
time interval during which an item is in a non-working state
NOTE The downtime includes all the delays between the item failure and the restoration of its service. Downtime can
be either planned or unplanned.
3.1.8
downstream
business process, most commonly in the petroleum industry, associated with post-production activities
EXAMPLES Refining, transportation and marketing of petroleum products.
2 © ISO 2008 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 20815:2008(E)
3.1.9
failure
termination of the ability of an item to perform a required function
NOTE 1 After failure, the item has a fault.
NOTE 2 “Failure” is an event, as distinguished from “fault”, which is a state.
3.1.10
failure cause
root cause
[2]
circumstances during design, manufacture or use that have led to a failure
NOTE Generic failure cause codes applicable for equipment failures are defined in ISO 14224:2006, B.2.3.
3.1.11
failure data
data characterizing the occurrence of a failure event
3.1.12
failure mode
effect by which a failure is observed on the failed item
NOTE Failure-mode codes are defined for some equipment classes in ISO 14224:2006, B.2.6.
3.1.13
failure rate
limit, if this exists, of the ratio of the conditional probability that the instant of time, T, of a failure of an item falls
within a given time interval, [t, (t + ∆t)] and the length of this interval, ∆t, when ∆t tends to zero, given that the
item is in an up state at the beginning of the time interval
See ISO 14224:2006, Clause C.3 for further explanation of the failure rate.
NOTE 1 In this definition, t may also denote the time to failure or the time to first failure.
NOTE 2 A practical interpretation of failure rate is the number of failures relative to the corresponding operational time.
In some cases, time can be replaced by units of use. In most cases, the reciprocal of MTTF (3.1.25) can be used as the
predictor for the failure rate, i.e. the average number of failures per unit of time in the long run if the units are replaced by
an identical unit at failure.
NOTE 3 The failure rate can be based on operational time or calendar time.
3.1.14
fault
state of an item characterized by inability to perform a required function, excluding the inability during
[2]
preventive maintenance or other planned actions, or due to lack of external resources
NOTE A fault is often a result of a failure of the item itself but the state can exist without a failure.
3.1.15
fault tolerance
attribute of an item that makes it able to perform a required function in the presence of certain given sub-item
[2]
faults
3.1.16
item
any part, component, device, subsystem, functional unit, equipment or system that can be individually
[2]
considered
© ISO 2008 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 20815:2008(E)
3.1.17
logistic delay
accumulated time during which maintenance cannot be carried out due to the necessity to acquire
[29]
maintenance resources, excluding any administrative delay
NOTE Logistic delays can be due to, for example, travelling to unattended installations; pending arrival of spare parts,
specialist, test equipment and information; or delays due to unsuitable environmental conditions (e.g. waiting on weather).
3.1.18
lost revenue
LOSTREV
total cost of lost or deferred production due to downtime
3.1.19
maintainable item
item that constitutes a part, or an assembly of parts, that is normally the lowest level in the equipment
hierarchy during maintenance
See ISO 14224:2006, Annex A, for examples of maintainable items for a variety of equipment.
3.1.20
maintenance
combination of all technical and administrative actions, including supervisory actions, intended to retain an
[2]
item in, or restore it to, a state in which it can perform a required function
3.1.21
maintenance data
data characterizing the maintenance action planned or done
3.1.22
maintainability
〈general〉 ability of an item under given conditions of use, to be retained in, or restored to, a state in which it
can perform a required function, when maintenance is performed under given conditions and using stated
[2]
procedures and resources
See Figure G.1 for further information.
3.1.23
maintenance support performance
ability of a maintenance organization, under given conditions, to provide upon demand, the resources required
[2]
to maintain an item, under a given maintenance policy
NOTE The given conditions are related to the item itself and to the conditions under which the item is used and
maintained.
3.1.24
mean time between failures
MTBF
[2]
expectation of the time between failures
NOTE The MTBF of an item can be longer or shorter than the design life of the system.
3.1.25
mean time to failure
MTTF
[2]
expectation of the time to failure
NOTE The MTTF of an item can be longer or shorter than the design life of the system.
4 © ISO 2008 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 20815:2008(E)
3.1.26
mean time to repair
MTTR
[2]
expectation of the time to restoration
3.1.27
midstream
business category involving the processing, storage and transportation sectors of the petroleum industry
EXAMPLES Transportation pipelines, terminals, gas processing and treatment, LNG, LPG and GTL.
3.1.28
modification
[2]
combination of all technical and administrative actions intended to change an item
3.1.29
observation period
time period during which production performance and reliability data are recorded
3.1.30
operating state
[2]
state when an item is performing a required function
3.1.31
operating time
[2]
time interval during which an item is in an operating state
3.1.32
performance objectives
indicative level for the desired performance
NOTE Objectives are expressed in qualitative or quantitative terms. Objectives are not absolute requirements and
may be modified based on cost or technical constraints.
3.1.33
performance requirements
required minimum level for the performance of a system
NOTE Requirements are normally quantitative but may also be qualitative.
3.1.34
petrochemicals
business category producing the chemicals derived from petroleum and used as feedstock for the
manufacture of a variety of plastics and other related products
EXAMPLES Methanol, polypropylene.
3.1.35
preventive maintenance
maintenance carried out at predetermined intervals or according to prescribed criteria and intended to reduce
[2]
the probability of failure or the degradation of the functioning of an item
3.1.36
production-performance analysis
systematic evaluations and calculations carried out to assess the production performance of a system
NOTE The term should be used primarily for analysis of total systems, but may also be used for analysis of
production unavailability of a partial system.
© ISO 2008 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 20815:2008(E)
3.1.37
production assurance
activities implemented to achieve and maintain a performance that is at its optimum in terms of the overall
economy and at the same time consistent with applicable framework conditions
3.1.38
production availability
ratio of production to planned production, or any other reference level, over a specified period of time
NOTE This measure is used in connection with analysis of delimited systems without compensating elements such
as substitution from other producers and downstream buffer storage. Battery limits need to be defined in each case.
See Figure G.1 for further information.
3.1.39
production performance
capacity of a system to meet demand for deliveries or performance
NOTE 1 Production availability, deliverability or other appropriate measures can be used to express production
performance.
NOTE 2 The use of production-performance terms should specify whether it represents a predicted or historic
production performance.
3.1.40
redundancy
[2]
existence of more than one means for performing a required function
3.1.41
reliability
[2]
ability of an item to perform a required function under given conditions for a given time interval
NOTE 1 The term “reliability” is also used as a measure of reliability performance and may also be expressed as a
probability.
NOTE 2 See Figure G.1 for further information.
3.1.42
reliability data
data for reliability, maintainability and maintenance support performance
NOTE Reliability and maintainability (RM) data is the term applied by ISO 14224:2006.
3.1.43
required function
[2]
function, or combination of functions, of an item that is considered necessary to provide a given service
3.1.44
risk
[20]
combination of the probability of an event and the consequences of the event
3.1.45
risk register
tool to log, follow up and close out relevant risks
NOTE Each entry in the risk register should typically include
⎯ description of the risk,
⎯ description of the action(s),
6 © ISO 2008 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 20815:2008(E)
⎯ responsible party,
⎯ due date,
⎯ action status.
3.1.46
survival probability
R(t)
likelihood of the continued functioning of an item, as given by Equation (1):
RtT=>Pr t (1)
() ( )
where Pr is the probability that T, the time to failure of an item, is greater than t, a time equal to or greater
than 0
3.1.47
up state
state of an item characterized by the fact it can perform a required function, assuming that the external
[2]
resources, if required, are provided
NOTE This relates to availability performance.
3.1.48
upstream
business category of the petroleum industry involving exploration and production
EXAMPLES Offshore oil/gas production facility, drilling rig, intervention vessel.
3.1.49
uptime
[2]
time interval during which an item is in the up state
3.1.50
variability
variations in performance measures for different time periods under defined framework conditions
NOTE The variations can be a result of the downtime pattern for equipment and systems or operating factors, such
as wind, waves and access to certain repair resources.
3.2 Abbreviations
BOP blowout preventer
CAPEX capital expenditures
ESD emergency shut down
FMEA failure modes and effects analysis
FMECA failure modes, effects and criticality analysis
FNA flow-network analysis
FTA fault-tree analysis
GTL gas to liquid
HAZID hazard identification
© ISO 2008 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 20815:2008(E)
HAZOP hazard and operability study
HSE health, safety, environment
LCC life-cycle cost
LNG liquefied natural gases
LOSTREV lost revenue
LPG liquefied petroleum gases
MPA Markov process analysis
MTBF mean time between failure
MTTF mean time to failure
MTTR mean time to repair
OPEX operational expenditure
PAP production-assurance programme
PNA petri net analysis
POR performance and operability review
RBD reliability block diagram
RBI risk-based inspection
RCM reliability-centred maintenance
ROV remote operated vehicle
SIMOPS simultaneous operations
SRA structural-reliability analysis
QA quality assurance
4 Production assurance and decision support
4.1 Framework conditions
The objective associated with systematic production assurance is to contribute to the alignment of design and
operational decisions with corporate business objectives.
In order to fulfil this objective, technical and operational measures as indicated in Figure 1 may be used during
design or operation to change the production performance. Figure 1 shows 21 factors that to a greater or
lesser degree can have an effect on production performance. Some of these factors are purely technical and it
is necessary that they be adhered to in design; others are related purely to operation. Most of the factors have
both technical and operational aspects, e.g. a bypass cannot be used in the operational phase unless
provisions have been made for it in the design phase. In addition, there are dependencies between many of
the listed factors.
8 © ISO 2008 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 20815:2008(E)
This imposes two important recommendations for production assurance to be efficient.
⎯ Production assurance should be carried out throughout all project design and operational phases.
⎯ Production assurance should have a broad coverage of project activities.

Figure 1 — Design and operational measures that affect production performance
4.2 Optimization process
The main principle for optimization of design or selection between alternative design solutions is economic
optimization within given constraints and framework conditions. The achievement of high performance is of
limited importance unless the associated costs are considered. This International Standard can, therefore, be
considered together with ISO 15663 (all parts).
Examples of constraints and framework conditions that affect the optimization process are
⎯ statutory health, safety and environmental regulations;
⎯ requirements for safety equipment resulting from the risk analysis and the overall safety acceptance
criteria;
⎯ requirements to design or operation given by statutory and other regulatory bodies' regulations;
⎯ project constraints, such as budget, implementation time, national and international agreements;
⎯ conditions in the sales contracts;
⎯ technical constraints.
© ISO 2008 – All rights reserved 9

---------------------- Page: 14 ----------------------
ISO 20815:2008(E)
The optimization process can be seen as a series of steps as follows (see Figure 2 for an illustration).
a) Assess the project requirements and generate designs that are capable of meeting the project
requirements.
b) Identify all statutory, regulatory and other framework requirements that apply to the project.
c) Predict the appropriate production-assurance parameters.
d) Identify the preferred design solution based on an economical evaluation/analysis, such as net present
value analysis or another optimization criterion.
e) Apply the optimization process as illustrated in Figure 2. Be aware that the execution of the optimization
process requires that the production assurance and reliability function be addressed by qualified team
members.
f) If required, the process can be iterative, where the selected alternative is further refined and alternative
solutions identified. The iterative process is typical for “gated” or threshold project-execution phases.
g) Sensitivity analyses may be performed to take account of uncertainty in important input parameters.
10 © ISO 2008 – All rights reserved

---------------------- Page: 15 ----------------------
ISO 20815:2008(E)

a
Typical project constraints include HSE requirements; technical feasibility; compliance with acts, rules and regulations;
economical constraints; schedule constraints.
Figure 2 — Optimization process
4.3 Production-assurance programme
4.3.1 Objectives
A production-assurance programme (PAP) shall serve as a management tool in the process of complying with
this International Standard. It may be either a document established for the various life-cycle phases of a new
asset-development project or a document established for assets already in operation. As production
assurance is a continuous activity throughout all life-cycle phases, it shall be updated as and when required. It
may contain the following:
⎯ systematic planning of production-assurance work within the scope of the programme;
⎯ definition of optimization criteria;
© ISO 2008 – All rights reserved 11

---------------------- Page: 16 ----------------------
ISO 20815:2008(E)
⎯ definition of performance objectives and requirements, if any;
⎯ description of the production-assurance activities necessary to fulfil the objectives, how they are carried
out, by whom and when;
⎯ statements and considerations on interfaces of production assurance and reliability with other activities;
⎯ methods for verification and validation;
⎯ a level of detail that facilitates easy updating and overall coordination.
Annex A of this International Standard suggests a model for the production-assurance programme (PAP)
contents.
The PAP is the only mandatory deliverable from this International Standard.
The life-cycle phases indicated in Table 2 apply for a typical asset-development project. If the phases in a
specific project differ from those below, the activities should be defined and applied as appropriate.
Major modifications may be considered as a project with phases similar to those of an asset-development
project. The requirements to production-assurance activities as given for the relevant life-cycle phases apply.
4.3.2 Project risk categorization
It is necessary to define the level of effort to invest in a production-assurance program to meet the business
objectives for each life-cycle phase. In practice, the production-assurance effort required is closely rel
...

INTERNATIONAL ISO
STANDARD 20815
First edition
2008-06-01


Petroleum, petrochemical and natural gas
industries — Production assurance and
reliability management
Industries du pétrole, de la pétrochimie et du gaz naturel — Assurance
de la production et management de la fiabilité





Reference number
ISO 20815:2008(E)
©
ISO 2008

---------------------- Page: 1 ----------------------
ISO 20815:2008(E)
PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.
Adobe is a trademark of Adobe Systems Incorporated.
Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.


COPYRIGHT PROTECTED DOCUMENT


©  ISO 2008
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO 2008 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 20815:2008(E)
Contents Page
Foreword. iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms, definitions and abbreviated terms . 2
3.1 Terms and definitions. 2
3.2 Abbreviations . 7
4 Production assurance and decision support . 8
4.1 Framework conditions. 8
4.2 Optimization process . 9
4.3 Production-assurance programme . 11
4.4 Alternative standards . 15
5 Production-assurance processes and activities . 15
Annex A (informative) Contents of production-assurance programme (PAP) . 17
Annex B (informative) Core production-assurance processes and activities . 19
Annex C (informative) Interacting production-assurance processes and activities. 26
Annex D (informative) Production-performance analyses. 30
Annex E (informative) Reliability and production-performance data . 34
Annex F (informative) Performance objectives and requirements . 36
Annex G (informative) Performance measures for production availability. 38
Annex H (informative) Catastrophic events. 47
Annex I (informative) Outline of techniques. 49
Bibliography . 64

© ISO 2008 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 20815:2008(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 20815 was prepared by Technical Committee ISO/TC 67, Materials, equipment and offshore structures
for petroleum, petrochemical and natural gas industries.
iv © ISO 2008 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 20815:2008(E)
Introduction
The petroleum and natural gas industries involve large capital investment costs as well as operational
expenditures. The profitability of these industries is dependent upon the reliability, availability and
maintainability of the systems and components that are used. Therefore, for optimal production availability in
the oil and gas business, a standardized, integrated reliability approach is required.
The concept of production assurance, introduced in this International Standard, enables a common
understanding with respect to use of reliability technology in the various life-cycle phases and covers the
activities implemented to achieve and maintain a performance level that is at its optimum in terms of the
overall economy and, at the same time, consistent with applicable regulatory and framework conditions.
Annexes A through I are for information only.

© ISO 2008 – All rights reserved v

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 20815:2008(E)

Petroleum, petrochemical and natural gas industries —
Production assurance and reliability management
1 Scope
This International Standard introduces the concept of production assurance within the systems and operations
associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and
natural gas resources. This International Standard covers upstream (including subsea), midstream and
downstream facilities and activities. It focuses on production assurance of oil and gas production, processing
and associated activities and covers the analysis of reliability and maintenance of the components.
It provides processes and activities, requirements and guidelines for systematic management, effective
planning, execution and use of production assurance and reliability technology. This is to achieve cost-
effective solutions over the life cycle of an asset-development project structured around the following main
elements:
⎯ production-assurance management for optimum economy of the facility through all of its life-cycle phases,
while also considering constraints arising from health, safety, environment, quality and human factors;
⎯ planning, execution and implementation of reliability technology;
⎯ application of reliability and maintenance data;
⎯ reliability-based design and operation improvement.
For standards on equipment reliability and maintenance performance in general, see the IEC 60300-3 series.
This International Standard designates 12 processes, of which seven are defined as core production-
assurance processes and addressed in this International Standard. The remaining five processes are denoted
as interacting processes and are outside the scope of this International Standard. The interaction of the core
production-assurance processes with these interacting processes, however, is within the scope of this
International Standard as the information flow to and from these latter processes is required to ensure that
production-assurance requirements can be fulfilled.
This International Standard recommends that the listed processes and activities be initiated only if they can be
considered to add value.
The only requirements mandated by this International Standard are the establishment and execution of the
production-assurance programme (PAP).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 14224:2006, Petroleum, petrochemical and natural gas industries — Collection and exchange of reliability
and maintenance data for equipment
© ISO 2008 – All rights reserved 1

---------------------- Page: 6 ----------------------
ISO 20815:2008(E)
3 Terms, definitions and abbreviated terms
3.1 Terms and definitions
For the purpose of this document, the following terms and definitions apply.
3.1.1
availability
ability of an item to be in a state to perform a required function under given conditions at a given instant of
time, or in average over a given time interval, assuming that the required external resources are provided
See Figure G.1 for further information.
3.1.2
common cause failure
failures of different items resulting from the same direct cause, occurring within a relatively short time, where
these failures are not consequences of each other
3.1.3
corrective maintenance
maintenance that is carried out after a fault recognition and intended to put an item into a state in which it can
perform a required function
[2]
See IEC 60050-191:1990, Figure 191-10 , for more specific information.
3.1.4
deliverability
ratio of deliveries to planned deliveries over a specified period of time, when the effect of compensating
elements, such as substitution from other producers and downstream buffer storage, is included
See Figure G.1 for further information.
3.1.5
design life
planned usage time for the total system
NOTE Design life should not be confused with MTTF (3.1.25), which is comprised of several items that may be
allowed to fail within the design life of the system as long as repair or replacement is feasible.
3.1.6
down state
internal disabled state of an item characterized either by a fault or by a possible inability to perform a required
[2]
function during preventive maintenance
NOTE This state is related to availability performance.
3.1.7
downtime
[2]
time interval during which an item is in a non-working state
NOTE The downtime includes all the delays between the item failure and the restoration of its service. Downtime can
be either planned or unplanned.
3.1.8
downstream
business process, most commonly in the petroleum industry, associated with post-production activities
EXAMPLES Refining, transportation and marketing of petroleum products.
2 © ISO 2008 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 20815:2008(E)
3.1.9
failure
termination of the ability of an item to perform a required function
NOTE 1 After failure, the item has a fault.
NOTE 2 “Failure” is an event, as distinguished from “fault”, which is a state.
3.1.10
failure cause
root cause
[2]
circumstances during design, manufacture or use that have led to a failure
NOTE Generic failure cause codes applicable for equipment failures are defined in ISO 14224:2006, B.2.3.
3.1.11
failure data
data characterizing the occurrence of a failure event
3.1.12
failure mode
effect by which a failure is observed on the failed item
NOTE Failure-mode codes are defined for some equipment classes in ISO 14224:2006, B.2.6.
3.1.13
failure rate
limit, if this exists, of the ratio of the conditional probability that the instant of time, T, of a failure of an item falls
within a given time interval, (t + ∆t) and the length of this interval, ∆t, when ∆t tends to zero, given that the item
is in an up state at the beginning of the time interval
See ISO 14224:2006, Clause C.3 for further explanation of the failure rate.
NOTE 1 In this definition, t may also denote the time to failure or the time to first failure.
NOTE 2 A practical interpretation of failure rate is the number of failures relative to the corresponding operational time.
In some cases, time can be replaced by units of use. In most cases, the reciprocal of MTTF (3.1.25) can be used as the
predictor for the failure rate, i.e. the average number of failures per unit of time in the long run if the units are replaced by
an identical unit at failure.
NOTE 3 The failure rate can be based on operational time or calendar time.
3.1.14
fault
state of an item characterized by inability to perform a required function, excluding the inability during
[2]
preventive maintenance or other planned actions, or due to lack of external resources
NOTE A fault is often a result of a failure of the item itself but the state can exist without a failure.
3.1.15
fault tolerance
attribute of an item that makes it able to perform a required function in the presence of certain given sub-item
[2]
faults
3.1.16
item
any part, component, device, subsystem, functional unit, equipment or system that can be individually
[2]
considered
© ISO 2008 – All rights reserved 3

---------------------- Page: 8 ----------------------
ISO 20815:2008(E)
3.1.17
logistic delay
accumulated time during which maintenance cannot be carried out due to the necessity to acquire
[29]
maintenance resources, excluding any administrative delay
NOTE Logistic delays can be due to, for example, travelling to unattended installations; pending arrival of spare parts,
specialist, test equipment and information; or delays due to unsuitable environmental conditions (e.g. waiting on weather).
3.1.18
lost revenue
LOSTREV
total cost of lost or deferred production due to downtime
3.1.19
maintainable item
item that constitutes a part, or an assembly of parts, that is normally the lowest level in the equipment
hierarchy during maintenance
See ISO 14224:2006, Annex A, for examples of maintainable items for a variety of equipment.
3.1.20
maintenance
combination of all technical and administrative actions, including supervisory actions, intended to retain an
[2]
item in, or restore it to, a state in which it can perform a required function
3.1.21
maintenance data
data characterizing the maintenance action planned or done
3.1.22
maintainability
〈general〉 ability of an item under given conditions of use, to be retained in, or restored to, a state in which it
can perform a required function, when maintenance is performed under given conditions and using stated
[2]
procedures and resources
See Figure G.1 for further information.
3.1.23
maintenance support performance
ability of a maintenance organization, under given conditions, to provide upon demand, the resources required
[2]
to maintain an item, under a given maintenance policy
NOTE The given conditions are related to the item itself and to the conditions under which the item is used and
maintained.
3.1.24
mean time between failures
MTBF
[2]
expectation of the time between failures
NOTE The MTBF of an item can be longer or shorter than the design life of the system.
3.1.25
mean time to failure
MTTF
[2]
expectation of the time to failure
NOTE The MTTF of an item can be longer or shorter than the design life of the system.
4 © ISO 2008 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 20815:2008(E)
3.1.26
mean time to repair
MTTR
[2]
expectation of the time to restoration
3.1.27
midstream
business category involving the processing, storage and transportation sectors of the petroleum industry
EXAMPLES Transportation pipelines, terminals, gas processing and treatment, LNG, LPG and GTL.
3.1.28
modification
[2]
combination of all technical and administrative actions intended to change an item
3.1.29
observation period
time period during which production performance and reliability data are recorded
3.1.30
operating state
[2]
state when an item is performing a required function
3.1.31
operating time
[2]
time interval during which an item is in an operating state
3.1.32
performance objectives
indicative level for the desired performance
NOTE Objectives are expressed in qualitative or quantitative terms. Objectives are not absolute requirements and
may be modified based on cost or technical constraints.
3.1.33
performance requirements
required minimum level for the performance of a system
NOTE Requirements are normally quantitative but may also be qualitative.
3.1.34
petrochemicals
business category producing the chemicals derived from petroleum and used as feedstock for the
manufacture of a variety of plastics and other related products
EXAMPLES Methanol, polypropylene.
3.1.35
preventive maintenance
maintenance carried out at predetermined intervals or according to prescribed criteria and intended to reduce
[2]
the probability of failure or the degradation of the functioning of an item
3.1.36
production-performance analysis
systematic evaluations and calculations carried out to assess the production performance of a system
NOTE The term should be used primarily for analysis of total systems, but may also be used for analysis of
production unavailability of a partial system.
© ISO 2008 – All rights reserved 5

---------------------- Page: 10 ----------------------
ISO 20815:2008(E)
3.1.37
production assurance
activities implemented to achieve and maintain a performance that is at its optimum in terms of the overall
economy and at the same time consistent with applicable framework conditions
3.1.38
production availability
ratio of production to planned production, or any other reference level, over a specified period of time
NOTE This measure is used in connection with analysis of delimited systems without compensating elements such
as substitution from other producers and downstream buffer storage. Battery limits need to be defined in each case.
See Figure G.1 for further information.
3.1.39
production performance
capacity of a system to meet demand for deliveries or performance
NOTE 1 Production availability, deliverability or other appropriate measures can be used to express production
performance.
NOTE 2 The use of production-performance terms should specify whether it represents a predicted or historic
production performance.
3.1.40
redundancy
[2]
existence of more than one means for performing a required function
3.1.41
reliability
[2]
ability of an item to perform a required function under given conditions for a given time interval
NOTE 1 The term “reliability” is also used as a measure of reliability performance and may also be expressed as a
probability.
NOTE 2 See Figure G.1 for further information.
3.1.42
reliability data
data for reliability, maintainability and maintenance support performance
NOTE Reliability and maintainability (RM) data is the term applied by ISO 14224:2006.
3.1.43
required function
[2]
function, or combination of functions, of an item that is considered necessary to provide a given service
3.1.44
risk
[20]
combination of the probability of an event and the consequences of the event
3.1.45
risk register
tool to log, follow up and close out relevant risks
NOTE Each entry in the risk register should typically include
⎯ description of the risk,
⎯ description of the action(s),
6 © ISO 2008 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 20815:2008(E)
⎯ responsible party,
⎯ due date,
⎯ action status.
3.1.46
survival probability
R(t)
likelihood of the continued functioning of an item, as given by Equation (1):
Rtf=>T t (1)
() ( )
Pr
where
f is a probability function;
Pr
T is the time to failure of an item;
t is a time equal to or greater than 0.
3.1.47
up state
state of an item characterized by the fact it can perform a required function, assuming that the external
[2]
resources, if required, are provided
NOTE This relates to availability performance.
3.1.48
upstream
business category of the petroleum industry involving exploration and production
EXAMPLES Offshore oil/gas production facility, drilling rig, intervention vessel.
3.1.49
uptime
[2]
time interval during which an item is in the up state
3.1.50
variability
variations in performance measures for different time periods under defined framework conditions
NOTE The variations can be a result of the downtime pattern for equipment and systems or operating factors, such
as wind, waves and access to certain repair resources.
3.2 Abbreviations
BOP blowout preventer
CAPEX capital expenditures
ESD emergency shut down
FMEA failure modes and effects analysis
FMECA failure modes, effects and criticality analysis
FNA flow-network analysis
FTA fault-tree analysis
© ISO 2008 – All rights reserved 7

---------------------- Page: 12 ----------------------
ISO 20815:2008(E)
GTL gas to liquid
HAZID hazard identification
HAZOP hazard and operability study
HSE health, safety, environment
LCC life-cycle cost
LNG liquefied natural gases
LOSTREV lost revenue
LPG liquefied petroleum gases
MPA Markov process analysis
MTBF mean time between failure
MTTF mean time to failure
MTTR mean time to repair
OPEX operational expenditure
PAP production-assurance programme
PNA petri net analysis
POR performance and operability review
RBD reliability block diagram
RBI risk-based inspection
RCM reliability-centred maintenance
ROV remote operated vehicle
SIMOPS simultaneous operations
SRA structural-reliability analysis
QA quality assurance
4 Production assurance and decision support
4.1 Framework conditions
The objective associated with systematic production assurance is to contribute to the alignment of design and
operational decisions with corporate business objectives.
In order to fulfil this objective, technical and operational measures as indicated in Figure 1 may be used during
design or operation to change the production performance. Figure 1 shows 21 factors that to a greater or
lesser degree can have an effect on production performance. Some of these factors are purely technical and it
is necessary that they be adhered to in design; others are related purely to operation. Most of the factors have
8 © ISO 2008 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 20815:2008(E)
both technical and operational aspects, e.g. a bypass cannot be used in the operational phase unless
provisions have been made for it in the design phase. In addition, there are dependencies between many of
the listed factors.
This imposes two important recommendations for production assurance to be efficient.
⎯ Production assurance should be carried out throughout all project design and operational phases.
⎯ Production assurance should have a broad coverage of project activities.

Figure 1 — Design and operational measures that affect production performance
4.2 Optimization process
The main principle for optimization of design or selection between alternative design solutions is economic
optimization within given constraints and framework conditions. The achievement of high performance is of
limited importance unless the associated costs are considered. This International Standard can, therefore, be
considered together with ISO 15663 (all parts).
Examples of constraints and framework conditions that affect the optimization process are
⎯ statutory health, safety and environmental regulations;
⎯ requirements for safety equipment resulting from the risk analysis and the overall safety acceptance
criteria;
⎯ requirements to design or operation given by statutory and other regulatory bodies' regulations;
⎯ project constraints, such as budget, implementation time, national and international agreements;
⎯ conditions in the sales contracts;
⎯ technical constraints.
© ISO 2008 – All rights reserved 9

---------------------- Page: 14 ----------------------
ISO 20815:2008(E)
The optimization process can be seen as a series of steps as follows (see Figure 2 for an illustration).
a) Assess the project requirements and generate designs that are capable of meeting the project
requirements.
b) Identify all statutory, regulatory and other framework requirements that apply to the project.
c) Predict the appropriate production-assurance parameters.
d) Identify the preferred design solution based on an economical evaluation/analysis, such as net present
value analysis or another optimization criterion.
e) Apply the optimization process as illustrated in Figure 2. Be aware that the execution of the optimization
process requires that the production assurance and reliability function be addressed by qualified team
members.
f) If required, the process can be iterative, where the selected alternative is further refined and alternative
solutions identified. The iterative process is typical for “gated” or threshold project-execution phases.
g) Sensitivity analyses may be performed to take account of uncertainty in important input parameters.
10 © ISO 2008 – All rights reserved

---------------------- Page: 15 ----------------------
ISO 20815:2008(E)

a
Typical project constraints include HSE requirements; technical feasibility; compliance with acts, rules and regulations;
economical constraints; schedule constraints.
Figure 2 — Optimization process
4.3 Production-assurance programme
4.3.1 Objectives
A production-assurance programme (PAP) shall serve as a management tool in the process of complying with
this International Standard. It may be either a document established for the various life-cycle phases of a new
asset-development project or a document established for assets already in operation. As production
assurance is a continuous activity throughout all life-cycle phases, it shall be updated as and when required. It
may contain the following:
⎯ systematic planning of production-assurance work within the scope of the programme;
⎯ definition of optimization criteria;
© ISO 2008 – All rights reserved 11

---------------------- Page: 16 ----------------------
ISO 20815:2008(E)
⎯ definition of performance objectives and requirements, if any;
⎯ description of the production-assurance activities necessary to fulfil the objectives, how they are carried
out, by whom and when;
⎯ statements and considerations on interfaces of production assurance and reliability with other activities;
⎯ methods for verification and validation;
⎯ a level of detail that facilitates easy updating and overall coordination.
Annex A of this International Standard suggests a model for the production-assurance programme (PAP)
contents.
The PAP is the only mandatory deliverable from this International Standard.
The life-cycle phases indicated in Table 2 apply for a typical asset-development project. If the phases in a
specific project differ from those below, the activities should be defined and applied as appropriate.
Major modifications may be considered as a project with phases similar to those of an asset-development
project. The requirements to production-assurance activities as given for the relevant life-cycle phases apply.
4.3.2 Project risk categorization
It is necessary to define the level of effort to invest in a production-assurance program to meet the business
objectives for each life-cycle phase. In practice, the production-assurance effort required is closely related to
the level of technical risk in a project. It is, therefore, recommended that one of the first tasks to be performed
is an initial categorization of the technical risks in a project. This enables project managers to make a general
assessment of the level of investment in reliabilit
...

NORME ISO
INTERNATIONALE 20815
Première édition
2008-06-01


Industries du pétrole, de la pétrochimie et
du gaz naturel — Assurance de la
production et management de la fiabilité
Petroleum, petrochemical and natural gas industries — Production
assurance and reliability management




Numéro de référence
ISO 20815:2008(F)
©
ISO 2008

---------------------- Page: 1 ----------------------
ISO 20815:2008(F)
PDF – Exonération de responsabilité
Le présent fichier PDF peut contenir des polices de caractères intégrées. Conformément aux conditions de licence d'Adobe, ce fichier
peut être imprimé ou visualisé, mais ne doit pas être modifié à moins que l'ordinateur employé à cet effet ne bénéficie d'une licence
autorisant l'utilisation de ces polices et que celles-ci y soient installées. Lors du téléchargement de ce fichier, les parties concernées
acceptent de fait la responsabilité de ne pas enfreindre les conditions de licence d'Adobe. Le Secrétariat central de l'ISO décline toute
responsabilité en la matière.
Adobe est une marque déposée d'Adobe Systems Incorporated.
Les détails relatifs aux produits logiciels utilisés pour la création du présent fichier PDF sont disponibles dans la rubrique General Info
du fichier; les paramètres de création PDF ont été optimisés pour l'impression. Toutes les mesures ont été prises pour garantir
l'exploitation de ce fichier par les comités membres de l'ISO. Dans le cas peu probable où surviendrait un problème d'utilisation,
veuillez en informer le Secrétariat central à l'adresse donnée ci-dessous.


DOCUMENT PROTÉGÉ PAR COPYRIGHT


©  ISO 2008
Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous
quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit
de l'ISO à l'adresse ci-après ou du comité membre de l'ISO dans le pays du demandeur.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Version française parue en 2009
Publié en Suisse

ii © ISO 2008 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 20815:2008(F)
Sommaire Page
Avant-propos. iv
Introduction . v
1 Domaine d'application. 1
2 Références normatives . 2
3 Termes, définitions et termes abrégés. 2
3.1 Termes et définitions. 2
3.2 Abréviations . 8
4 Assurance production et aide à la décision .9
4.1 Conditions de travail . 9
4.2 Processus d'optimisation . 10
4.3 Programme d'assurance production .12
4.4 Normes alternatives. 17
5 Processus et activités de l'assurance production . 17
Annexe A (informative) Contenu du programme d'assurance production (PAP) . 19
Annexe B (informative) Processus et activités fondamentaux de l'assurance production. 21
Annexe C (informative) Activités et processus d'assurance production en interaction . 29
Annexe D (informative) Analyses de la performance de production . 33
Annexe E (informative) Données de fiabilité et de performance de production. 37
Annexe F (informative) Objectifs et exigences de performance . 39
Annexe G (informative) Mesures de performance pour la disponibilité de production. 41
Annexe H (informative) Événements catastrophiques. 52
Annexe I (informative) Présentation des techniques. 54
Bibliographie . 70

© ISO 2008 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 20815:2008(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de
normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée
aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du
comité technique créé à cet effet. Les organisations internationales, gouvernementales et non
gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec
la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.
Les Normes internationales sont rédigées conformément aux règles données dans les Directives ISO/CEI,
Partie 2.
La tâche principale des comités techniques est d'élaborer les Normes internationales. Les projets de Normes
internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur
publication comme Normes internationales requiert l'approbation de 75 % au moins des comités membres
votants.
L'attention est appelée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable de ne
pas avoir identifié de tels droits de propriété et averti de leur existence.
L'ISO 20815 a été élaborée par le comité technique ISO/TC 67, Matériel, équipement et structures en mer
pour les industries pétrolière, pétrochimique et du gaz naturel.
La présente version française de l'ISO 20815:2008 correspond à la version anglaise publiée le 2008-06-01 et
corrigée le 2009-06-15.
iv © ISO 2008 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 20815:2008(F)
Introduction
Les industries du pétrole et du gaz naturel impliquent des niveaux élevés de coûts d'investissements et de
dépenses opérationnelles. La rentabilité de ces industries dépend de la fiabilité, de la disponibilité et de la
maintenabilité des systèmes et des composants qui sont utilisés. Par conséquent, la disponibilité de
production optimale dans les activités liées au pétrole et au gaz exige une approche fiabiliste intégrée et
normalisée.
Le concept de l'assurance production, présenté dans la présente Norme internationale, permet une
compréhension commune de l'utilisation des techniques fiabilistes dans les diverses phases du cycle de vie et
couvre les activités mises en œuvre pour atteindre et maintenir un niveau de performances qui soit à la fois
optimal en termes d'économie globale et cohérent avec les conditions applicables de la réglementation et du
cadre de travail.
Les Annexes A à I sont informatives.

© ISO 2008 – Tous droits réservés v

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 20815:2008(F)

Industries du pétrole, de la pétrochimie et du gaz naturel —
Assurance de la production et management de la fiabilité
1 Domaine d'application
La présente Norme internationale introduit le concept d'assurance production dans les systèmes et les
opérations liés au forage, à l'exploitation, au traitement et au transport des ressources pétrolières,
pétrochimiques et en gaz naturel. La présente Norme internationale couvre les installations et les activités
amont (y compris sous-marines), intermédiaires et aval. Elle est axée sur l'assurance production relative à la
production du pétrole et du gaz, sur le traitement et les opérations associées et couvre l'analyse de la fiabilité
et de la maintenance des composants.
Elle fournit des processus et des activités, des exigences et des lignes directrices pour la gestion
systématique, la planification, l'exécution et l'utilisation efficaces de l'assurance production et des techniques
fiabilistes. Le but en est d'obtenir des solutions rentables sur tout le cycle de vie d'un projet de développement
d'une installation de production structurée autour des éléments principaux suivants:
⎯ gestion de l'assurance production pour une économie optimale de l'installation durant toutes les phases
de son cycle de vie, tout en tenant compte des contraintes résultant de facteurs liés à la santé, à la
sécurité, à l'environnement et à la qualité ainsi qu'aux facteurs humains;
⎯ planification, exécution et mise en œuvre des techniques fiabilistes;
⎯ application des données de fiabilité et de maintenance;
⎯ amélioration de la conception et de l'exploitation basée sur la fiabilité.
Pour les normes relatives à la fiabilité des équipements et à l'exécution de la maintenance, voir la série
CEI 60300-3.
La présente Norme internationale définie douze processus, dont sept sont définis comme des processus
fondamentaux de l'assurance production et sont abordés dans la présente Norme internationale. Les cinq
processus restants sont appelés processus en interaction et ne relèvent pas du domaine d'application de la
présente Norme internationale. L'interaction des processus fondamentaux de l'assurance production avec ces
processus interactifs s'inscrit toutefois dans le domaine d'application de la norme car le flux d'informations à
destination et en provenance de ces derniers processus est requis pour s'assurer que les exigences de
l'assurance production peuvent être remplies.
La présente Norme internationale recommande de ne lancer les processus et activités qu'elle énumère que
s'ils apportent de la valeur ajoutée.
Les seules exigences obligatoires stipulées par la présente Norme internationale concernent l'établissement
et l'exécution du programme d'assurance production (PAP).
© ISO 2008 – Tous droits réservés 1

---------------------- Page: 6 ----------------------
ISO 20815:2008(F)
2 Références normatives
Les documents de référence suivants sont indispensables pour l'application du présent document. Pour les
références datées, seule l'édition citée s'applique. Pour les références non datées, la dernière édition du
document de référence s'applique (y compris les éventuels amendements).
ISO 14224:2006, Industries du pétrole, de la pétrochimie et du gaz naturel — Recueil et échange de données
de fiabilité et de maintenance des équipements
3 Termes, définitions et termes abrégés
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
3.1.1
disponibilité
aptitude d'une entité à être en état d'accomplir une fonction requise dans des conditions données, à un instant
donné ou, en moyenne, pendant un intervalle de temps donné, en supposant que la fourniture des ressources
externes nécessaires est assurée
Voir Figure G.1 pour de plus amples informations.
3.1.2
défaillance de cause commune
défaillances de différentes entités résultant de la même cause directe, se produisant en un court laps de
temps et n'étant pas les conséquences les unes des autres
3.1.3
maintenance corrective
maintenance effectuée après une détection de panne et destinée à mettre une entité dans un état lui
permettant d'accomplir une fonction requise
[2]
Voir la CEI 60050-191:1990, Figure 191-10 , pour des informations plus spécifiques.
3.1.4
livrabilité
capacité de livraison
rapport des livraisons effectives aux livraisons prévues sur une durée spécifiée, lorsque l'effet d'éléments de
compensation tels que la substitution provenant d'autres producteurs et le stockage aval en tampon est inclus
Voir Figure G.1 pour de plus amples informations.
3.1.5
durée de vie de conception
durée d'utilisation planifiée pour l'ensemble du système
NOTE Il convient de ne pas confondre la durée de vie de conception avec le MTTF (3.1.25) du système qui comporte
plusieurs entités autorisées à tomber en panne durant la durée de vie de conception tant que la réparation ou le
remplacement est faisable.
3.1.6
état d'indisponibilité (down state)
état d'incapacité interne d'une entité caractérisée soit par une panne, soit par l'inaptitude éventuelle à
[2]
accomplir une fonction requise pendant la maintenance préventive
NOTE Cet état est lié à la performance de disponibilité.
2 © ISO 2008 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 20815:2008(F)
3.1.7
temps d'indisponibilité (downtime)
[2]
intervalle de temps pendant lequel une entité n'est pas en état de fonctionner
NOTE Le temps d'indisponibilité inclut toute la durée entre la défaillance de l'entité et la restauration de son service.
Le temps d'arrêt peut être planifié ou non.
3.1.8
aval
procédé industriel, le plus généralement dans l'industrie du pétrole, pour décrire les activités de post
production
EXEMPLE Raffinage, transport et mise sur le marché de produits pétroliers.
3.1.9
défaillance
cessation de l'aptitude d'une entité à accomplir une fonction requise
NOTE 1 Après défaillance d'une entité, celle-ci est en état de panne.
NOTE 2 Une «défaillance» est un passage d'un état à un autre, par opposition à une «panne», qui est un état.
3.1.10
cause de défaillance
cause fondamentale
ensemble des circonstances associées à la conception, la fabrication ou l'utilisation qui ont entraîné une
[2]
défaillance
NOTE L'ISO 14224:2006, B.2.3, définit les codes de causes de défaillance applicables aux défaillances des
équipements.
3.1.11
données de défaillance
données caractérisant l'occurrence d'un événement de défaillance
3.1.12
mode de défaillance
effet par lequel une défaillance est observée sur l'élément défectueux
NOTE Les codes des modes de défaillance spécifiques à chaque équipement sont définis dans l'ISO 14224:2006,
B.2.6.
3.1.13
taux de défaillance
limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant, T, d'une défaillance d'une entité
soit compris dans un intervalle de temps donné, [t, (t + ∆t)] par la longueur de cet intervalle, ∆t, lorsque ∆t tend
vers zéro, en supposant que l'entité a fonctionné sans interruption sur [0, t].
Voir l'ISO 14224:2206, Article C.3, pour plus d'explications sur le taux de défaillance.
NOTE 1 Dans cette définition, T représente la durée de fonctionnement avant défaillance ou la durée de
fonctionnement avant la première défaillance.
NOTE 2 Une interprétation pratique du taux de défaillance est le nombre de défaillances relatives au temps de
fonctionnement correspondant. Dans certains cas, le temps peut être remplacé par le nombre d'utilisations. Dans la
plupart des cas, pour les entités individuelles, l'inverse du MTTF (3.1.25) peut servir de valeur prédictive pour le taux de
défaillance, à savoir le nombre de défaillances par unité de temps à long terme si les entités sont remplacées par une
entité identique au moment de la défaillance.
NOTE 3 Le taux de défaillance peut être basé sur le temps opérationnel ou sur le temps calendaire.
© ISO 2008 – Tous droits réservés 3

---------------------- Page: 8 ----------------------
ISO 20815:2008(F)
3.1.14
panne
état d'une entité caractérisant son inaptitude à accomplir une fonction requise, non compris l'inaptitude due à
[2]
la maintenance préventive ou à d'autres actions programmées ou dues à un manque de moyens extérieurs
NOTE Une panne est souvent la conséquence d'une défaillance de l'entité elle-même, mais elle peut exister sans
défaillance préalable.
3.1.15
tolérance aux défaillances
[2]
capacité d'une entité à accomplir une fonction requise malgré certaines pannes de ses sous-entités
3.1.16
entité
dispositif
individu
tout élément, composant, sous-système, unité fonctionnelle, équipement ou système que l'on peut considérer
[2]
individuellement
3.1.17
délai logistique
durée cumulée pendant laquelle la maintenance ne peut être effectuée en raison de la nécessité d'acquérir
[29]
des ressources de maintenance, à l'exclusion du retard administratif
NOTE Les délais logistiques peuvent être dus, par exemple, aux déplacements vers des installations inhabitées, à
l'attente de l'arrivée des pièces de rechange, d'un spécialiste, de l'équipement d'essai et d'informations ou à des retards
dus à des conditions environnementales extrêmes (par exemple, attente pour cause de mauvais temps).
3.1.18
revenu perdu
LOSTREV
coût total de la production perdue ou reportée en raison du temps d'indisponibilité
3.1.19
élément maintenable
entité qui constitue une pièce, ou un ensemble de pièces, qui est normalement le niveau le plus bas de la
hiérarchie d'équipement pendant la maintenance
Voir des exemples d'entités maintenables pour divers équipements dans l'Annexe A de l'ISO 14224:2006.
3.1.20
maintenance
combinaison de toutes les actions techniques et administratives, y compris les opérations de supervision,
[2]
destinées à maintenir ou à remettre une entité dans un état lui permettant d'accomplir une fonction requise
3.1.21
données de maintenance
données caractérisant l'action de maintenance prévue ou effectuée
3.1.22
maintenabilité
〈général〉 dans des conditions données d'utilisation, aptitude générale d'une entité à être maintenue ou
rétablie dans un état dans lequel elle peut accomplir une fonction requise, lorsque la maintenance est
[2]
accomplie dans des conditions données, avec des procédures et des moyens prescrits
Voir Figure G.1 pour de plus amples informations.
4 © ISO 2008 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 20815:2008(F)
3.1.23
performance de la logistique de maintenance
aptitude d'une organisation de maintenance à fournir sur demande, dans des conditions données, les moyens
[2]
nécessaires à la maintenance d'une entité conformément à une politique de maintenance donnée
NOTE Les conditions données sont liées à l'entité proprement dite et aux conditions d'utilisation et de maintenance
de l'entité.
3.1.24
temps moyen entre défaillances
MTBF
[2]
espérance mathématique du temps entre défaillances
NOTE Le MTBF d'une entité peut être plus long ou plus court que la durée de vie de conception du système.
3.1.25
durée moyenne de fonctionnement avant défaillance
MTTF
[2]
espérance mathématique de la durée de fonctionnement avant défaillance
NOTE Le MTTF d'une entité peut être plus long ou plus court que la durée de vie de conception du système.
3.1.26
moyenne des temps de réparation
MTTR
[2]
espérance mathématique de la durée du temps de restauration
3.1.27
activités intermédiaires
catégorie d'activités entre amont et aval impliquant les secteurs de transformation, stockage et transport de
l'industrie du pétrole
EXEMPLES Conduites de transport d'hydrocarbures, terminaux, traitement et transformation de gaz, GNL, GPL et
GTL.
3.1.28
modification
[2]
combinaison de toutes les actions techniques et administratives effectuées pour modifier une entité
3.1.29
période d'observation
période de temps pendant laquelle sont enregistrées les données relatives à la fiabilité et aux performances
de production
3.1.30
(état de) fonctionnement
[2]
état d'une entité accomplissant une fonction requise
3.1.31
temps de fonctionnement
[2]
intervalle de temps pendant lequel une entité est en état de fonctionnement
3.1.32
objectifs de performance
niveau pré-établi pour la performance souhaitée
NOTE Les objectifs sont exprimés en termes qualitatifs ou quantitatifs. Les objectifs ne sont pas des exigences
absolues et on peut s'en écarter en raison de contraintes de coût ou de contraintes techniques.
© ISO 2008 – Tous droits réservés 5

---------------------- Page: 10 ----------------------
ISO 20815:2008(F)
3.1.33
exigences de performance
niveau minimal exigé pour la performance d'un système
NOTE Les exigences sont normalement quantitatives mais elles peuvent être aussi qualitatives.
3.1.34
pétrochimie
catégorie d'activités produisant des produits chimiques dérivés du pétrole et utilisés comme intermédiaires
dans la fabrication de diverses matières plastiques et autres produits connexes
EXEMPLES Méthanol, polypropylène.
3.1.35
maintenance préventive
maintenance effectuée à intervalles prédéterminés ou selon des critères prescrits et destinée à réduire la
[2]
probabilité de défaillance ou la dégradation du fonctionnement d'une entité
3.1.36
analyse de performance de production
évaluations et calculs systématiques effectués pour évaluer la performance de production d'un système
NOTE Il convient d'utiliser ce terme principalement pour l'analyse de systèmes complets mais il peut l'être aussi pour
les analyses des indisponibilités de production d'un système partiel.
3.1.37
assurance production
activités mises en œuvre pour atteindre et maintenir un niveau de performance optimal en termes d'économie
tout en étant compatible avec les conditions de travail applicables
3.1.38
disponibilité de production
rapport de la production effective à la production prévue ou tout autre niveau de référence, sur une période
spécifiée
NOTE Cette mesure est utilisée en liaison avec l'analyse des systèmes délimités, sans éléments compensateurs tels
que la substitution provenant d'autres producteurs et le stockage tampon aval. Il est nécessaire de définir les batteries
limites dans chaque cas.
Voir Figure G.1 pour de plus amples informations.
3.1.39
performance de production
capacité d'un système à satisfaire à la demande de livraisons ou de performance
NOTE 1 La performance de production peut être exprimée par la disponibilité de production, la livrabilité (capacité de
livraison) ou autres mesures appropriées.
NOTE 2 Lors de l'utilisation des termes de performance de production, il convient de préciser s'il s'agit d'une
performance de production prédite ou opérationnelle.
3.1.40
redondance
[2]
existence de plus d'un moyen d'accomplir une fonction requise
6 © ISO 2008 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 20815:2008(F)
3.1.41
fiabilité
aptitude d'une entité à accomplir sa fonction requise dans des conditions données pendant un intervalle de
[2]
temps donné
NOTE 1 Le terme «fiabilité» est également utilisé comme une mesure de la performance de fiabilité et peut aussi être
exprimé sous la forme d'une probabilité.
NOTE 2 Voir Figure G.1 pour de plus amples informations.
3.1.42
données de fiabilité
données de fiabilité, maintenabilité et de performance de la logistique de maintenance
NOTE RM (Reliability and Maintainability) est le terme appliqué par l'ISO 14224:2006 pour les données de fiabilité et
de maintenance.
3.1.43
fonction requise
fonction, ou ensemble de fonctions, d'une entité dont l'accomplissement est considéré comme nécessaire
[2]
pour la fourniture d'un service donné
3.1.44
risque
[20]
combinaison de la probabilité d'un événement et des conséquences de cet événement
3.1.45
registre des risques
outil pour enregistrer, suivre et clore les risques pertinents
NOTE Il convient que chaque entrée du registre des risques comporte typiquement:
⎯ la description du risque;
⎯ la description de l'action (ou des actions);
⎯ la partie responsable;
⎯ la date d'échéance;
⎯ l'état des actions.
3.1.46
probabilité de survie
R(t)
probabilité de fonctionnement continu d'une entité, selon l'Équation (1):
RtT=>Pr t (1)
() ( )
où Pr est la probabilité d’avoir T, le temps de fonctionnement avant défaillance de l'entité, supérieur à t, un
instant égal ou supérieur à 0
3.1.47
état de disponibilité (up state)
état d'une entité caractérisé par l'aptitude de cette entité à accomplir une fonction requise, en supposant que
[2]
la fourniture des moyens extérieurs éventuellement nécessaires est assurée
NOTE Cela se rapporte à la performance de disponibilité.
© ISO 2008 – Tous droits réservés 7

---------------------- Page: 12 ----------------------
ISO 20815:2008(F)
3.1.48
amont
catégorie d'activités de l'industrie du pétrole impliquant l'exploration et la production
EXEMPLES Installation de production de pétrole/gaz en mer, plate-forme de forage, navire d'intervention.
3.1.49
temps de disponibilité (uptime)
[2]
intervalle de temps pendant lequel une entité est en état de disponibilité
3.1.50
variabilité
variations des mesures de performance pendant des durées différentes dans des conditions définies du cadre
de travail
NOTE Les variations peuvent être le résultat de la configuration des temps d'indisponibilité pour les équipements et
les systèmes, des facteurs de fonctionnement tels que le vent, les vagues et de l'accès à certaines ressources pour les
réparations.
3.2 Abréviations
BOP Bloc d'obturation de puits
CAPEX Frais d'investissement (CAPital Expenditures)
AU Arrêt d'urgence
AMDE Analyse des modes de défaillance et de leurs effets
AMDEC Analyse des modes de défaillance, de leurs effets et de leur criticité
FNA Analyse par diagramme de flux (Flow Network Analysis)
AAD Analyse par arbre de défaillances
GTL Gaz transformé en carburant liquide (Gas To Liquid)
HAZID Identification des dangers (HAZard IDentification)
HAZOP Étude des dangers et de l'exploitabilité (HAZard and Operability Study)
HSE Hygiène/santé, sécurité, environnement
LCC Coût du cycle de vie (Life Cycle Cost)
GNL Gaz naturel liquéfié
LOSTREV Revenu perdu
GPL Gaz de pétrole liquéfié
MPA Analyse par processus de Markov (Markov Process Analysis)
MTBF Temps moyen entre défaillances (Mean Time Between Failure)
MTTF Temps moyen de fonctionnement avant défaillance (Mean Time To Failure)
MTTR Temps moyen de réparation (Mean Time To Repair)
8 © ISO 2008 – Tous droits réservés

---------------------- Page: 13 ----------------------
ISO 20815:2008(F)
OPEX Dépenses opérationnelles (OPerational EXpenditures)
PAP Programme d'assurance production
PNA Analyse par réseaux de Petri (Petri Net Analysis)
POR Contrôle des performances et de l'exploitabilité (Performance and Operability Review)
RBD Diagramme (fonctionnel) de fiabilité (Reliability Block Diagram)
RBI Inspection basée sur les risques (Risk Based Inspection)
OMF Optimisation de la maintenance par la fiabilité
ROV Véhicule commandé à distance (Remote Operated Vehicle)
SIMOPS Opérations simultanées (SIMultaneous OPerationS)
SRA Analyse de la fiabilité des structures (Structural Reliability Analysis)
AQ Assurance qualité
4 Assurance production et aide à la décision
4.1 Conditions de travail
L'objectif associé à l'assurance production systématique est de contribuer à l'alignement de la conception et
des décisions opérationnelles sur les objectifs professionnels de l'entreprise.
Afin d'accomplir cet objectif, des mesures techniques et opérationnelles comme indiquées à la Figure 1
peuvent être utilisées pendant la conception ou en cours d'exploitation pour changer la performance de
production. La Figure 1 montre 21 facteurs qui à un degré plus ou moins grand peuvent avoir un effet sur la
performance de production. Certains de ces facteurs sont purement techniques et il est nécessaire d'y
adhérer pour la conception; d'autres sont purement liés à l'exploitation. La plupart des facteurs ont des
aspects tant techniques qu'opérationnels, par exemple un by-pass ne peut être utilisé dans la phase
opérationnelle à moins que des dispositions n'aient été prises dans la phase de conception. En outre, il existe
des dépendances entre plusieurs des facteurs énumérés.
Il en résulte deux recommandations importantes pour que l'assurance production soit efficace:
⎯ il convient que l'assurance production soit réalisée tout au long de toutes les phases de conception et
opérationnelles du projet;
⎯ il convient que l'assurance production couvre largement les activités du projet.
© ISO 2008 – Tous droits réservés 9

---------------------- Page: 14 ----------------------
ISO 20815:2008(F)

Figure 1 — Mesures de conception et opérationnelles affectant la performance de production
4.2 Processus d'optimisation
Le principe essentiel pour l'optimisation de la conception ou du choix entre diverses solutions de conception
est l'optimisation économique dans les limites données de contraintes et de conditions du cadre de travail.
L'accomplissement d'une haute performance n'a d'importance limitée que tant que les coûts associés ne sont
pas pris en compte. Aussi la présente Norme internationale peut-elle être prise en compte conjointement avec
l'ISO 15663 (toutes
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.