Composite station post insulators for substations with a.c. voltages greater than 1 000 V up to 245 kV - Definitions, test methods and acceptance criteria

This International Standard applies to composite station post insulators consisting of a load bearing cylindrical insulating solid core made of resin impregnated fibres, a housing (outside the insulating solid core) made of elastomer material (e.g. silicone or ethylene-propylene) and end fittings attached to the insulating core. Composite station post insulators covered by this standard are subjected to cantilever, torsion, tension and compression loads. They are intended for substations with a.c. voltages greater than 1 000 V up to 245 kV.

Isolateurs supports composites rigides à socle destinés aux postes à courant alternatif de tensions supérieures à 1 000 V jusqu'à 245 kV - Définitions, méthodes d'essai et critères d'acceptation

La présente Norme internationale s'applique aux supports isolants composites rigides à socle constitués d'un noyau isolant plein cylindrique supportant les charges mécaniques réalisé en fibres imprégnées de résine, d'un revêtement (à l'extérieur du noyau plein isolant) réalisée en matériau élastomère (par exemple du silicone ou de l'éthylène-propylène) et des armatures d'extrémité fixées au noyau isolant. Les supports isolants composites rigides à socle relevant de la présente norme sont soumis aux charges de flexion, de torsion, de traction et de compression. Ils sont destinés aux postes à courant alternatif de tensions supérieures à 1 000 V jusqu'à 245 kV.

General Information

Status
Published
Publication Date
06-Feb-2006
Technical Committee
Current Stage
PPUB - Publication issued
Start Date
07-Feb-2006
Completion Date
31-May-2006
Ref Project
Standard
IEC 62231:2006 - Composite station post insulators for substations with a.c. voltages greater than 1 000 V up to 245 kV - Definitions, test methods and acceptance criteria Released:2/7/2006 Isbn:2831884845
English language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 62231:2006 - Composite station post insulators for substations with a.c. voltages greater than 1 000 V up to 245 kV - Definitions, test methods and acceptance criteria
English and French language
71 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL IEC
STANDARD 62231
First edition
2006-02
Composite station post insulators
for substations with a.c. voltages
greater than 1 000 V up to 245 kV –
Definitions, test methods and
acceptance criteria
Reference number
Publication numbering
As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.
Consolidated editions
The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.
Further information on IEC publications
The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:
• IEC Web Site (www.iec.ch)
• Catalogue of IEC publications
The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.
• IEC Just Published
This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.
• Customer Service Centre
If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00
INTERNATIONAL IEC
STANDARD 62231
First edition
2006-02
Composite station post insulators
for substations with a.c. voltages
greater than 1 000 V up to 245 kV –
Definitions, test methods and
acceptance criteria
 IEC 2006  Copyright - all rights reserved
No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.
International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch
PRICE CODE
Commission Electrotechnique Internationale V
International Electrotechnical Commission
МеждународнаяЭлектротехническаяКомиссия
For price, see current catalogue

– 2 – 62231  IEC:2006(E)
CONTENTS
FOREWORD.4
INTRODUCTION.6

1 Scope and object.7
2 Normative references .7
3 Terms and definitions .8
4 Identification.11
5 Environmental conditions.11
6 Information on transport, storage and installation .12
7 Classification of tests .12
7.1 Design tests .12
7.2 Type tests .13
7.3 Sample tests .13
7.4 Routine tests .13
8 Design tests .14
8.1 General .14
8.2 Tests on interfaces and connections of end fittings.14
8.3 Assembled core load tests.15
8.4 Tests on shed and housing material .16
8.5 Tests on the core material .17
9 Type tests .17
9.1 Verification of dimensions .17
9.2 Electrical tests.17
9.3 Mechanical tests .19
10 Sample tests .20
10.1 General rules .20
10.2 Verification of dimensions (E1 + E2).21
10.3 Galvanizing test (E1 + E2).21
10.4 Verification of the specified mechanical loads (E1) .21
10.5 Re-testing procedure.22
11 Routine tests .22
11.1 Identification of the station post insulator .22
11.2 Visual examination .22
11.3 Tensile load test.22

Annex A (informative) Notes on the mechanical loads and tests .24
Annex B (informative) Determination of the equivalent bending moment caused by
combined cantilever and compression (tension) loads.26
Annex C (informative) Example of torsion load test arrangement .28
Annex D (normative) Tolerances of form and position .29
Annex E (informative) Notes on the compression and buckling test.32

Bibliography.33

62231  IEC:2006(E) – 3 –
Figure 1 – Thermal-mechanical pre-stressing test – Typical cycles .23
Figure B.1 – Combined loads applied to station post insulators.27
Figure D.1 – Parallelism, coaxiality and concentricity.29
Figure D.2 – Angular deviation of fixing holes: Example 1.30
Figure D.3 – Angular deviation of fixing holes: Example 2.30
Figure D.4 – Tolerances according to standard drawing practice.31

Table 1 – Tests to be carried out after design changes .12

– 4 – 62231  IEC:2006(E)
INTERNATIONAL ELECTROTECHNICAL COMMISSION
___________
COMPOSITE STATION POST INSULATORS FOR SUBSTATIONS
WITH AC VOLTAGES GREATER THAN 1000 V UP TO 245 kV –
DEFINITIONS, TEST METHODS AND ACCEPTANCE CRITERIA

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62231 has been prepared by subcommittee 36C: Insulators for
substations, of IEC technical committee 36: Insulators.
The text of this standard is based on the following documents:
FDIS Report on voting
36C/159/FDIS 36C/160/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
This standard is to be read in conjunction with IEC 62217.

62231  IEC:2006(E) – 5 –
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
A bilingual version of this publication may be issued at a later date.

– 6 – 62231  IEC:2006(E)
INTRODUCTION
Composite station post insulators consist of a cylindrical solid insulating core made of resin
impregnated fibres, bearing the mechanical load, protected by an elastomer housing, the
loads being transmitted to the core by metal fittings. Despite these common features, the
materials used and the construction details employed by different manufacturers may be
different.
Some tests have been grouped together as "design tests" to be performed only once for
insulators of the same design. The design tests are performed in order to eliminate insulator
designs, materials and manufacturing technologies not suitable for high-voltage applications.
The influence of time on the electrical and mechanical properties of the complete composite
station post insulator and its components (core material, housing material, interfaces, etc.)
has been considered in specifying the design tests in order to ensure a satisfactory lifetime
under normal service conditions.
The approach for mechanical testing under bending loads used in this Standard is based on
IEC 61952. This approach uses the concept of a damage limit that is the maximum stress that
can be developed in the insulator before damage begins to occur. Work is underway to
validate the acoustic emission technique to determine the inception of damage.
In some cases, station post insulators can be subjected to a combination of loads. In order to
give some guidance, Annex B explains how to calculate the equivalent bending moment in the
insulators resulting from the combination of bending, tensile and compression loads.
Pollution tests, as specified in IEC 60507 and IEC 61245, are not included in this document,
their applicability to composite station post insulators having not been proven. Such pollution
tests performed on composite insulators do not correlate with experience obtained from
service. Specific pollution tests for composite insulators are under consideration.
It has not been considered useful to specify a power arc test as a mandatory test. The test
parameters are manifold and can have very different values depending on the configurations
of the network and the supports and on the design of arc-protection devices. The heating
effect of power arcs should be considered in the design of metal fittings. Critical damage to
the metal fittings, resulting from the magnitude and duration of the short-circuit current can be
avoided by properly designed arc-protection devices. This standard, however, does not
exclude the possibility of a power arc test by agreement between the user and the manu-
facturer. IEC 61467 gives details of a.c. power arc testing of insulator sets.
Impulse (mechanical) loads in substation are typically caused by short-circuits. Post
insulators are affected by forces due to the interaction of the currents circulating in
conductors/busbars supported by insulators.
The impulse load or peak load may be evaluated using guidance found in the IEC 60865
series.
Work is in progress in CIGRE ESCC (Effects of Short-Circuit Currents) task force to review
impulse loads caused by short-circuit currents in substations. The aim of this work is to
introduce a new concept: the ESL factor (Equivalent Static Load factor) which is frequency
dependent. The actual peak load may be replaced, in a first approximation, by the peak load
times the ESL factor. This new value may be used as the MDCL in this document for the
determination of the cantilever strength.
Radio interference and corona tests are not specified in this standard since the radio
interference and corona performances are not characteristics of the insulator alone.
Composite hollow core station post insulators are currently not dealt with in this standard.
IEC 61462 gives details of tests on hollow core composite insulators, many of which can be
applied to such station post insulators.

62231  IEC:2006(E) – 7 –
COMPOSITE STATION POST INSULATORS FOR SUBSTATIONS
WITH AC VOLTAGES GREATER THAN 1 000 V UP TO 245 kV –
DEFINITIONS, TEST METHODS AND ACCEPTANCE CRITERIA

1 Scope and object
This International Standard applies to composite station post insulators consisting of a load
bearing cylindrical insulating solid core made of resin impregnated fibres, a housing (outside
the insulating solid core) made of elastomer material (e.g. silicone or ethylene-propylene) and
end fittings attached to the insulating core. Composite station post insulators covered by this
standard are subjected to cantilever, torsion, tension and compression loads. They are
intended for substations with a.c. voltages greater than 1 000 V up to 245 kV.
The object of this standard is
– to define the terms used,
– to prescribe test methods,
– to prescribe acceptance or failure criteria.
This standard does not include requirements dealing with the choice of insulators for specific
operating conditions.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60050-471, International Electrotechnical Vocabulary (IEV) – Chapter 471: Insulators
IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements
IEC 60168:1994, Tests on indoor and outdoor post insulators of ceramic material or glass for
systems with nominal voltages greater than 1 000 V
IEC 62217: , Polymeric insulators for indoor and outdoor use with a nominal voltage greater
than 1000 V – General definitions, test methods and acceptance criteria
ISO 1101, Technical drawings – Geometrical tolerancing – Tolerancing of form, orientation,
location and run-out – Generalities, definitions, symbols, indications on drawings
ISO 3452, Non-destructive testing – Penetrant inspection – General principles

– 8 – 62231  IEC:2006(E)
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
composite station post insulator
post insulator consisting of a solid load bearing cylindrical insulating core, a housing and end
fittings attached to the insulating core
3.2
core (of an insulator)
central insulating part of an insulator which provides the mechanical characteristics
NOTE The housing and sheds are not part of the core.
[IEV 471-01-03]
3.3
housing
external insulating part of composite insulator providing necessary creepage distance and
protecting core from environment
NOTE An intermediate sheath made of insulating material may be part of the housing.
[IEV 471-01-09]
3.4
housing profile
shape and dimensions of the housing of the composite station post insulator which include the
following:
– shed overhang(s)
– shed thickness at the base and at the tip
– shed spacing
– shed repetition
– shed inclination(s)
3.5
shed (of an insulator)
insulating part, projecting from the insulator trunk, intended to increase the creepage distance.
The shed can be with or without ribs
[IEV 471-01-15]
3.6
insulator trunk
central insulating part of an insulator from which the sheds project
NOTE Also known as shank on smaller insulators.
[IEV 471-01-11]
3.7
creepage distance
shortest distance or the sum of the shortest distances along the surface on an insulator
between two conductive parts which normally have the operating voltage between them
NOTE 1 The surface of cement or of any other non-insulating jointing material is not considered as forming part of
the creepage distance.
62231  IEC:2006(E) – 9 –
NOTE 2 If a high resistance coating is applied to parts of the insulating part of an insulator, such parts are
considered to be effective insulating surfaces and the distance over them is included in the creepage distance.
[IEV 471-01-04]
3.8
arcing distance
shortest distance in air external to the insulator between the metallic parts which normally
have the operating voltage between them
[IEV 471-01-01]
NOTE The term “dry arcing distance” is also used.
3.9
interfaces
surface between the different materials
NOTE Various interfaces occur in most composite insulators, e.g.
– between housing and fixing devices,
– between various parts of the housing, e.g. between sheds, or between sheath and sheds,
– between core and housing.
[IEC 62217]
3.10
end fitting
integral component or formed part of an insulator intended to connect it to a supporting
structure, or to a conductor, or to an item of equipment, or to another insulator
NOTE Where the end fitting is metallic, the term “metal fitting” is normally used.
[IEV 471-01-06, modified]
3.11
connection zone
zone where the mechanical load is transmitted between the insulating body and the end fitting
[IEC 62217]
3.12
coupling
part of the fixing device which transmits load to the hardware external to the insulator
[IEC 62217]
3.13
tracking
process which forms irreversible degradation by formation of conductive paths (tracks)
starting and developing on the surface of an insulating material
NOTE These paths are conductive even under dry conditions.
[IEC 62217]
3.14
erosion
irreversible and non-conducting degradation of the surface of the insulator that occurs by loss
of material which can be uniform, localized or tree-shaped
NOTE Light surface traces, commonly tree-shaped, can occur on composite insulators as on ceramic insulators,
after partial flashover. These traces are not considered to be objectionable as long as they are non-conductive.
When they are conductive they are classified as tracking.
[IEC 62217]
– 10 – 62231  IEC:2006(E)
3.15
delamination (of the core)
loss of bonding between fibres and matrix
3.16
crack
any internal fracture or surface fissure of depth greater than 0,1 mm
[IEC 62217]
3.17
specified cantilever load
SCL
cantilever load which can be withstood by the insulator when tested under the prescribed
conditions
3.18
maximum design cantilever load
MDCL
cantilever load level above which damage to the insulator begins to occur and that should not
be exceeded in service
3.19
specified torsion load
SToL
torsion load level which can be withstood by the insulator when tested under the prescribed
conditions
3.20
maximum design torsion load
MDToL
torsion load level above which damage to the insulator begins to occur and that should not be
exceeded in service
3.21
specified tension load
STL
tension load which can be withstood by the insulator when tested under the prescribed
conditions
3.22
maximum design tension load
MDTL
tension load level above which damage to the insulator begins to occur and that should not be
exceeded in service
3.23
specified compression load
SCoL
compression load which can be withstood by the insulator when tested under the prescribed
conditions
3.24
buckling load
compression load that induces buckling of the insulator core

62231  IEC:2006(E) – 11 –
3.25
maximum design compression load
MDCoL
load level above which damage to the insulator begins to occur and that should not be
exceeded in service
3.26
failing load (of a composite station post insulator)
maximum load that is reached when tested under the prescribed conditions
NOTE Damage to the core is likely to occur at loads lower than the insulator failing load.
3.27
overall length
distance from flange face to flange face of the end fitting
3.28
puncture (of an insulator)
permanent loss of dielectric strength due to a disruptive discharge passing through the solid
insulating material of an insulator
[IEV 471-01-14]
3.29
residual deflection
the difference between the initial deflection, if any, of the tip of the insulator measured prior to
cantilever load application and the final deflection measured after load release
NOTE The residual deflection may depend on the duration of application of the load and on the time duration
between the load release and the measurement of the deflection.
3.30
residual angular displacement
the difference between the initial angular displacement, if any, of one of the insulator end
fitting with respect to the other insulator end fitting measured prior to the application of the
torsion load and the final angular displacement measured after torsion load release
NOTE The residual angular displacement may depend on the duration of application of the torsion load and on
the time duration between the torsion load release and the measurement of the displacement.
4 Identification
The manufacturer's drawing shall show the relevant dimensions and values necessary for
identifying and testing the insulator in accordance with this standard. The drawing shall also
show applicable manufacturing tolerances. In addition, the relevant IEC designation, when
available, shall figure on the drawing.
Each insulator shall be marked with the name or trademark of the manufacturer and the year
of manufacture. In addition, each insulator shall be marked with at least the Maximum Design
Cantilever Load (MDCL) (example: MDCL: 4 kN) or, when available, with the relevant IEC
designation. These markings shall be legible and indelible.
NOTE At present there is no IEC standard giving designations of composite station post insulators.
5 Environmental conditions
See description in IEC 62217.
– 12 – 62231  IEC:2006(E)
6 Information on transport, storage and installation
See description in IEC 62217.
7 Classification of tests
The tests are divided into four groups as follows:
7.1 Design tests
These tests are intended to verify the suitability of the design, materials and manufacturing
technology (see Annex A for notes on the concept of damage limit).
A composite station post insulator design is defined by
– materials of the core, housing and manufacturing method;
– material of the end fittings, their design and method of attachment;
– layer thickness of the housing over the core (including a sheath where used);
– diameter of the core.
When changes in the design occur, re-qualification shall be done according to Table 1.
Table 1 – Tests to be carried out after design changes
IF the insulator design changes the. THEN the following design tests shall be repeated:

8.2 8.3 8.4 8.4 8.4 8.4 8.5 8.5

1 Housing materials
X X X X X
1)
2 Housing profile
X
3 Core material X X   X X
4 Core diameter
X X   X X
5 Manufacturing process
X X X X X X X
6 End fitting material
X X
7a End fitting connection zone design X X
7b End fitting coupling design
X
7c Core-housing-end fitting interface design
X
8 End fitting method of attachment to core
X X
1)
The following variation of the housing profile within following tolerances do not constitute a change:
Overhang:  ±10 % Spacing:   ±10 %
Diameter: +15 %, –0 % Mean inclination: ±3 °
Thickness at base and tip: ±15 % Shed repetition:  identical

Interfaces and
connections of
end fittings
Assembled
core load tests
Hardness test
Accelerated
weathering
Tracking and
erosion test
Flammability
test
Dye penetra-
tion test
Water diffusion
test
62231  IEC:2006(E) – 13 –
When a composite station post insulator is submitted to the design tests, it becomes a parent
insulator for a given design and the results shall be considered valid for that design only. This
tested parent insulator defines a particular design of insulators which have all the following
characteristics:
a) same materials for the core and housing and same manufacturing method;
b) same material of the fittings, the same design, and the same method of attachment;
c) same or greater minimum layer thickness of the housing over the core (including a sheath
where used) within a tolerance of ±15 %;
d) same or smaller stress under mechanical loads;
e) same or greater cross-diameter of the core;
f) same housing profile parameters, see the table footnote in Table 1.
7.2 Type tests
These tests are intended to verify the main characteristics of a composite station post
insulator, which depend mainly on its shape and size. Type tests shall be applied to
composite insulators belonging to an already qualified design. The type tests shall be
repeated only when the type of the composite insulator is changed.
Electrically, an insulator type is defined by the
– arcing distance,
– creepage distance,
– housing profile.
The electrical type tests shall be performed only once on insulators satisfying the above
design criteria for one type and shall be performed with arcing and field grading devices, if
they are an integral part of the insulator type.
The electrical type tests shall be repeated only when one or more of the above characteristics
is changed.
Mechanically, an insulator type is defined by the
– length (only for the compression and buckling withstand load test),
– core diameter and material,
– design and method of attachment of the end fittings.
The mechanical type tests shall be performed only once on insulators satisfying the above
criteria for each type.
The mechanical type tests shall be repeated only when one or more of the above character-
istics is changed.
7.3 Sample tests
These tests are intended to verify the characteristics of composite station post insulators,
which depend on the quality of manufacture and materials used. They shall be made on
insulators taken at random from lots offered for acceptance.
7.4 Routine tests
These tests are intended to eliminate composite station post insulators with manufacturing
defects. They shall be made on every composite station post insulator to be supplied.

– 14 – 62231  IEC:2006(E)
8 Design tests
8.1 General
The design tests shall be performed only once and the results shall be recorded in a test
report. Each test can be performed independently on new test specimens where appropriate.
The composite station post insulator of a particular design shall be deemed qualified only
when the insulators or test specimens pass all the design tests.
8.2 Tests on interfaces and connections of end fittings
See IEC 62217.
8.2.1 Test specimens
See IEC 62217.
8.2.2 Reference voltage and temperature for verification tests
See IEC 62217.
8.2.3 Reference dry power frequency test
See IEC 62217.
8.2.4 Thermal-mechanical pre-stressing
The three specimens shall be submitted to a mechanical load in two opposite directions and
to temperature cycles as described in Figure 1. The 24 h temperature cycle shall be repeated
twice. Each temperature cycle has two temperature levels with a duration of at least 8 h, one
at +50 °C ± 5 K, the other at –35 °C ± 5 K. The cold period shall be at a temperature at least
85 K below the value actually applied in the hot period. The pre-stressing can be conducted in
air or any other suitable medium.
The load applied to the specimens shall correspond to the MDCL.
The load shall be applied perpendicularly to the insulator's axis as near as possible to the
normal load application point, either directly at the normal conductor position or at a hardware
attachment point. When the load is not applied at the normal application point, it shall be
corrected to produce the same bending moment at the base of the insulator as the one
exerted by the MDCL.
The direction of the cantilever load applied to the specimens shall be reversed once,
generally at the cooling passage through ambient temperature as described in Figure 1. The
cycles may be interrupted for the load direction reversal and for maintenance of the test
equipment for a total duration of 2 h. The starting point after any interruption shall be the
beginning of the interrupted cycle.
NOTE The temperatures and loads in this pre-stressing are not intended to represent service conditions; they are
designed to produce specific reproducible stresses in the interfaces on the insulator.
8.2.5 Water immersion pre-stressing
See IEC 62217.
8.2.6 Verification tests
See IEC 62217.
62231  IEC:2006(E) – 15 –
8.3 Assembled core load tests
Extreme service temperatures may affect the mechanical behaviour of composite insulators.
A general rule to define “extreme high or low” insulator temperatures is not available at this
time; for this reason the supplier should always specify service temperature limitations.
NOTE Whenever the insulators are subjected to very high or low temperatures for long periods of time, it is
advisable that customer and supplier agree on a mechanical test at higher or lower temperatures than that
mentioned in this standard.
8.3.1 Test for the verification of the maximum design cantilever load (MDCL)
8.3.1.1 Test procedure
Three insulators made on the production line using the standard end fittings shall be selected.
The overall length of the insulators shall be at least 8 times the diameter of the core, unless
the manufacturer does not have facilities to make such a length. In this case, the length of
insulator shall be as near as possible to the prescribed length range.
The base end-fitting has to be fixed rigidly. The insulators shall be gradually loaded to
1,1 times the MDCL rating at a temperature of 20 °C ± 10 K and held for 96 h. The load shall
be applied to the insulators at the conductor position, perpendicular to the direction of the
conductor, and perpendicular to the core of the insulators.
At 24 h, 48 h, 72 h and 96 h, the deflection of the insulators at the point of application of the
load shall be recorded, as additional information.
After removal of the load, the steps below shall be followed:
– visually inspect the base end fitting for cracks or permanent deformation,
– check that threads of the end fitting are re-usable,
– if required, measure the residual deflection.
Cut each insulator 90° to the axis of the core and about 50 mm from the base of the end fitting,
then cut the base end fitting part of the insulator longitudinally into two halves in the plane of
the previously applied cantilever load. The cut surfaces shall be smoothed by means of fine
abrasive cloth (grain size 180).
– visually inspect the cut halves for cracks and delaminations,
– perform a dye penetration test according to ISO 3452 to the cut surfaces to reveal cracks.
8.3.1.2 Acceptance criteria
Observation of any cracks, permanent deformation or delaminations shall constitute failure of
the test.
8.3.2 Test for the verification of the maximum design torsion load (MDToL)
8.3.2.1 Test procedure
Three insulators made on the production line using the standard end fittings shall be selected.
The overall length of the insulators shall be at least 8 times the diameter of the core, unless
the manufacturer does not have facilities to make such a length. In this case, the length of
insulators shall be as near as possible to the prescribed length range.

– 16 – 62231  IEC:2006(E)
The torsion load shall be applied to the insulators perpendicularly with the axis of the core of
the insulator. No bending moment should be applied. The insulators shall be gradually loaded
to 1,1 times the MDToL rating at a temperature of 20 °C ± 10 K and held for 30 min. The
angular displacement shall be measured at 30 min as additional information. An acceptable
value of the angular displacement shall be agreed between manufacturer and user.
NOTE In a torsion test, the angular displacement is proportional to the length of the core between the end fittings.
An example of a test arrangement can be found in Annex C.
After removal of the load, the steps below shall be followed:
– if required, measure the residual angular displacement,
– visually inspect the end fittings for cracks or permanent deformation,
– check that threads of the end fitting are re-usable,
– cut each insulator 90° to the axis of the core at about 50 mm from the end fittings, and in
the middle part of this cut section,
– polish the cut surfaces by means of fine abrasive cloth (grain size 180),
– visually inspect the cut surfaces for cracks and delaminations,
– perform a dye penetration test according to ISO 3452 to the cut surfaces to reveal cracks
or delaminations.
8.3.2.2 Acceptance criteria
Observation of any cracks, permanent deformation or delaminations shall constitute failure of
the test.
8.3.3 Verification of the specified tension load (STL)
8.3.3.1 Test procedure
Three insulators made on the production line using the standard end fittings shall be selected.
The overall length of the insulators shall be at least 8 times the diameter of the core, unless
the manufacturer does not have facilities to make such a length. In this case, the length of
insulator shall be as near as possible to the prescribed length range.
The tensile load shall be applied to the insulators in line with the axis of the core of the
insulator at a temperature of 20 °C ± 10 K. The load shall be increased rapidly but smoothly
from zero to approximately 75 % of the specified tensile load and shall then be gradually
increased in a time between 30 s and 90 s until the specified tensile load is reached. If 100 %
of the STL is reached in less than 90 s, the load (100 % of STL) shall be maintained for the
remainder of the 90 s.
8.3.3.2 Acceptance criteria
The test shall be regarded as passed if there is no evidence of
– pullout or slip of the core from the end fitting, or
– breakage of the end fitting.
8.4 Tests on shed and housing material
See IEC 62217.
62231  IEC:2006(E) – 17 –
8.5 Tests on the core material
See IEC 62217.
These tests can be carried out on specimens either with or without housing material.
9 Type tests
Insulators made on the production line using the standard end fittings shall be selected.
9.1 Verification of dimensions
Unless otherwise agreed, a tolerance of
± (0,04 x d + 1,5) mm when d < 300 mm, or
± (0,025 x d + 6,0) mm when d > 300 mm with a maximum tolerance of 50 mm
shall be allowed on all dimensions for which specific tolerances are not requested (d being
the dimensions in millimetres).
The measurement of creepage distance shall be related to the design dimensions and
tolerances as determined from the insulator drawing, even though this dimension may be
greater than the value originally specified by the purchaser. When the creepage distance is
specified as a minimum value, the negative tolerance is zero.
Tolerances of parallelism, eccentricity, angular deviation are given in Annex D.
9.2 Electrical tests
Tests in accordance with 9.2.1 and 9.2.2 shall be performed with the insulator in the position
in which it will be used in service (vertical or horizontal). If field-grading devices are used in
service they shall be used in the tests.
Interpolation of electrical test results may be used for insulators of intermediate length as long
as the factor between the arcing distances of the insulators whose results form the end points
of the interpolation range is less than or equal to 1,5. Extrapolation is not allowed.
9.2.1 Dry lightning impulse voltage test
The post insulator shall be tested under the conditions prescribed in 4.1, 4.2 and 4.4.1 of
IEC 60168. The impulse generator shall be adjusted to produce a 1,2/50 impulse (see
IEC 60060-1).
Impulses of both positive and negative polarity shall be used. However, when it is evident
which polarity will give the lower flashover voltage, it shall be sufficient to test with that
polarity.
Two test procedures are in common use for the lightning impulse test:
– the withstand voltage procedure with 15 impulses;
– the 50 % flashover voltage procedure.
NOTE The 50 % flashover voltage procedure gives more information.
The test procedure selected shall be agreed between the purchaser and the manufacturer.

– 18 – 62231  IEC:2006(E)
9.2.1.1 Withstand voltage test using the withstand voltage procedure
The withstand voltage test shall be performed at the specified voltage corrected for the
atmospheric conditions at the time of test (see 4.2.2 of IEC 60168). Fifteen impulses shall be
applied to the post insulator.
The acceptance criteria are as follows:
– the station post insulator passes the test if the number of flashovers does not exceed two
for each series of 15 impulses.
The station post insulator shall not be damaged by these tests but slight marks on the surface
of the housing shall be permitted.
9.2.1.2 Voltage test using the 50 % flashover voltage procedure
The lightning impulse withstand voltage shall be calculated from the 50 % lightning impulse
flashover voltage, determined by the up-and-down method described in IEC 60060-1.
The 50 % lightning impulse voltage shall be corrected in accordance with 4.2.2 of IEC 60168.
The acceptance criteria are as follows:
the station post insulator passes the test if the 50 % lightning impulse flashover voltage is not
less than (1/(1 – 1,3 σ )) = 1,040 times the specified lightning impulse withstand voltage,
where σ is the standard deviation (assumed equal to 3 %).
The station post insulator shall not be damaged by these tests, but slight marks on the
surface of the housing shall be permitted.
9.2.2 Wet power frequency withstand voltage test
9.2.2.1 Test procedure
The test circuit shall be in accordance with IEC 60060-1.
The station post insulator shall be tested under the conditions prescribed in 4.1, 4.2, 4.3 and
4.4.1 of IEC 60168.
The test voltage to be applied to the station post insulator shall be the specified wet power
frequency withstand voltage corrected for the atmospheric conditions at the time of test (see
4.2.2 of IEC 60168). The test voltage shall be maintained at this value for 1 min. As additional
information, the voltage can be raised until the flashover occurs.
9.2.2.2 Acceptance criteria
The station post insulator passes the test if no flashover or puncture occurs during the test.
NOTE If flashover occurs on the insulator tested, then a second test on the same unit may be performed, after
verifying the rain conditions.
9.2.2.3 Wet power frequency flashover voltage
To provide information, when agreed between the purchaser and the manufacturer, the wet
flashover voltage of the station post insulator may be determined by increasing the voltage
gradually, from about 75 % of the wet power-frequency withstand voltage with a rate of rise of
about 2 % of this voltage per second. The wet flashover voltage is the arithmetic mean of five
consecutive readings, and the value, after correction to standard atmospheric conditions (see
4.2.2 of IEC 60168), shall be recorded.

-----------
...


IEC 62231
Edition 1.0 2006-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Composite station post insulators for substations with a.c. voltages greater than
1 000 V up to 245 kV – Definitions, test methods and acceptance criteria

Isolateurs supports composites rigides à socle destinés aux postes à courant
alternatif de tensions supérieures à 1 000 V jusqu’à 245 kV – Définitions,
méthodes d’essai et critères d’acceptation

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or
IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite
ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie
et les microfilms, sans l'accord écrit de la CEI ou du Comité national de la CEI du pays du demandeur.
Si vous avez des questions sur le copyright de la CEI ou si vous désirez obtenir des droits supplémentaires sur cette
publication, utilisez les coordonnées ci-après ou contactez le Comité national de la CEI de votre pays de résidence.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
ƒ Catalogue of IEC publications: www.iec.ch/searchpub
The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
ƒ IEC Just Published: www.iec.ch/online_news/justpub
Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
ƒ Electropedia: www.electropedia.org
The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
ƒ Customer Service Centre: www.iec.ch/webstore/custserv
If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00
A propos de la CEI
La Commission Electrotechnique Internationale (CEI) est la première organisation mondiale qui élabore et publie des
normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications CEI
Le contenu technique des publications de la CEI est constamment revu. Veuillez vous assurer que vous possédez
l’édition la plus récente, un corrigendum ou amendement peut avoir été publié.
ƒ Catalogue des publications de la CEI: www.iec.ch/searchpub/cur_fut-f.htm
Le Catalogue en-ligne de la CEI vous permet d’effectuer des recherches en utilisant différents critères (numéro de référence,
texte, comité d’études,…). Il donne aussi des informations sur les projets et les publications retirées ou remplacées.
ƒ Just Published CEI: www.iec.ch/online_news/justpub
Restez informé sur les nouvelles publications de la CEI. Just Published détaille deux fois par mois les nouvelles
publications parues. Disponible en-ligne et aussi par email.
ƒ Electropedia: www.electropedia.org
Le premier dictionnaire en ligne au monde de termes électroniques et électriques. Il contient plus de 20 000 termes et
définitions en anglais et en français, ainsi que les termes équivalents dans les langues additionnelles. Egalement appelé
Vocabulaire Electrotechnique International en ligne.
ƒ Service Clients: www.iec.ch/webstore/custserv/custserv_entry-f.htm
Si vous désirez nous donner des commentaires sur cette publication ou si vous avez des questions, visitez le FAQ du
Service clients ou contactez-nous:
Email: csc@iec.ch
Tél.: +41 22 919 02 11
Fax: +41 22 919 03 00
IEC 62231
Edition 1.0 2006-02
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Composite station post insulators for substations with a.c. voltages greater
than 1 000 V up to 245 kV – Definitions, test methods and acceptance criteria

Isolateurs supports composites rigides à socle destinés aux postes à courant
alternatif de tensions supérieures à 1 000 V jusqu’à 245 kV – Définitions,
méthodes d’essai et critères d’acceptation

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
COMMISSION
ELECTROTECHNIQUE
PRICE CODE
INTERNATIONALE
W
CODE PRIX
ICS 29.080.10 ISBN 2-8318-8562-0
– 2 – 62231  CEI:2006
SOMMAIRE
AVANT-PROPOS.6
INTRODUCTION.10

1 Domaine d’application et objet.14
2 Références normatives.14
3 Termes et définitions .16
4 Identification.22
5 Conditions d'environnement .24
6 Informations relatives au transport, au stockage et à l’installation .24
7 Classification des essais .24
7.1 Essais de conception .24
7.2 Essais de type.28
7.3 Essais sur prélèvement .28
7.4 Essais individuels.28
8 Essais de conception.28
8.1 Généralités.28
8.2 Essais sur les interfaces et connexions des armatures d’extrémité.30
8.3 Essais de charge du noyau assemblé.30
8.4 Essais du matériau des ailettes et du revêtement.36
8.5 Essais du matériau du noyau.36
9 Essais de type.36
9.1 Vérification des dimensions.36
9.2 Essais électriques .36
9.3 Essais mécaniques.40
10 Essais sur prélèvements.44
10.1 Règles générales .44
10.2 Vérification des dimensions (E1 + E2) .44
10.3 Vérification de la galvanisation (E1 + E2) .44
10.4 Vérification des charges mécaniques spécifiées (E1) .46
10.5 Procédure pour un nouvel essai .46
11 Essais individuels.48
11.1 Identification du support isolant rigide à socle .48
11.2 Examen visuel.48
11.3 Essai de la charge de traction .48

Annexe A (informative) Notes sur les charges et essais mécaniques .52
Annexe B (informative) Détermination du moment de flexion équivalent causé par des
charges de (traction) de compression et de flexion combinées.56
Annexe C (informative) Exemple de montage d’essai de charge de torsion.60
Annexe D (normative) Tolérances de forme et de position .62
Annexe E (informative) Notes sur l’essai de compression et de flambage .68

Bibliographie.70

62231  IEC:2006 – 3 –
CONTENTS
FOREWORD.7
INTRODUCTION.11

1 Scope and object.15
2 Normative references .15
3 Terms and definitions .17
4 Identification.23
5 Environmental conditions.25
6 Information on transport, storage and installation .25
7 Classification of tests .25
7.1 Design tests .25
7.2 Type tests .29
7.3 Sample tests .29
7.4 Routine tests .29
8 Design tests .29
8.1 General .29
8.2 Tests on interfaces and connections of end fittings.31
8.3 Assembled core load tests.31
8.4 Tests on shed and housing material .37
8.5 Tests on the core material .37
9 Type tests .37
9.1 Verification of dimensions .37
9.2 Electrical tests.37
9.3 Mechanical tests .41
10 Sample tests .45
10.1 General rules .45
10.2 Verification of dimensions (E1 + E2).45
10.3 Galvanizing test (E1 + E2).45
10.4 Verification of the specified mechanical loads (E1) .47
10.5 Re-testing procedure.47
11 Routine tests .49
11.1 Identification of the station post insulator .49
11.2 Visual examination .49
11.3 Tensile load test.49

Annex A (informative) Notes on the mechanical loads and tests .53
Annex B (informative) Determination of the equivalent bending moment caused by
combined cantilever and compression (tension) loads.57
Annex C (informative) Example of torsion load test arrangement .61
Annex D (normative) Tolerances of form and position .63
Annex E (informative) Notes on the compression and buckling test.69

Bibliography.71

– 4 – 62231  CEI:2006
Figure 1 – Essai de précontrainte thermomécanique – Cycles types .50
Figure B.1 – Charges combinées appliquées aux supports isolants rigides à socle .58
Figure D.1 – Parallélisme, coaxialité et concentricité .62
Figure D.2 – Décalage angulaire des trous de fixation: Exemple 1 .64
Figure D.3 – Décalage angulaire des trous de fixation: Exemple 2 .64
Figure D.4 – Tolérances conformes à la pratique de dessin normalisée .66

Tableau 1 – Essais à effectuer après les modifications de conception .26
Tableau 2 – Nombre d’échantillons pour les essais sur prélèvements .44

62231  IEC:2006 – 5 –
Figure 1 – Thermal-mechanical pre-stressing test – Typical cycles .51
Figure B.1 – Combined loads applied to station post insulators.59
Figure D.1 – Parallelism, coaxiality and concentricity.63
Figure D.2 – Angular deviation of fixing holes: Example 1.65
Figure D.3 – Angular deviation of fixing holes: Example 2.65
Figure D.4 – Tolerances according to standard drawing practice.67

Table 1 – Tests to be carried out after design changes .27
Table 2 – Number of samples for sample tests.45

– 6 – 62231 © CEI:2006
COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
___________
ISOLATEURS SUPPORTS COMPOSITES RIGIDES À SOCLE
DESTINÉS AUX POSTES À COURANT ALTERNATIF
DE TENSIONS SUPÉRIEURES À 1 000 V JUSQU’À 245 kV –
DÉFINITIONS, MÉTHODES D’ESSAI ET CRITÈRES D’ACCEPTATION

AVANT-PROPOS
1) La Commission Electrotechnique Internationale (CEI) est une organisation mondiale de normalisation
composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a
pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les
domaines de l'électricité et de l'électronique. A cet effet, la CEI – entre autres activités – publie des Normes
internationales, des Spécifications techniques, des Rapports techniques, des Spécifications accessibles au
public (PAS) et des Guides (ci-après dénommés "Publication(s) de la CEI"). Leur élaboration est confiée à des
comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les
organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent
également aux travaux. La CEI collabore étroitement avec l'Organisation Internationale de Normalisation (ISO),
selon des conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de la CEI
intéressés sont représentés dans chaque comité d’études.
3) Les Publications de la CEI se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de la CEI. Tous les efforts raisonnables sont entrepris afin que la CEI
s'assure de l'exactitude du contenu technique de ses publications; la CEI ne peut pas être tenue responsable
de l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de la CEI s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de la CEI dans leurs publications
nationales et régionales. Toutes divergences entre toutes Publications de la CEI et toutes publications
nationales ou régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) La CEI n’a prévu aucune procédure de marquage valant indication d’approbation et n'engage pas sa
responsabilité pour les équipements déclarés conformes à une de ses Publications.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à la CEI, à ses administrateurs, employés, auxiliaires ou
mandataires, y compris ses experts particuliers et les membres de ses comités d'études et des Comités
nationaux de la CEI, pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre
dommage de quelque nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais
de justice) et les dépenses découlant de la publication ou de l'utilisation de cette Publication de la CEI ou de
toute autre Publication de la CEI, ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L’attention est attirée sur le fait que certains des éléments de la présente Publication de la CEI peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.
La Norme internationale CEI 62231 a été établie par le sous-comité 36C: Isolateurs pour
sous-stations, du comité d’études 36 de la CEI: Isolateurs.
La présente version bilingue, publiée en 2006-04, correspond à la version anglaise.
Le texte anglais de cette norme est issu des documents 36C/159/FDIS et 36C/160/RVD.
Le rapport de vote 36C/160/RVD donne toute information sue le vote ayant abouti à
l’approbation de cette norme.
La version française de cette norme n’a pas été soumise au vote.
Cette publication a été rédigée selon les Directives ISO/CEI, Partie 2.

62231 © IEC:2006 – 7 –
INTERNATIONAL ELECTROTECHNICAL COMMISSION
___________
COMPOSITE STATION POST INSULATORS FOR SUBSTATIONS
WITH AC VOLTAGES GREATER THAN 1000 V UP TO 245 kV –
DEFINITIONS, TEST METHODS AND ACCEPTANCE CRITERIA

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.
International Standard IEC 62231 has been prepared by subcommittee 36C: Insulators for
substations, of IEC technical committee 36: Insulators.
This bilingual version, published in 2006-04, corresponds to the English version.
The text of this standard is based on the following documents:
FDIS Report on voting
36C/159/FDIS 36C/160/RVD
Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
The French version of this standard has not been voted upon.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

– 8 – 62231  CEI:2006
La présente Norme internationale doit être lue conjointement avec la CEI 62217:2005,
Polymeric insulators for indoor and outdoor use with a nominal voltage >1 000 V – General
definitions, test methods and acceptance criteria (disponible en anglais seulement).
Le comité a décidé que le contenu de cette publication ne sera pas modifié avant la date de
maintenance indiquée sur le site web de la CEI sous «http://webstore.iec.ch» dans les
données relatives à la publication recherchée. A cette date, la publication sera
• reconduite;
• supprimée;
• remplacée par une édition révisée, ou
• amendée.
62231  IEC:2006 – 9 –
This standard is to be read in conjunction with IEC 62217:2005, Polymeric insulators for
indoor and outdoor use with a nominal voltage >1 000 V – General definitions, test methods
and acceptance criteria.
The committee has decided that the contents of this publication will remain unchanged until
the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in
the data related to the specific publication. At this date, the publication will be
• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.
– 10 – 62231  CEI:2006
INTRODUCTION
Les isolateurs support composites rigides à socle sont constitués d’un noyau isolant plein
cylindrique réalisé en fibres imprégnées de résine, portant la charge mécanique et protégés
par un revêtement élastomère; les charges étant transmises au noyau par des armatures
métalliques. En dépit de ces caractéristiques communes, les matériaux utilisés et les détails
de construction utilisés par différents fabricants peuvent être différents.
Certains essais ont été groupés en tant que "essais de conception" à réaliser une seule fois
pour des isolateurs de même classe de conception. Les essais de conception sont réalisés
afin d’éliminer les conceptions, les matériaux et les technologies de fabrication d’isolateurs
non adaptés aux applications haute tension. L’influence du temps sur les propriétés
électriques et mécaniques de l’isolateur complet composite rigide à socle et ses composants
(matériau du noyau, matériau du revêtement, interfaces, etc.) a été prise en considération
dans la spécification des essais de conception afin d’assurer une durée de vie satisfaisante
dans des conditions de service normales.
L’approche pour les essais mécaniques sous des charges de flexion utilisées dans la
présente norme est basée sur la CEI 61952. Cette approche utilise le concept d’une limite
d’endommagement qui est la contrainte maximale qui peut être développée dans l’isolateur
avant le début des dommages. Des travaux sont en cours pour valider la technique
d’émission acoustique pour déterminer le début des dommages.
Dans certains cas, des isolateurs supports composites rigides à socle peuvent être soumis à
une combinaison de charges. Afin de fournir des lignes directrices, l’Annexe B explique la
manière de calculer le moment de flexion équivalent dans les isolateurs résultant de la
combinaison de flexion, des charges de traction et de compression.
Les essais de pollution, spécifiés dans la CEI 60507 et dans la CEI 61245, ne sont pas inclus
dans ce document, leur applicabilité aux isolateurs supports composites rigides à socle
n’ayant pas été prouvée. Ces essais de pollution réalisés sur des isolateurs composites n’ont
pas de corrélation avec l’expérience obtenue en service. Des essais de pollution spécifiques
aux isolateurs composites sont à l’étude.
Il n’a pas été considéré utile de spécifier un essai d’arc de puissance comme obligatoire. Les
paramètres d’essai sont multiples et peuvent posséder des valeurs très différentes en
fonction des configurations du réseau et des supports et de la conception des dispositifs de
protection contre l’arc. Il convient de prendre en considération l’effet thermique des arcs de
puissance dans la conception des armatures métalliques. Des dommages critiques sur les
armatures métalliques, provenant de l’amplitude et de la durée du courant de court-circuit
peuvent être évités par des dispositifs de protection contre les arcs conçus de manière
appropriée. Cependant, la présente norme n’exclut pas la possibilité d’un essai d’arc de
puissance suivant un accord entre l’utilisateur et le fabricant. La CEI 61467 fournit des détails
des essais d’arc de puissance en courant alternatif des chaînes d'isolateurs équipées.
Les charges (mécaniques) impulsionnelles dans les postes sont généralement provoquées
par des courts-circuits. Les supports isolants sont affectés par des forces du fait de
l’interaction des courants circulant dans les conducteurs/les jeux de barre supportés par les
isolateurs.
La charge impulsionnelle ou la charge de crête peut être évaluée en utilisant les lignes
directrices figurant dans la série CEI 60865.

62231  IEC:2006 – 11 –
INTRODUCTION
Composite station post insulators consist of a cylindrical solid insulating core made of resin
impregnated fibres, bearing the mechanical load, protected by an elastomer housing, the
loads being transmitted to the core by metal fittings. Despite these common features, the
materials used and the construction details employed by different manufacturers may be
different.
Some tests have been grouped together as "design tests" to be performed only once for
insulators of the same design. The design tests are performed in order to eliminate insulator
designs, materials and manufacturing technologies not suitable for high-voltage applications.
The influence of time on the electrical and mechanical properties of the complete composite
station post insulator and its components (core material, housing material, interfaces, etc.)
has been considered in specifying the design tests in order to ensure a satisfactory lifetime
under normal service conditions.
The approach for mechanical testing under bending loads used in this Standard is based on
IEC 61952. This approach uses the concept of a damage limit that is the maximum stress that
can be developed in the insulator before damage begins to occur. Work is underway to
validate the acoustic emission technique to determine the inception of damage.
In some cases, station post insulators can be subjected to a combination of loads. In order to
give some guidance, Annex B explains how to calculate the equivalent bending moment in the
insulators resulting from the combination of bending, tensile and compression loads.
Pollution tests, as specified in IEC 60507 and IEC 61245, are not included in this document,
their applicability to composite station post insulators having not been proven. Such pollution
tests performed on composite insulators do not correlate with experience obtained from
service. Specific pollution tests for composite insulators are under consideration.
It has not been considered useful to specify a power arc test as a mandatory test. The test
parameters are manifold and can have very different values depending on the configurations
of the network and the supports and on the design of arc-protection devices. The heating
effect of power arcs should be considered in the design of metal fittings. Critical damage to
the metal fittings, resulting from the magnitude and duration of the short-circuit current can be
avoided by properly designed arc-protection devices. This standard, however, does not
exclude the possibility of a power arc test by agreement between the user and the manu-
facturer. IEC 61467 gives details of a.c. power arc testing of insulator sets.
Impulse (mechanical) loads in substation are typically caused by short-circuits. Post
insulators are affected by forces due to the interaction of the currents circulating in
conductors/busbars supported by insulators.
The impulse load or peak load may be evaluated using guidance found in the IEC 60865
series.
– 12 – 62231  CEI:2006
Des travaux sont en cours au sein du groupe de travail du CIGRE ESCC (Effets des courants
de court-circuit) pour examiner les charges impulsionnelles provoquées par les courants de
court-circuit dans les postes. L’objectif de ces travaux est d’introduire un nouveau concept: le
facteur ESL (facteur de charge statique équivalent) qui dépend de la fréquence. La charge de
crête réelle peut être remplacée, dans une première approximation, par la charge de crête
multipliée par le facteur ESL. Cette nouvelle valeur peut être utilisée comme la CFMC dans ce
document pour la détermination de la résistance à la flexion.
Les perturbations radioélectriques et les essais de l’effet couronne ne sont pas spécifiés dans
la présente norme étant donné que les RIV et la performance de l’effet de couronne ne sont
pas des caractéristiques du seul isolateur.
Les isolateurs support comportant un corps creux composite ne sont pas considérés dans
cette norme. La CEI 61462 fournit des détails des essais des isolateurs composites
comportant un corps creux dont beaucoup peuvent être appliqués à de tels supports isolants
rigides à socle.
62231  IEC:2006 – 13 –
Work is in progress in CIGRE ESCC (Effects of Short-Circuit Currents) task force to review
impulse loads caused by short-circuit currents in substations. The aim of this work is to
introduce a new concept: the ESL factor (Equivalent Static Load factor) which is frequency
dependent. The actual peak load may be replaced, in a first approximation, by the peak load
times the ESL factor. This new value may be used as the MDCL in this document for the
determination of the cantilever strength.
Radio interference and corona tests are not specified in this standard since the radio
interference and corona performances are not characteristics of the insulator alone.
Composite hollow core station post insulators are currently not dealt with in this standard.
IEC 61462 gives details of tests on hollow core composite insulators, many of which can be
applied to such station post insulators.

– 14 – 62231  CEI:2006
ISOLATEURS SUPPORTS COMPOSITES RIGIDES À SOCLE
DESTINÉS AUX POSTES À COURANT ALTERNATIF
DE TENSIONS SUPÉRIEURES À 1 000 V JUSQU’À 245 kV –
DÉFINITIONS, MÉTHODES D’ESSAI ET CRITÈRES D’ ACCEPTATION

1 Domaine d’application et objet
La présente Norme internationale s’applique aux supports isolants composites rigides à socle
constitués d’un noyau isolant plein cylindrique supportant les charges mécaniques réalisé en
fibres imprégnées de résine, d’un revêtement (à l’extérieur du noyau plein isolant) réalisée en
matériau élastomère (par exemple du silicone ou de l’éthylène-propylène) et des armatures
d’extrémité fixées au noyau isolant. Les supports isolants composites rigides à socle relevant
de la présente norme sont soumis aux charges de flexion, de torsion, de traction et de
compression. Ils sont destinés aux postes à courant alternatif de tensions supérieures à
1 000 V jusqu’à 245 kV.
L’objet de cette norme est le suivant:
– définir les termes utilisés,
– prescrire des méthodes d’essai,
– prescrire des critères d’acceptation ou de rejet.
La présente norme ne comprend pas de d’exigences traitant du choix des isolateurs pour des
conditions de service spécifiques.
2 Références normatives
Les documents référencés ci-après sont indispensables pour l'application de ce document.
Pour les références datées, seule l'édition citée s'applique. Pour les références non datées,
c’est l’édition la plus récente du document référencé (y compris tous ses amendements) qui
s’applique.
CEI 60050(471), Vocabulaire Electrotechnique International (VEI) – Chapitre 471: Isolateurs
CEI 60060-1, Techniques des essais à haute tension – Partie 1: Définitions et prescriptions
générales relatives aux essais
IEC 60168:1994, Essais des supports isolants d'intérieur et d'extérieur, en matière céramique
ou en verre, destinés à des installations de tension nominale supérieure à 1 000 V
CEI 62217: Polymeric insulators for indoor and outdoor use with a nominal voltage greater
than 1000 V – General definitions, test methods and acceptance criteria (disponible en
anglais seulement)
ISO 1101, Spécification géométrique des produits (GPS) – Tolérancement géométrique –
Tolérancement de forme, orientation, position et battement
ISO 3452, Essais non destructifs – Contrôle par ressuage – Principes généraux

62231  IEC:2006 – 15 –
COMPOSITE STATION POST INSULATORS FOR SUBSTATIONS
WITH AC VOLTAGES GREATER THAN 1 000 V UP TO 245 kV –
DEFINITIONS, TEST METHODS AND ACCEPTANCE CRITERIA

1 Scope and object
This International Standard applies to composite station post insulators consisting of a load
bearing cylindrical insulating solid core made of resin impregnated fibres, a housing (outside
the insulating solid core) made of elastomer material (e.g. silicone or ethylene-propylene) and
end fittings attached to the insulating core. Composite station post insulators covered by this
standard are subjected to cantilever, torsion, tension and compression loads. They are
intended for substations with a.c. voltages greater than 1 000 V up to 245 kV.
The object of this standard is
– to define the terms used,
– to prescribe test methods,
– to prescribe acceptance or failure criteria.
This standard does not include requirements dealing with the choice of insulators for specific
operating conditions.
2 Normative references
The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.
IEC 60050-471, International Electrotechnical Vocabulary (IEV) – Chapter 471: Insulators
IEC 60060-1, High-voltage test techniques – Part 1: General definitions and test requirements
IEC 60168:1994, Tests on indoor and outdoor post insulators of ceramic material or glass for
systems with nominal voltages greater than 1 000 V
IEC 62217, Polymeric insulators for indoor and outdoor use with a nominal voltage greater
than 1000 V – General definitions, test methods and acceptance criteria
ISO 1101, Technical drawings – Geometrical tolerancing – Tolerancing of form, orientation,
location and run-out – Generalities, definitions, symbols, indications on drawings
ISO 3452, Non-destructive testing – Penetrant inspection – General principles

– 16 – 62231  CEI:2006
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
3.1
supports isolants composites rigides à socle
support isolant constitué d‘un noyau isolant plein cylindrique supportant les charges
mécaniques, d’un revêtement et des armatures d’extrémité fixées au noyau isolant plein
3.2
noyau (d’un isolateur)
partie isolante interne d’un isolateur qui assure les caractéristiques mécaniques
NOTE Le revêtement et les ailettes ne font pas partie du noyau.
[VEI 471-01-03]
3.3
revêtement
partie isolante externe d’un isolateur composite, qui assure la ligne de fuite nécessaire et
protège le noyau de l’environnement
NOTE Une gaine intermédiaire en matériau isolant peut faire partie du revêtement.
[VEI 471-01-09]
3.4
profil du revêtement
forme et dimensions du revêtement du support isolant composite rigide à socle qui comprend
les éléments suivants:
– la ou les projections d’ailette
– l’épaisseur d’ailette à la base et à l’extrémité
– le pas des ailettes
– la répétition des ailettes
– la ou les inclinaisons des ailettes
3.5
ailette (d’un isolateur)
partie isolante en saillie sur le fût d’un isolateur, destinée à augmenter la ligne de fuite. Une
ailette peut être avec ou sans ondulations
[VEI 471-01-15]
3.6
fût d’un isolateur
partie isolante centrale d’ un isolateur situé entre les ailettes
NOTE Cette note ne s’applique qu’au texte anglais.
[VEI 471-01-11]
3.7
ligne de fuite
distance la plus courte ou somme des distances les plus courtes le long de la surface d’un
isolateur entre deux parties conductrices qui supportent normalement la tension de service
entre elles
NOTE 1 La surface du ciment ou de toute autre matière de scellement non isolante n’est pas considérée comme
faisant partie de la ligne de fuite.

62231  IEC:2006 – 17 –
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
3.1
composite station post insulator
post insulator consisting of a solid load bearing cylindrical insulating core, a housing and end
fittings attached to the insulating core
3.2
core (of an insulator)
central insulating part of an insulator which provides the mechanical characteristics
NOTE The housing and sheds are not part of the core.
[IEV 471-01-03]
3.3
housing
external insulating part of composite insulator providing necessary creepage distance and
protecting core from environment
NOTE An intermediate sheath made of insulating material may be part of the housing.
[IEV 471-01-09]
3.4
housing profile
shape and dimensions of the housing of the composite station post insulator which include the
following:
– shed overhang(s)
– shed thickness at the base and at the tip
– shed spacing
– shed repetition
– shed inclination(s)
3.5
shed (of an insulator)
insulating part, projecting from the insulator trunk, intended to increase the creepage distance.
The shed can be with or without ribs
[IEV 471-01-15]
3.6
insulator trunk
central insulating part of an insulator from which the sheds project
NOTE Also known as shank on smaller insulators.
[IEV 471-01-11]
3.7
creepage distance
shortest distance or the sum of the shortest distances along the surface on an insulator
between two conductive parts which normally have the operating voltage between them
NOTE 1 The surface of cement or of any other non-insulating jointing material is not considered as forming part of
the creepage distance.
– 18 – 62231  CEI:2006
NOTE 2 Si un revêtement à haute résistance est appliqué sur certaines parties isolantes d’un isolateur, ces
parties sont considérées comme surfaces isolantes effectives et la distance mesurée à la surface de ces
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...