ISO/TR 10300-32:2021
(Main)Calculation of load capacity of bevel gears — Part 32: ISO rating system for bevel and hypoid gears — Sample calculation for scuffing load capacity
Calculation of load capacity of bevel gears — Part 32: ISO rating system for bevel and hypoid gears — Sample calculation for scuffing load capacity
This document provides calculation examples for different bevel gear designs regarding the scuffing load capacity according to ISO/TS 10300-20. The initial geometry data of the gear necessary for these calculations are in accordance with ISO 23509. The term "bevel gear" is used to mean straight, helical (skew), spiral bevel, zerol and hypoid gear designs. Where this document pertains to one or more, but not all, the specific forms are identified. The formulae in this document are based on virtual cylindrical gears and restricted to bevel gears whose virtual cylindrical gears have transverse contact ratios of εvα
Titre manque — Partie 32: Titre manque
General Information
Buy Standard
Standards Content (Sample)
TECHNICAL ISO/TR
REPORT 10300-32
First edition
2021-04
Calculation of load capacity of bevel
gears —
Part 32:
ISO rating system for bevel and hypoid
gears — Sample calculation for
scuffing load capacity
Reference number
ISO/TR 10300-32:2021(E)
©
ISO 2021
---------------------- Page: 1 ----------------------
ISO/TR 10300-32:2021(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved
---------------------- Page: 2 ----------------------
ISO/TR 10300-32:2021(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 1
5 Application . 2
Annex A (informative) Sample 1: Rating of a spiral bevel gear pair without hypoid offset
according to ISO/TS 10300-20 . 3
Annex B (informative) Sample 2: Rating of a hypoid gear set according to ISO/TS 10300-20 .44
Annex C (informative) Sample 3: Rating of a hypoid gear set according to ISO/TS 10300-20 .85
Annex D (informative) Sample 4: Rating of a hypoid gear set according to ISO/TS 10300-20 .126
Bibliography .167
© ISO 2021 – All rights reserved iii
---------------------- Page: 3 ----------------------
ISO/TR 10300-32:2021(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear
capacity calculation.
A list of all parts in the ISO 10300 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved
---------------------- Page: 4 ----------------------
ISO/TR 10300-32:2021(E)
Introduction
The ISO 10300 series consists of International Standards, Technical Specifications (TS) and Technical
Reports (TR) under the general title Calculation of load capacity of bevel gears (see Table 1).
— International Standards contain calculation methods that are based on widely accepted practices
and have been validated.
— TS contain calculation methods that are still subject to further development.
— TR contain data that is informative, such as example calculations.
The procedures specified in ISO 10300 parts 1 to 19 cover fatigue analyses for gear rating. The
procedures described in ISO 10300 parts 20 to 29 are predominantly related to the tribological
behaviour of the lubricated flank surface contact. ISO 10300 parts 30 to 39 include example calculations.
ISO 10300 series allows the addition of new parts under appropriate numbers to reflect knowledge
gained in the future.
Requesting standardized calculations according to ISO 10300 without referring to specific parts
requires the use of only those parts that are currently designated as International Standards (see
Table 1 for listing). When requesting further calculations, the relevant part or parts of ISO 10300 need
to be specified. Use of a Technical Specification as acceptance criteria for a specific design need to be
agreed in advance between manufacturer and purchaser.
Table 1 — Parts of ISO 10300 series (status as of DATE OF PUBLICATION)
International Technical Technical
Calculation of load capacity of bevel gears
Standard Specification Report
a
Part 1: Introduction and general influence factors X
a
Part 2: Calculation of surface durability (pitting) X
a
Part 3: Calculation of tooth root strength X
Part 4 to 19: to be assigned
Part 20: Calculation of scuffing load capacity — Flash
X
temperature method
Part 21 to 29: to be assigned
Part 30: ISO rating system for bevel and hypoid gears —
X
Sample calculations
Part 32: ISO rating system for bevel and hypoid gears —
X
Sample Calculations of scuffing load capacity
a
Under revision.
This document and the other parts of ISO 10300 series provide a coherent system of procedures for
the calculation of the load capacity of bevel and hypoid gears. ISO 10300 series is designed to facilitate
the application of future knowledge and developments, also the exchange of information gained from
experience.
© ISO 2021 – All rights reserved v
---------------------- Page: 5 ----------------------
TECHNICAL REPORT ISO/TR 10300-32:2021(E)
Calculation of load capacity of bevel gears —
Part 32:
ISO rating system for bevel and hypoid gears — Sample
calculation for scuffing load capacity
WARNING — The user is cautioned that when the formulae are used for large average mean spiral
angles, (β + β )/2 > 45°, for effective pressure angles, α > 30° and/or for large face widths,
m1 m2 e
b > 13 m , the calculated results of the ISO 10300 series should be confirmed by experience.
mn
1 Scope
This document provides calculation examples for different bevel gear designs regarding the scuffing
load capacity according to ISO/TS 10300-20. The initial geometry data of the gear necessary for these
calculations are in accordance with ISO 23509.
The term "bevel gear" is used to mean straight, helical (skew), spiral bevel, zerol and hypoid gear
designs. Where this document pertains to one or more, but not all, the specific forms are identified.
The formulae in this document are based on virtual cylindrical gears and restricted to bevel gears
whose virtual cylindrical gears have transverse contact ratios of ε < 2. The results are valid within
vα
the range of the applied factors as specified in ISO 10300-1 (see ISO 6336-2). Additionally, the given
relations are valid for bevel gears of which the sum of profile shift coefficients of pinion and wheel is
zero (see ISO 23509).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/TS 10300-20, Calculation of load capacity of bevel gears — Part 20: Calculation of scuffing load
capacity — Flash temperature method
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
4 Symbols
For the purposes of this document, the symbols and units given in ISO/TS 10300-20 apply.
© ISO 2021 – All rights reserved 1
---------------------- Page: 6 ----------------------
ISO/TR 10300-32:2021(E)
5 Application
This document provides four sample calculations:
— Sample 1 is a rating of a spiral bevel gear pair without hypoid offset according to ISO/TS 10300-20
(see Annex A);
— Sample 2 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex B);
— Sample 3 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex C);
— Sample 4 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex D).
2 © ISO 2021 – All rights reserved
---------------------- Page: 7 ----------------------
ISO/TR 10300-32:2021(E)
Annex A
(informative)
Sample 1: Rating of a spiral bevel gear pair without hypoid offset
according to ISO/TS 10300-20
A.1 Initial data
Sample 1 is for a spiral bevel gear pair without hypoid offset which uses Method 0 according to
ISO 23509 for calculation of gear geometry. The initial data for pitch cone parameters for this sample is
shown in Table A.1 and the input data for tooth profile parameters in Table A.2.
Table A.1 — Initial data for pitch cone parameters
Symbol Description Method 0 Method 1 Method 2 Method 3
Σ shaft angle 90° X X X
a hypoid offset 0 mm X X X
z number of teeth 14/39 X X X
1,2
d mean pitch diameter of wheel — — X —
m2
d outer pitch diameter of wheel 176,893 mm X — X
e2
b wheel face width 25,4 mm X X X
2
β mean spiral angle of pinion 35° X — —
m1
β mean spiral angle of wheel 35° — X X
m2
r cutter radius 114,3 mm X X X
c0
number of blade groups
z — — X X
0
(only face hobbing)
Table A.2 — Input data for tooth profile parameters
Data type I Data type II
Symbol Description Symbol Description
α 20°
dD
α 20°
dC
f 0
αlim
x — c 0,247 37
hm1 ham
k — k 2,000
hap d
k — k 0,125
hfp c
x — k 0,091 5
smn t
W —
m2
j 0,127 mm
et2
θ 2,134 2°
a2
θ 6,493 4°
f2
ρ 0,8 mm/0,8 mm
a01
ρ 1,2 mm/1,2 mm
a02
s 0 mm/0 mm
pr1D,C
s 0 mm/0 mm
pr2D,C
© ISO 2021 – All rights reserved 3
---------------------- Page: 8 ----------------------
ISO/TR 10300-32:2021(E)
Table A.3 and Table A.4 show geometry and operational data and text for explanation.
Table A.3 — Geometry data from calculation according to ISO 23509
Symbol Description Values Symbol Description Value
mean pitch diameter 54,918 mm/ offset angle on
d ζ 0°
m1,2 mp
of pinion/wheel 152,987 mm pitch plane
mean addendum of pinion/ 4,836 mm/ pinion offset angle
h ζ 0°
am1,2 R
wheel 1,591 mm on root plane
mean dedendum of pinion/ 2,394 mm/ outer cone distance on
h R 93,973 mm
fm1,2 e1,2
wheel 5,639 mm pinion/wheel
effective pressure angle mean cone distance on
α 20°/20° R 81,273 mm
eD,C m1,2
for drive side/coast side pinion/wheel
generated pressure angle pitch angle 19,747°/
α 20°/20° δ
nD,C 1,2
for drive side/coast side on pinion/wheel 70,253°
face angle 26,240°/
α limit pressure angle 0° δ
lim a1,2
on pinion/wheel 72,387°
root angle 17,613°/
m mean normal module 3,213 mm δ
mn f1,2
on pinion/wheel 63,760°
thickness modification
basic crown gear deden- 0,037/
k 1,25 x coefficient on pinion/
hfp sm1,2
dum factor -0,055
wheel
pinion offset angle
ζ 0,000° m outer transverse module 4,536 mm
m et2
on axial plane
mean normal circular
6,465 mm/
s tooth thickness
mn1,2
3,511 mm
of pinion/wheel
Table A.4 — Operation parameters and additional considerations
Symbol Description Value
Additional data
wheel profile generated
roughing/finishing method face milling (ground)
b effective face width on wheel 08, 5⋅ b
2eff
2
profile crowning low
verification of contact pattern checked under light test load for each gear
mounting conditions of pinion and wheel one member cantilever−mounted
Operation parameters
T pinion torque 300 Nm
1
-1
n pinion rotational speed 1 200 min
1
K application factor 1,1
A
active flank drive
Run-In-Status Run-In
Material data for pinion and wheel (case hardened steel)
2
E modulus of elasticity 210 000 N/mm
ν Poisson’s ratio 0,3
2
σ allowable stress number (contact) 1 500 N/mm
H lim
2
σ nominal stress number (bending) 480 N/mm
F lim
3
ρ densitiy of pinion / wheel 7 800 kg/m (according to
M
ISO/TS 10300-20:2021, Table 5)
4 © ISO 2021 – All rights reserved
---------------------- Page: 9 ----------------------
ISO/TR 10300-32:2021(E)
Table A.4 (continued)
Symbol Description Value
c specific heat per unit mass of pinion / wheel 440 J/(kgK) (according to
M
ISO/TS 10300-20:2021, Table 5)
λ specific heat conductivity of pinion / wheel 45 W/(mK) (according to
M
ISO/TS 10300-20:2021, Table 5)
surface hardness same for pinion and wheel
Quality parameters
Rz flank roughness on pinion/wheel 8 μm/8 μm
Ra flank roughness on pinion/wheel 1,33 µm/1,33 µm
Rz tooth root roughness on pinion/wheel 16 μm/16 μm
f single pitch deviation on pinion/wheel 12 μm/26 μm
pt
Lubrication parameters
oil type ISO-VG-150
θ oil temperature 90 °C
Oil
θ reference oil temperature 90 °C
Oil,Ref
e immersion depth 35,379 mm
d
T pinion torque of achieved load stage (load 534,5 Nm (A/8,3/90 according to ISO 14635-1)
1T
stage 12)
2
ν kinematic viscosity at temperature 40 °C 150 mm /s
40
2
ν kinematic viscosity at temperature 100 °C 15 mm /s
100
3
ρ density at temperature 15 °C 890 kg/m
15
A.2 Calculation of scuffing load capacity of Sample 1
The calculation results of the virtual cylindrical gear are listed in Table A.5, of stresses, velocities and
coefficient of friction in Table A.6. Results of the calculation of the occurring contact temperature are
shown in Table A.7, the permissible contact temperature in Table A.8. The results of the calculated
safety factor can be found in Table A.9.
© ISO 2021 – All rights reserved 5
---------------------- Page: 10 ----------------------
ISO/TR 10300-32:2021(E)
6 © ISO 2021 – All rights reserved
Table A.5 — Virtual cylindrical gear
References to
Description Formula Result ISO/TS 10300-
20:2021
Length of path of contact 1
2 2 2 2
13,121 mm Formula (3)
gg=+gd=−dd− sinsα +−dd −d innα
vvα av12av()av1 bv1 12vetv()avbv2 2 vet
in transverse section
2
Point A on the transverse
ggA =− -3,851 mm Formula (1)
()
Yva2
path of contact
Point E on the transverse
ggE =
() 9,27 mm Formula (2)
Yva1
path of contact
-3,851 mm
-2,539 mm
-1,227 mm
0,085 mm
()12− kg
svα
1,397 mm
ggYA= +kg +⋅Y
() ()()
YY svα
Contact point Y on the i
2,709 mm Formula (4)
with Y = 0…i; i = 10
transverse path of contact
4,021 mm
NOTE In all following formulae, g is a function of YY()gg= ()
Y YY
5,334 mm
6,646 mm
7,958 mm
9,27 mm
---------------------- Page: 11 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 7
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
-5,526 mm
-4,421 mm
-3,316 mm
-2,21 mm
-1,105 mm
Distance of the middle contact
fg=−()gg/c2+ ⋅ osβ 0 mm Formula (5)
mY, va2 vYα vb
line in the zone of action
1,105 mm
2,210 mm
3,316 mm
4,421 mm
5,526 mm
10,795 mm
12,846 mm
14,896 mm
16,947 mm
18,997 mm
b
1
v,eff
ffcostββ++an sintβ ++gb anγγ
()
Coordinates of the ends of the
YvbvbY vb vvα ,eff
21,048 mm Formula (10)
2 2
contact line
x = ≥0
1,Y
tantγβ+ an
21,59 mm
vb
21,59 mm
21,59 mm
21,59 mm
21,59 mm
---------------------- Page: 12 ----------------------
ISO/TR 10300-32:2021(E)
8 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0 mm
0 mm
0 mm
0 mm
0 mm
b
v,eff 1
ffcostββ++an sintβ −−gb anγγ
()
Coordinates of the ends of the
YvbvbY vb vvα ,eff
0,542 mm Formula (11)
2 2
contact line
x = ≤b
2,Y v,eff
tantγβ+ an
2,593 mm
vb
4,643 mm
6,694 mm
8,744 mm
10,795 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + -6,561 mm Formula (12)
11,,YY vb YvbvbY vb
contact line
2
-5,595 mm
-4,283 mm
-2,971 mm
-1,659 mm
-0,347 mm
---------------------- Page: 13 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 9
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0,347 mm
1,659 mm
2,971 mm
4,283 mm
5,595 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + 6,561 mm Formula (12)
22,,YY vb YvbvbY vb
contact line
2
6,561 mm
6,561 mm
6,561 mm
6,561 mm
6,561 mm
0,068
0,072
0,075
0,077
0,078
2
2
Correction factor for the b
f
v,eff
Y
0,078 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,078
0,077
0,075
0,072
0,068
---------------------- Page: 14 ----------------------
ISO/TR 10300-32:2021(E)
10 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
12,816 mm
15,25 mm
17,685 mm
20,119 mm
22,554 mm
Theoretical length of
2 2
24,345 mm Formula (14)
lx=− xy+− y
() ()
contact line bm01,,YY 2,,YY12,Y
22,554 mm
20,119 mm
17,685 mm
15,25 mm
12,816 mm
11,942 mm
14,154 mm
16,365 mm
18,579 mm
20,802 mm
Length of contact line ll=−1 C 22,445 mm Formula (13)
()
bm,,Yb0mY lb,Y
20,802 mm
18,579 mm
16,365 mm
14,154 mm
11,942 mm
---------------------- Page: 15 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 11
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
3,959 mm
5,064 mm
6,17 mm
7,275 mm
8,38 mm
Distance of the tip contact line
ff=+ p ⋅cosβ 9,485 mm Formula (6)
tY,,mY vetvb
in the zone of action
10,59 mm
11,696 mm
12,801 mm
13,906 mm
15,011 mm
21,59 mm
21,59 mm
21,59 mm
21,59 mm
21,59 mm
b
1
v,eff
ffcostββ++an sintβ ++gb anγγ
()
Coordinates of the ends of the
YvbvbY vb vvα ,eff
21,59 mm Formula (10)
2 2
contact line
x = ≥0
1,Y
tantγβ+ an
21,59 mm
vb
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 16 ----------------------
ISO/TR 10300-32:2021(E)
12 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
7,887 mm
9,938 mm
11,989 mm
14,039 mm
16,09 mm
b
v,eff 1
ffcostββ++an sintβ −−gb anγγ
()
Coordinates of the ends of the
YvbvbY vb vvα ,eff
18,14 mm Formula (11)
2 2
contact line
x = ≤b
2,Y v,eff
tantγβ+ an
20,191 mm
vb
0 mm
0 mm
0 mm
0 mm
-2,207 mm
-0,895 mm
0,417 mm
1,729 mm
3,041 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + 4,353 mm Formula (12)
11,,YY vb YvbvbY vb
contact line
2
5,665 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 17 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 13
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
6,561 mm
6,561 mm
6,561 mm
6,561 mm
6,561 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + 6,561 mm Formula (12)
22,,YY vb YvbvbY vb
contact line
2
6,561 mm
0 mm
0 mm
0 mm
0 mm
0,073
0,07
0,066
0,06
0,053
2
2
Correction factor for the b
f
v,eff
Y
0,043 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,028
0
0
0
0
---------------------- Page: 18 ----------------------
ISO/TR 10300-32:2021(E)
14 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
16,268 mm
13,833 mm
11,399 mm
8,964 mm
6,53 mm
Theoretical length of
2 2
4,095 mm Formula (14)
lx=− xy+− y
() ()
contact line bt01,,YY 2,,YY12,Y
1,661 mm
0 mm
0 mm
0 mm
0 mm
15,078 mm
12,867 mm
10,652 mm
8,428 mm
6,186 mm
Length of contact line ll=−1 C 3,92 mm Formula (13)
()
bt,,Yb0tY lb,Y
1,615 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 19 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 15
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
-15,011 mm
-13,906 mm
-12,801 mm
-11,696 mm
-10,59 mm
Distance of the root contact
ff=−p ⋅cosβ -9,485 mm Formula (7)
rY,,mY vetvb
line in the zone of action
-8,38 mm
-7,275 mm
-6,17 mm
-5,064 mm
-3,959 mm
0 mm
0 mm
0 mm
0 mm
1,399 mm
b
1
v,eff
ffcostββ++an sintβ ++gb anγγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
3,45 mm Formula (10)
2 2
the contact line
x = ≥0
1,Y
tantγβ+ an
5,5 mm
vb
7,551 mm
9,601 mm
11,652 mm
13,703 mm
---------------------- Page: 20 ----------------------
ISO/TR 10300-32:2021(E)
16 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0 mm
0 mm
0 mm
0 mm
0 mm
b
v,eff 1
ffcostββ++an sintβ −−gb anγγ
()
Coordinates of the ends of the
YvbvbY vb vvα ,eff
0 mm Formula (11)
2 2
contact line
x = ≤b
2,Y v,eff
tantγβ+ an
0 mm
vb
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
-6,561 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + -6,561 mm Formula (12)
11,,YY vb YvbvbY vb
contact line
2
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
---------------------- Page: 21 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 17
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0 mm
0 mm
0 mm
0 mm
-5,665 mm
b
Coordinates of the ends of the v,eff
yx=− tancββ++ffos tansββin + -4,353 mm Formula (12)
22,,YY vb YvbvbY vb
contact line
2
-3,041 mm
-1,729 mm
-0,417 mm
0,895 mm
2,207 mm
0
0
0
0
0,028
2
2
Correction factor for the b
f
v,eff
Y
0,043 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,053
0,06
0,066
0,07
0,073
---------------------- Page: 22 ----------------------
ISO/TR 10300-32:2021(E)
18 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0 mm
0 mm
0 mm
0 mm
1,661 mm
Theoretical length of
2 2
4,095 mm Formula (14)
lx=− xy+− y
() ()
contact line br01,,YY 2,,YY12,Y
6,53 mm
8,964 mm
11,399 mm
13,833 mm
16,268 mm
0 mm
0 mm
0 mm
0 mm
1,615 mm
Length of contact line ll=−1 C 3,92 mm Formula (13)
()
br,,Yb0rY lb,Y
6,186 mm
8,428 mm
10,652 mm
12,867 mm
15,078 mm
---------------------- Page: 23 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 19
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0,958
0,911
0,839
0,736
0,597
e
Related peak load for
f
w
tY,
*
Y
calculating the load 0,416 Formula (20)
p ==10− ≥= withe 3
tY,
w f
sharing factor
max max
0,186
0
0
0
0
0,884
0,941
0,975
0,993
0,999
e
Related peak load for
f
w
mY,
* Y
calculating the load 1 Formula (20)
p ==10− ≥= withe 3
mY,
w f
sharing factor
max max
0,999
0,993
0,975
0,941
0,884
---------------------- Page: 24 ----------------------
ISO/TR 10300-32:2021(E)
20 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0
0
0
0
0,186
e
Related peak load for
f
w
rY,
*
Y
calculating the load 0,416 Formula (20)
p ==10− ≥= withe 3
rY,
w f
sharing factor
max max
0,597
0,736
0,839
0,911
0,958
11,339 mm
9,207 mm
7,021 mm
4,874 mm
2,9 mm
Related area for
1
* *
calculating the load 1,279 mm Formula (19)
Ap=⋅π ⋅l
tY, tY, bt,Y
4
sharing factor X
LS
0,236 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 25 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 21
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
8,295 mm
10,459 mm
12,532 mm
14,484 mm
16,323 mm
Related area for
1
* *
17,628 mm Formula (19)
calculating the load Ap=⋅π ⋅l
mY, mY, bm,Y
4
sharing factor X
LS
16,323 mm
14,484 mm
12,532 mm
10,459 mm
8,295 mm
0 mm
0 mm
0 mm
0 mm
0,236 mm
Related area for
1
* *
calculating the load 1,279 mm Formula (19)
Ap=⋅π ⋅l
rY, rY, br,Y
4
sharing factor X
LS
2,9 mm
4,874 mm
7,021 mm
9,207 mm
11,339 mm
---------------------- Page: 26 ----------------------
ISO/TR 10300-32:2021(E)
22 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
0,65
0,729
0,801
0,865
0,916
*
A
mY,
Local load sharing factor 0,934 Formula (18)
X =
LS,Y
* * *
AA++A
tY, mY, rY,
0,916
0,865
0,801
0,729
0,65
1,193
1,113
1,049
0,997
0,953
tanα
vet
X =
Y
Curvature factor 0,916 Formula (17)
dg/s2⋅+inααdg/s2⋅−in
() ()
vv1 et Y vv2 et Y
⋅
d /2 d /22
0,884
vb1 vb2
0,856
0,831
0,809
0,79
---------------------- Page: 27 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 23
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
8,761 mm
10,059 mm
11,317 mm
12,537 mm
Local equivalent radius of 13,716 mm
1
curvature vertical to the
ρρ=
14,857 mm Formula (16)
relY, rel
2
contact line in the contact
X
Y
point Y 15,958 mm
17,02 mm
18,042 mm
19,025 mm
19,969 mm
1
a=
Auxiliary value 1,538 Formula (23)
K −1
Hβ
-1
0,167 mm
-1
0,141 mm
-1
0,122 mm
-1
0,108 mm
-1
0,096 mm
2
-1
b =
Auxiliary value 0,089 mm Formula (23)
Y
l
bm,Y
-1
0,096 mm
-1
0,108 mm
-1
0,122 mm
-1
0,141 mm
-1
0,167 mm
---------------------- Page: 28 ----------------------
ISO/TR 10300-32:2021(E)
24 © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
5,971 mm
5,191 mm
3,973 mm
2,756 mm
1,539 mm
2 2
bx +x yy+ l
g
v,effY12,,Y 12,,YY bm,Y
vα
Auxiliary value 0 mm Formula (22)
zM= []Y =− +−g +−g ≤
YY va2 Y
22 22 2
1,539 mm
2,756 mm
3,973 mm
5,191 mm
5,971 mm
0
0,626
1,107
1,396
1,563
Local face load factor for a
KK=⋅ 10−⋅bz ≥ 1,65 Formula (21)
()
HYββ, HY Y
contact stress
1,563
1,396
1,107
0,626
0
---------------------- Page: 29 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 25
Table A.6 — Stresses, velocities and coefficient of friction
References to
Description Formula Result ISO/TS 10300-
20:2021
1,979 m/s
Surface velocity in
wv=⋅sinβ
Formula (28)
ts12,,mt12 m12,
lengthwise direction
1,979 m/s
0,594 m/s
0,721 m/s
0,848 m/s
0,975 m/s
1,102 m/s
Pinion local surface
g
Y
velocity in profile wv=⋅cossβαin + 1,229 m/s Formula (29)
th11,,Ymtm1 nD C
d /2
direction v1
1,356 m/s
1,483 m/s
1,61 m/s
1,738 m/s
1,865 m/s
1,015 m/s
0,998 m/s
0,982 m/s
0,966 m/s
0,949 m/s
Wheel local surface
g
Y
velocity in profile wv=⋅cossβαin − 0,933 m/s Formula (30)
th22,,Ymtm2 nD C
d /2
direction v2
0,916 m/s
0,9 m/s
0,884 m/s
0,867 m/s
0,851 m/s
---------------------- Page: 30 ----------------------
ISO/TR 10300-32:2021(E)
26 © ISO 2021 – All rights reserved
Table A.6 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
2,066 m/s
2,106 m/s
2,153 m/s
2,206 m/s
2,265 m/s
2 2
Pinion local surface velocity 2,33 m/s Formula (31)
w =+w w
tY11,,ts th1 Y
2,399 m/s
2,473 m/s
2,551 m/s
2,634 m/s
2,719 m/s
2,224 m/s
2,217 m/s
2,209 m/s
2,202 m/s
2,195 m/s
2 2
Wheel local surface velocity 2,188 m/s Formula (31)
w =+w w
tY22,,ts th2 Y
2,181 m/s
2,174 m/s
2,167 m/s
2,161 m/s
2,154 m/s
---------------------- Page: 31 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved 27
Table A.6 (continued)
References to
Description Formula Result ISO/TS 10300-
20:2021
16,673 °
19,996 °
23,205 °
26,241
...
TECHNICAL ISO/TR
REPORT 10300-32
First edition
Calculation of load capacity of bevel
gears —
Part 32:
ISO rating system for bevel and hypoid
gears — Sample calculation for
scuffing load capacity
PROOF/ÉPREUVE
Reference number
ISO/TR 10300-32:2021(E)
©
ISO 2021
---------------------- Page: 1 ----------------------
ISO/TR 10300-32:2021(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii PROOF/ÉPREUVE © ISO 2021 – All rights reserved
---------------------- Page: 2 ----------------------
ISO/TR 10300-32:2021(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols . 1
5 Application . 2
Annex A (informative) Sample 1: Rating of a spiral bevel gear pair without hypoid offset
according to ISO/TS 10300-20 . 3
Annex B (informative) Sample 2: Rating of a hypoid gear set according to ISO/TS 10300-20 .43
Annex C (informative) Sample 3: Rating of a hypoid gear set according to ISO/TS 10300-20 .84
Annex D (informative) Sample 4: Rating of a hypoid gear set according to ISO/TS 10300-20 .124
Bibliography .164
© ISO 2021 – All rights reserved PROOF/ÉPREUVE iii
---------------------- Page: 3 ----------------------
ISO/TR 10300-32:2021(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 60, Gears, Subcommittee SC 2, Gear
capacity calculation.
A list of all parts in the ISO 10300 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv PROOF/ÉPREUVE © ISO 2021 – All rights reserved
---------------------- Page: 4 ----------------------
ISO/TR 10300-32:2021(E)
Introduction
The ISO 10300 series consists of International Standards, Technical Specifications (TS) and Technical
Reports (TR) under the general title Calculation of load capacity of bevel gears (see Table 1).
— International Standards contain calculation methods that are based on widely accepted practices
and have been validated.
— TS contain calculation methods that are still subject to further development.
— TR contain data that is informative, such as example calculations.
The procedures specified in ISO 10300 parts 1 to 19 cover fatigue analyses for gear rating. The
procedures described in ISO 10300 parts 20 to 29 are predominantly related to the tribological
behaviour of the lubricated flank surface contact. ISO 10300 parts 30 to 39 include example calculations.
ISO 10300 series allows the addition of new parts under appropriate numbers to reflect knowledge
gained in the future.
Requesting standardized calculations according to ISO 10300 without referring to specific parts
requires the use of only those parts that are currently designated as International Standards (see
Table 1 for listing). When requesting further calculations, the relevant part or parts of ISO 10300 need
to be specified. Use of a Technical Specification as acceptance criteria for a specific design need to be
agreed in advance between manufacturer and purchaser.
Table 1 — Parts of ISO 10300 series (status as of DATE OF PUBLICATION)
International Technical Technical
Calculation of load capacity of bevel gears
Standard Specification Report
a
Part 1: Introduction and general influence factors X
a
Part 2: Calculation of surface durability (pitting) X
a
Part 3: Calculation of tooth root strength X
Part 4 to 19: to be assigned
Part 20: Calculation of scuffing load capacity — Flash
X
b
temperature method
Part 21 to 29: to be assigned
Part 30: ISO rating system for bevel and hypoid gears —
X
Sample calculations
Part 32: ISO rating system for bevel and hypoid gears —
X
Sample Calculations of scuffing load capacity
a
Under revision.
b
Under preparation.
This document and the other parts of ISO 10300 series provide a coherent system of procedures for
the calculation of the load capacity of bevel and hypoid gears. ISO 10300 series is designed to facilitate
the application of future knowledge and developments, also the exchange of information gained from
experience.
© ISO 2021 – All rights reserved PROOF/ÉPREUVE v
---------------------- Page: 5 ----------------------
TECHNICAL REPORT ISO/TR 10300-32:2021(E)
Calculation of load capacity of bevel gears —
Part 32:
ISO rating system for bevel and hypoid gears — Sample
calculation for scuffing load capacity
WARNING — The user is cautioned that when the formulae are used for large average mean spiral
angles, (β + β )/2 > 45°, for effective pressure angles, α > 30° and/or for large face widths,
m1 m2 e
b > 13 m , the calculated results of the ISO 10300 series should be confirmed by experience.
mn
1 Scope
This document provides calculation examples for different bevel gear designs regarding the scuffing
load capacity according to ISO/TS 10300-20. The initial geometry data of the gear necessary for these
calculations are in accordance with ISO 23509.
The term "bevel gear" is used to mean straight, helical (skew), spiral bevel, zerol and hypoid gear
designs. Where this document pertains to one or more, but not all, the specific forms are identified.
The formulae in this document are based on virtual cylindrical gears and restricted to bevel gears
whose virtual cylindrical gears have transverse contact ratios of ε < 2. The results are valid within
vα
the range of the applied factors as specified in ISO 10300-1 (see ISO 6336-2). Additionally, the given
relations are valid for bevel gears of which the sum of profile shift coefficients of pinion and wheel is
zero (see ISO 23509).
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/TS 10300-20, Calculation of load capacity of bevel gears — Part 20: Calculation of scuffing load
capacity — Flash temperature method
3 Terms and definitions
No terms and definitions are listed in this document.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
4 Symbols
For the purposes of this document, the symbols and units given in ISO/TS 10300-20 apply.
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 1
---------------------- Page: 6 ----------------------
ISO/TR 10300-32:2021(E)
5 Application
This document provides four sample calculations:
— Sample 1 is a rating of a spiral bevel gear pair without hypoid offset according to ISO/TS 10300-20
(see Annex A);
— Sample 2 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex B);
— Sample 3 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex C);
— Sample 4 is a rating of a hypoid gear set according to ISO/TS 10300-20 (see Annex D).
2 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
---------------------- Page: 7 ----------------------
ISO/TR 10300-32:2021(E)
Annex A
(informative)
Sample 1: Rating of a spiral bevel gear pair without hypoid offset
according to ISO/TS 10300-20
A.1 Initial data
Sample 1 is for a spiral bevel gear pair without hypoid offset which uses Method 0 according to
ISO 23509 for calculation of gear geometry. The initial data for pitch cone parameters for this sample is
shown in Table A.1 and the input data for tooth profile parameters in Table A.2.
Table A.1 — Initial data for pitch cone parameters
Symbol Description Method 0 Method 1 Method 2 Method 3
Σ shaft angle 90° X X X
a hypoid offset 0 mm X X X
z number of teeth 14/39 X X X
1,2
d mean pitch diameter of wheel — — X —
m2
d outer pitch diameter of wheel 176,893 mm X — X
e2
b wheel face width 25,4 mm X X X
2
β mean spiral angle of pinion 35° X — —
m1
β mean spiral angle of wheel 35° — X X
m2
r cutter radius 114,3 X X X
c0
number of blade groups
z — — X X
0
(only face hobbing)
Table A.2 — Input data for tooth profile parameters
Data type I Data type II
Symbol Description Symbol Description
α 20°
dD
α 20°
dC
f 0
αlim
x — c 0,247 37
hm1 ham
k — k 2,000
hap d
k — k 0,125
hfp c
x — k 0,091 5
smn t
W —
m2
j 0,127 mm
et2
θ 2,134 2°
a2
θ 6,493 4°
f2
ρ 0,8 mm/0,8 mm
a01
ρ 1,2 mm/1,2 mm
a02
s 0 mm/0 mm
pr1D,C
s 0 mm/0 mm
pr2D,C
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 3
---------------------- Page: 8 ----------------------
ISO/TR 10300-32:2021(E)
Table A.3 and Table A.4 show geometry and operational data and text for explanation.
Table A.3 — Geometry data from calculation according to ISO 23509
Symbol Description Values Symbol Description Value
mean pitch diameter 54,918 mm/ offset angle on
d ζ 0°
m1,2 mp
of pinion/wheel 152,987 mm pitch plane
mean addendum of pinion/ 4,836 mm/ pinion offset angle
h ζ 0°
am1,2 R
wheel 1,591 mm on root plane
mean dedendum of pinion/ 2,394 mm/ outer cone distance on
h R 93,973 mm
fm1,2 e1,2
wheel 5,639 mm pinion/wheel
effective pressure angle mean cone distance on
α 20°/20° R 81,273 mm
eD,C m1,2
for drive side/coast side pinion/wheel
generated pressure angle pitch angle 19,747°/
α 20°/20° δ
nD,C 1,2
for drive side/coast side on pinion/wheel 70,253°
face angle 26,240°/
α limit pressure angle 0° δ
lim a1,2
on pinion/wheel 72,387°
root angle 17,613°/
m mean normal module 3,213 mm δ
mn f1,2
on pinion/wheel 63,760°
thickness modification
basic crown gear deden- 0,037/
k 1,25 x coefficient on pinion/
hfp sm1,2
dum factor -0,055
wheel
pinion offset angle
ζ 0,000° m outer transverse module 4,536 mm
m et2
on axial plane
mean normal circular
6,465 mm/
s tooth thickness
mn1,2
3,511 mm
of pinion/wheel
Table A.4 — Operation parameters and additional considerations
Symbol Description Value
Additional data
wheel profile generated
roughing/finishing method face milling (ground)
b effective face width on wheel 08, 5⋅b
2eff
2
profile crowning low
verification of contact pattern checked under light test load for each gear
mounting conditions of pinion and wheel one member cantilever−mounted
Operation parameters
T pinion torque 300 Nm
1
-1
n pinion rotational speed 1 200 min
1
K application factor 1,1
A
active flank drive
Run-In-Status Run-In
Material data for pinion and wheel (case hardened steel)
2
E modulus of elasticity 210 000 N/mm
ν Poisson’s ratio 0,3
2
σ allowable stress number (contact) 1 500 N/mm
H lim
2
σ nominal stress number (bending) 480 N/mm
F lim
3
ρ densitiy of pinion / wheel 7 800 kg/m (according to ISO/TS 10300-20:—,
M
Table 5)
4 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
---------------------- Page: 9 ----------------------
ISO/TR 10300-32:2021(E)
Table A.4 (continued)
Symbol Description Value
c specific heat per unit mass of pinion / wheel 440 J/(kgK) (according to ISO/TS 10300-20:—,
M
Table 5)
λ specific heat conductivity of pinion / wheel 45 W/(mK) (according to ISO/TS 10300-20:—,
M
Table 5)
surface hardness same for pinion and wheel
Quality parameters
Rz flank roughness on pinion/wheel 8 μm/8 μm
Ra flank roughness on pinion/wheel 1,33 µm/1,33 µm
Rz tooth root roughness on pinion/wheel 16 μm/16 μm
f single pitch deviation on pinion/wheel 12 μm/26 μm
pt
Lubrication parameters
oil type ISO-VG-150
θ oil temperature 90 °C
Oil
θ reference oil temperature 90 °C
Oil,Ref
e immersion depth 35,379 mm
d
T pinion torque of achieved load stage (load 534,5 Nm (A/8,3/90 according to ISO 14635-1)
1T
stage 12)
2
ν kinematic viscosity at temperature 40 °C 150 mm /s
40
2
ν kinematic viscosity at temperature 100 °C 15 mm /s
100
3
ρ density at temperature 15 °C 890 kg/m
15
A.2 Calculation of scuffing load capacity of Sample 1
The calculation results of the virtual cylindrical gear are listed in Table A.5, of stresses, velocities and
coefficient of friction in Table A.6. Results of the calculation of the occurring contact temperature are
shown in Table A.7, the permissible contact temperature in Table A.8. The results of the calculated
safety factor can be found in Table A.9.
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 5
---------------------- Page: 10 ----------------------
ISO/TR 10300-32:2021(E)
6 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 — Virtual cylindrical gear
References to
Description Formula Result
ISO/TS 10300-20:—
Length of path of contact 1
2 2 2 2
13,121 mm Formula (3)
gg=+gd=−dd− sinsα +−dd −d innα
() ()
vvα av12a va1 vb1 vv1 et va2 vb2 v2 vet
in transverse section
2
Point A on the transverse
gg()A =− -3,851 mm Formula (1)
Yva2
path of contact
Point E on the transverse
gg()E =
9,27 mm Formula (2)
Yva1
path of contact
-3,851 mm
-2,539 mm
-1,227 mm
0,085 mm
()12− kg
svα
1,397 mm
gg()YA=()()+kg +⋅Y
YY svα
Contact point Y on the trans- i
2,709 mm Formula (4)
with Y = 0…i; i = 10
verse path of contact
4,021 mm
NOTE In all following formulae, g is a function of YYgg=
()()
Y
YY
5,334 mm
6,646 mm
7,958 mm
9,27 mm
---------------------- Page: 11 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 7
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
-5,526 mm
-4,421 mm
-3,316 mm
-2,21 mm
-1,105 mm
Distance of the middle con-
fg=−gg/c2+ ⋅ osβ 0 mm Formula (5)
()
mY, va2 vYα vb
tact line in the zone of action
1,105 mm
2,210 mm
3,316 mm
4,421 mm
5,526 mm
10,795 mm
12,846 mm
14,896 mm
16,947 mm
b 18,997 mm
1
ve, ff
ffcostββ++an sintβ ++gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
2 2 21,048 mm Formula (10)
the contact line
x = ≥0
1,Y
tantγβ+ an 21,59 mm
vb
21,59 mm
21,59 mm
21,59 mm
21,59 mm
---------------------- Page: 12 ----------------------
ISO/TR 10300-32:2021(E)
8 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0 mm
0 mm
0 mm
0 mm
b 0 mm
1
ve, ff
ffcostββ++an sintβ −−gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
0,542 mm Formula (11)
2 2
the contact line
x = ≤b
2,Y ve, ff
tantγβ+ an 2,593 mm
vb
4,643 mm
6,694 mm
8,744 mm
10,795 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + -6,561 mm Formula (12)
11,,YY vb YvbvbY vb
the contact line
2
-5,595 mm
-4,283 mm
-2,971 mm
-1,659 mm
-0,347 mm
---------------------- Page: 13 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 9
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0,347 mm
1,659 mm
2,971 mm
4,283 mm
5,595 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + 6,561 mm Formula (12)
22,,YY vb YvbvbY vb
the contact line
2
6,561 mm
6,561 mm
6,561 mm
6,561 mm
6,561 mm
0,068
0,072
0,075
0,077
0,078
2
2
b
Correction factor for the f
ve, ff
Y
0,078 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,078
0,077
0,075
0,072
0,068
---------------------- Page: 14 ----------------------
ISO/TR 10300-32:2021(E)
10 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
12,816 mm
15,25 mm
17,685 mm
20,119 mm
22,554 mm
Theoretical length of con-
2 2
24,345 mm Formula (14)
lx=−xy+− y
() ()
tact line
bm01,,YY 2,,YY12,Y
22,554 mm
20,119 mm
17,685 mm
15,25 mm
12,816 mm
11,942 mm
14,154 mm
16,365 mm
18,579 mm
20,802 mm
Length of contact line ll=−1 C 22,445 mm Formula (13)
()
bm,,Yb0mY lb,Y
20,802 mm
18,579 mm
16,365 mm
14,154 mm
11,942 mm
---------------------- Page: 15 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 11
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
3,959 mm
5,064 mm
6,17 mm
7,275 mm
8,38 mm
Distance of the tip contact
ff=+p ⋅cosβ
9,485 mm Formula (6)
tY,,mY vetvb
line in the zone of action
10,59 mm
11,696 mm
12,801 mm
13,906 mm
15,011 mm
21,59 mm
21,59 mm
21,59 mm
21,59 mm
b 21,59 mm
1
ve, ff
ffcostββ++an sintβ ++gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
2 2 21,59 mm Formula (10)
the contact line
x = ≥0
1,Y
tantγβ+ an 21,59 mm
vb
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 16 ----------------------
ISO/TR 10300-32:2021(E)
12 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
7,887 mm
9,938 mm
11,989 mm
14,039 mm
b 16,09 mm
1
ve, ff
ffcostββ++an sintβ −−gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
18,14 mm Formula (11)
2 2
the contact line
x = ≤b
2,Y ve, ff
tantγβ+ an 20,191 mm
vb
0 mm
0 mm
0 mm
0 mm
-2,207 mm
-0,895 mm
0,417 mm
1,729 mm
3,041 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + 4,353 mm Formula (12)
11,,YY vb YvbvbY vb
the contact line
2
5,665 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 17 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 13
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
6,561 mm
6,561 mm
6,561 mm
6,561 mm
6,561 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + 6,561 mm Formula (12)
22,,YY vb YvbvbY vb
the contact line
2
6,561 mm
0 mm
0 mm
0 mm
0 mm
0,073
0,07
0,066
0,06
0,053
2
2
b
Correction factor for the f
ve, ff
Y
0,043 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,028
0
0
0
0
---------------------- Page: 18 ----------------------
ISO/TR 10300-32:2021(E)
14 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
16,268 mm
13,833 mm
11,399 mm
8,964 mm
6,53 mm
Theoretical length of con-
2 2
4,095 mm Formula (14)
lx=−xy+− y
() ()
tact line
bt01,,YY 2,,YY12,Y
1,661 mm
0 mm
0 mm
0 mm
0 mm
15,078 mm
12,867 mm
10,652 mm
8,428 mm
6,186 mm
Length of contact line ll=−1 C 3,92 mm Formula (13)
()
bt,,Yb0tY lb,Y
1,615 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 19 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 15
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
-15,011 mm
-13,906 mm
-12,801 mm
-11,696 mm
-10,59 mm
Distance of the root contact
ff=−p ⋅cosβ
-9,485 mm Formula (7)
rY,,mY vetvb
line in the zone of action
-8,38 mm
-7,275 mm
-6,17 mm
-5,064 mm
-3,959 mm
0 mm
0 mm
0 mm
0 mm
b 1,399 mm
1
ve, ff
ffcostββ++an sintβ ++gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
2 2 3,45 mm Formula (10)
the contact line
x = ≥0
1,Y
tantγβ+ an 5,5 mm
vb
7,551 mm
9,601 mm
11,652 mm
13,703 mm
---------------------- Page: 20 ----------------------
ISO/TR 10300-32:2021(E)
16 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0 mm
0 mm
0 mm
0 mm
b 0 mm
1
ve, ff
ffcostββ++an sintβ −−gb aanγ
()
Coordinates of the ends of
YvbvbY vb vvα ,eff
0 mm Formula (11)
2 2
the contact line
x = ≤b
2,Y ve, ff
tantγβ+ an 0 mm
vb
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
0 mm
-6,561 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + -6,561 mm Formula (12)
11,,YY vb YvbvbY vb
the contact line
2
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
-6,561 mm
---------------------- Page: 21 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 17
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0 mm
0 mm
0 mm
0 mm
-5,665 mm
b
Coordinates of the ends of ve, ff
yx=− tancββ++ffos tansββin + -4,353 mm Formula (12)
22,,YY vb YvbvbY vb
the contact line
2
-3,041 mm
-1,729 mm
-0,417 mm
0,895 mm
2,207 mm
0
0
0
0
0,028
2
2
b
Correction factor for the f
ve, ff
Y
0,043 Formula (15)
C =−11 −
length of contact lines lb,Y
f b
max v
0,053
0,06
0,066
0,07
0,073
---------------------- Page: 22 ----------------------
ISO/TR 10300-32:2021(E)
18 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0 mm
0 mm
0 mm
0 mm
1,661 mm
Theoretical length of con-
2 2
4,095 mm Formula (14)
lx=−xy+− y
() ()
tact line
br01,,YY 2,,YY12,Y
6,53 mm
8,964 mm
11,399 mm
13,833 mm
16,268 mm
0 mm
0 mm
0 mm
0 mm
1,615 mm
Length of contact line ll=−1 C 3,92 mm Formula (13)
()
br,,Yb0rY lb,Y
6,186 mm
8,428 mm
10,652 mm
12,867 mm
15,078 mm
---------------------- Page: 23 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 19
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0,958
0,911
0,839
0,736
0,597
e
f
w
Related peak load for calcu-
tY,
Y
*
0,416 Formula (20)
p ==10− ≥= withe 3
tY,
lating the load sharing factor
w f
max max
0,186
0
0
0
0
0,884
0,941
0,975
0,993
0,999
e
f
w
Related peak load for calcu-
mY,
Y
*
1 Formula (20)
p ==10− ≥= withe 3
mY,
lating the load sharing factor
w f
max max
0,999
0,993
0,975
0,941
0,884
---------------------- Page: 24 ----------------------
ISO/TR 10300-32:2021(E)
20 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0
0
0
0
0,186
e
f
w
Related peak load for calcu-
rY,
Y
*
0,416 Formula (20)
p ==10− ≥= withe 3
rY,
lating the load sharing factor
w f
max max
0,597
0,736
0,839
0,911
0,958
11,339 mm
9,207 mm
7,021 mm
4,874 mm
2,9 mm
Related area for calculating 1
* *
1,279 mm Formula (19)
Ap=⋅π ⋅l
tY, tY, bt,Y
the load sharing factor X
LS 4
0,236 mm
0 mm
0 mm
0 mm
0 mm
---------------------- Page: 25 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 21
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
8,295 mm
10,459 mm
12,532 mm
14,484 mm
16,323 mm
Related area for calculating 1
* *
17,628 mm Formula (19)
Ap=⋅π ⋅l
mY, mY, bm,Y
the load sharing factor X
LS 4
16,323 mm
14,484 mm
12,532 mm
10,459 mm
8,295 mm
0 mm
0 mm
0 mm
0 mm
0,236 mm
Related area for calculating 1
* *
1,279 mm Formula (19)
Ap=⋅π ⋅l
rY, rY, br,Y
the load sharing factor X
LS 4
2,9 mm
4,874 mm
7,021 mm
9,207 mm
11,339 mm
---------------------- Page: 26 ----------------------
ISO/TR 10300-32:2021(E)
22 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
0,65
0,729
0,801
0,865
0,916
*
A
mY,
Local load sharing factor 0,934 Formula (18)
X =
LS,Y
* * *
AA++A
tY, mY, rY,
0,916
0,865
0,801
0,729
0,65
1,193
1,113
1,049
0,997
tanα
0,953
vet
X =
Y
Curvature factor 0,916 Formula (17)
dg/s2⋅+inααdg/s2⋅−in
() ()
vv1 et Y vv2 et Y
⋅
d /2 d /22 0,884
vb1 vb2
0,856
0,831
0,809
0,79
---------------------- Page: 27 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 23
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
8,761 mm
10,059 mm
11,317 mm
12,537 mm
Local equivalent radius of 13,716 mm
1
curvature vertical to the
ρρ=
14,857 mm Formula (16)
relY, rel
2
contact line in the contact
X
Y
point Y 15,958 mm
17,02 mm
18,042 mm
19,025 mm
19,969 mm
1
a=
Auxiliary value 1,538 Formula (23)
K −1
Hβ
-1
0,167 mm
-1
0,141 mm
-1
0,122 mm
-1
0,108 mm
-1
0,096 mm
2
-1
b =
Auxiliary value 0,089 mm Formula (23)
Y
l
bm,Y
-1
0,096 mm
-1
0,108 mm
-1
0,122 mm
-1
0,141 mm
-1
0,167 mm
---------------------- Page: 28 ----------------------
ISO/TR 10300-32:2021(E)
24 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.5 (continued)
References to
Description Formula Result
ISO/TS 10300-20:—
5,971 mm
5,191 mm
3,973 mm
2,756 mm
1,539 mm
2 2
bx +x yy+ l
g
ve,,ff 12YY,,12Y ,YYbmY,
vα
Auxiliary value 0 mm Formula (22)
zM= Y =− +−g +−g ≤
[]
YY va2 Y
22 2 22
1,539 mm
2,756 mm
3,973 mm
5,191 mm
5,971 mm
0
0,626
1,107
1,396
1,563
Local face load factor for a
KK=⋅ 10−⋅bz ≥ 1,65 Formula (21)
()
HYββ, HY Y
contact stress
1,563
1,396
1,107
0,626
0
---------------------- Page: 29 ----------------------
ISO/TR 10300-32:2021(E)
© ISO 2021 – All rights reserved PROOF/ÉPREUVE 25
Table A.6 — Stresses, velocities and coefficient of friction
References to
Description Formula Result
ISO/TS 10300-20:—
1,979 m/s
Surface velocity in length-
wv=⋅sinβ
Formula (28)
ts12,,mt12 m12,
wise direction
1,979 m/s
0,594 m/s
0,721 m/s
0,848 m/s
0,975 m/s
1,102 m/s
g
Pinion local surface ve-
Y
wv=⋅cossβαin + 1,229 m/s Formula (29)
th11,,Ymtm1 nD C
locity in profile direction
d /2
v1
1,356 m/s
1,483 m/s
1,61 m/s
1,738 m/s
1,865 m/s
1,015 m/s
0,998 m/s
0,982 m/s
0,966 m/s
0,949 m/s
g
Wheel local surface veloci-
Y
wv=⋅cossβαin − 0,933 m/s Formula (30)
th22,,Ymtm2 nD C
ty in profile direction
d /2
v2
0,916 m/s
0,9 m/s
0,884 m/s
0,867 m/s
0,851 m/s
---------------------- Page: 30 ----------------------
ISO/TR 10300-32:2021(E)
26 PROOF/ÉPREUVE © ISO 2021 – All rights reserved
Table A.6 (continued)
2,066 m/s
2,106 m/s
2,153 m/s
2,206 m/s
2,265 m/s
2 2
Pinion local surface velocity 2,33 m/s Formula (31)
w =+w w
tY1, ts1
th1 ,Y
2,399 m/s
2,473 m/s
2,551 m/s
2,634 m/s
2,719 m/s
2,224 m/s
2,217 m/s
2,209 m/s
2,202 m/s
2,195 m/s
2 2
Wheel local surface velocity 2,188 m/s Formula (31)
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.