EN 50271:2018
(Main)Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen - Requirements and tests for apparatus using software and/or digital technologies
Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen - Requirements and tests for apparatus using software and/or digital technologies
This European Standard specifies minimum requirements and tests for electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen using software and/or digital technologies. This European Standard is applicable to fixed, transportable and portable apparatus intended for use in domestic premises as well as commercial and industrial applications. This European Standard does not apply to external sampling systems, or to apparatus of laboratory or scientific type, or to apparatus used only for process control purposes. This European Standard supplements the requirements of the European Standards for the detection and measurement of flammable gases and vapours (e.g. EN 60079 29 1, EN 60079-29-4, EN 50194 1, EN 50194 2), toxic gases (e.g. EN 45544 series, EN 50291 1, EN 50291 2) or oxygen (e.g. EN 50104). NOTE 1 These European Standards will be mentioned in this European Standard as "metrological standards". NOTE 2 The examples above show the state of the standardisation for gas detection apparatus at the time of publishing this European Standard. There may be other metrological standards for which this European Standard is also applicable. This European Standard is a product standard which is based on EN 61508 series. It covers part of the phase 10 "realisation" of the overall safety life cycle defined in EN 61508 1. Additional requirements are specified if compliance with safety integrity level 1 (SIL 1) according to EN 61508 series is claimed for fixed or transportable apparatus for low demand mode of operation. NOTE 3 Compliance with safety integrity level 1 (SIL 1) for portable apparatus is not considered because portable apparatus cannot make an automatic executive action. It is recommended to apply this European Standard for apparatus used for safety applications with SIL-requirement 1 instead of EN 50402. However, the technical requirements of EN 50271 and EN 50402 are the same for SIL 1. NOTE 4 For apparatus used for safety applications with SIL-requirements higher than 1 EN 50402 is applicable.
Elektrische Geräte für die Detektion und Messung von brennbaren Gasen, giftigen Gasen oder Sauerstoff - Anforderungen und Prüfungen für Warngeräte, die Software und/oder Digitaltechnik nutzen
Diese Europäische Norm legt Mindestanforderungen und Prüfungen für elektrische Geräte für die Detektion und Messung von brennbaren Gasen, toxischen Gasen oder Sauerstoff fest, die Software und/oder Digitaltechnik nutzen. Diese Europäische Norm ist anwendbar auf ortsfeste, transportable und tragbare Geräte, die für die Verwendung in Wohnhäusern oder in gewerblichen oder industriellen Anwendungen vorgesehen sind, sowie auf deren softwaregesteuertes sicherheitsrelevantes Zubehör. Diese Europäische Norm gilt nicht für externe Entnahmesysteme, die kein Zubehör sind, oder für Labor- oder wissenschaftliche Geräte sowie für Geräte, die nur zur Prozesssteuerung eingesetzt werden. Diese Europäische Norm ergänzt die Anforderungen der Europäischen Normen für die Detektion und Messung von brennbaren Gasen und Dämpfen (z. B. EN 60079 29 1, EN 60079 29 4, EN 50194 1, EN 50194 2), toxischen Gasen (z. B. Reihe EN 45544, EN 50291 1, EN 50291 2) oder Sauerstoff (z. B. EN 50104). ANMERKUNG 1 Auf diese Europäischen Normen wird im Text als "messtechnische Normen" Bezug genommen. ANMERKUNG 2 Die oben genannten Beispiele stellen den Stand der Normung für Gaswarngeräte zum Zeitpunkt der Veröffentlichung dieser Europäischen Norm dar. Es können weitere messtechnische Normen bestehen, auf die diese Europäische Norm ebenfalls anwendbar ist. Diese Europäische Norm stellt eine Produktnorm auf Grundlage der Reihe EN 61508 dar. Sie deckt Teile der Phase 10 "Realisierung" des in EN 61508 1 definierten Gesamt-Sicherheitslebenszyklus ab. Zusätzliche Anforderungen sind festgelegt, wenn eine Übereinstimmung mit dem Sicherheits-Integritätslevel 1 (SIL 1) nach der Reihe EN 61508 für ortsfeste oder transportable Geräte in der Betriebsart mit niedriger Anforderungsrate angegeben wird. Diese können ebenso auf tragbare Geräte angewendet werden, die eine automatische Schalthandlung ausführen können. Es wird empfohlen, diese Europäische Norm für Geräte zum Einsatz in sicherheitsgerichteten Anwendungen mit SIL-Anforderung 1 anstelle der EN 50402 anzuwenden. Die technischen Anforderungen der EN 50271 und der EN 50402 sind jedoch für SIL 1 gleich. ANMERKUNG 3 Für Geräte zum Einsatz in sicherheitsgerichteten Anwendungen mit SIL-Anforderungen größer als 1 ist die EN 50402 anwendbar.
Appareils électriques de détection et de mesure des gaz combustibles, des gaz toxiques ou de l'oxygène - Exigences et essais pour les appareils utilisant un logiciel et/ou des technologies numériques
La présente Norme européenne spécifie les exigences minimales et les essais pour les appareils électriques de détection et de mesure de gaz combustibles, de gaz toxiques ou d'oxygène qui utilisent un logiciel et/ou des technologies numériques. La présente Norme européenne s’applique aux appareils fixes, transportables et portables destinés à être utilisés dans des locaux à usage domestique ainsi qu’à applications commerciales et industrielles et leurs accessoires contrôlés par des logiciels relatifs à la sécurité. La présente Norme européenne ne s’applique ni aux systèmes d’échantillonnage externe qui ne sont pas des accessoires, ni aux appareils de laboratoire ou à vocation scientifique, ni aux appareils utilisés uniquement à des fins de maîtrise des processus. La présente Norme européenne complète les exigences des Normes européennes pour la détection et le mesurage des vapeurs et des gaz inflammables (par exemple, l’EN 60079-29-1, l’EN 60079-29-4, l’EN 50194-1, l’EN 50194-2), des gaz toxiques (par exemple, la série EN 45544, l’EN 50291-1, l’EN 50291-2) ou de l’oxygène (par exemple, l’EN 50104). NOTE 1: Dans la présente Norme européenne, ces Normes européennes sont appelées « normes métrologiques ». NOTE 2: Les exemples susmentionnés présentent l'état de la normalisation pour les appareils de détection de gaz au moment de la publication de la présente Norme européenne. La présente Norme européenne peut également s’appliquer à d’autres normes métrologiques. La présente Norme européenne est une norme de produit fondée sur la série EN 61508. Elle traite en partie de la phase 10 « réalisation » du cycle de vie de sécurité globale définie dans l’EN 61508-1. Des exigences supplémentaires sont spécifiées si la conformité au niveau d'intégrité de sécurité 1 (SIL 1) conformément à la série EN 61508 est revendiquée pour un appareil fixe ou transportable pour un mode de fonctionnement à faible sollicitation. Elles s’appliquent également aux appareils portables pouvant exécuter une action automatique. Il est recommandé d’appliquer la présente Norme européenne plutôt que l’EN 50402 pour des appareils utilisés dans des applications de sécurité exigeant le niveau de sécurité 1 (SIL 1). Toutefois, les exigences techniques de l’EN 50271 et de l’EN 50402 sont identiques pour le niveau SIL 1. NOTE 3: Pour des appareils utilisés dans des applications de sécurité exigeant un SIL supérieur à 1, l’EN 50402 s’applique.
Električne naprave za odkrivanje in merjenje vnetljivih plinov, strupenih plinov ali kisika - Zahteve in preskusi za naprave s programsko opremo in/ali digitalno tehnologijo
Ta evropski standard določa minimalne zahteve in preskuse v zvezi z električnimi napravami za odkrivanje in merjenje vnetljivih plinov, strupenih plinov ali kisika z uporabo programske opreme in/ali digitalne tehnologije.
Ta evropski standard se uporablja za nepremične, premične in prenosne naprave, namenjene za uporabo v bivalnih prostorih ter za poslovne in industrijske namene.
Ta evropski standard se ne uporablja za zunanje sisteme vzorčenja, laboratorijske ali znanstvene naprave in naprave, ki se uporabljajo samo za namene nadziranja procesov.
Ta evropski standard dopolnjuje zahteve evropskih standardov za odkrivanje in merjenje vnetljivih plinov ter hlapov (npr. EN 60079 29 1, EN 60079-29-4, EN 50194 1, EN 50194 2), strupenih plinov (npr. skupina standardov EN 45544, EN 50291 1, EN 50291 2) ali kisika (npr. EN 50104).
OPOMBA 1: Ti evropski standardi bodo v tem evropskem standardu navedeni kot »meroslovni standardi«.
OPOMBA 2: Spodnji primeri prikazujejo stanje standardizacije naprav za odkrivanje plina v času objave tega evropskega standarda. Ta evropski standard se morda lahko uporablja tudi za druge meroslovne standarde.
Ta evropski standard je standard za proizvode, ki temelji na skupini standardov EN 61508. Obravnava del »realizacije« 10. faze celotnega varnostnega življenjskega cikla, opredeljenega v standardu EN 61508 1.
Dodatne zahteve so določene, če je za nepremične ali premične naprave, ki delujejo na način z nizkimi zahtevami, navedena skladnost s stopnjo varnostne celovitosti 1 (SIL 1) v skladu s skupino standardov EN 61508.
OPOMBA 3: Skladnost s stopnjo varnostne celovitosti 1 (SIL 1) za prenosne naprave ni obravnavana, ker prenosne naprave ne morejo samodejno izvajati dejanj.
Priporočljivo je, da se ta evropski standard uporablja za naprave, namenjene varnostni uporabi, z zahtevo SIL 1 namesto standarda EN 50402. Vendar tehnične zahteve iz standarda EN 50271 in EN 50402 veljajo tudi za SIL 1.
OPOMBA 4: Za naprave, namenjene varnostni uporabi, z zahtevami SIL, večjimi od 1, se uporablja standard EN 50402.
General Information
Relations
Overview
EN 50271:2018 is a CENELEC/CLC European product standard that defines minimum requirements and tests for electrical apparatus that use software and digital technologies to detect and measure combustible gases, toxic gases or oxygen. Applicable to fixed, transportable and portable gas detectors used in domestic, commercial and industrial environments, the standard focuses on functional safety, reliability and fault avoidance for gas detection equipment. It is based on the EN 61508 series and covers part of the safety life‑cycle (“realisation” phase). Additional provisions apply when a claim of SIL 1 (safety integrity level 1) is made for fixed or transportable apparatus in low‑demand operation.
Key topics and technical requirements
- Scope and exclusions: applies to gas detectors (fixed, transportable, portable) but not to external sampling systems, laboratory/scientific apparatus, or devices used solely for process control.
- Design principles: general requirements for analogue/digital interfaces (A/D, D/A), handling of numerical errors, measuring operation and clear indication of special states (warm‑up, calibration, fault).
- Displays and messages: standardized requirements for representing measured values, alerts and special state notifications.
- Software: requirements for software design, documentation, development process and reuse of commercial operating systems. Practical guidance is provided to meet EN 61508‑3 software expectations for SIL 1 without invoking the full generic standard.
- Hardware and integration: hardware requirements, digital data transmission between components, and hardware‑software integration testing (black‑box tests, equivalence class/boundary analysis).
- Testing and verification: verification of functional concept, performance tests, test routines and required instruction manuals.
- SIL 1 considerations: additional optional requirements for claiming SIL 1 for low‑demand fixed/transportable apparatus (EN 50402 is recommended for higher SILs).
Practical applications
- Use when designing, manufacturing or certifying gas detection products that include digital control, embedded software or networked components.
- Relevant for gas alarms, area monitoring systems, portable detectors for confined‑space entry, and safety‑related accessories where software contributes to the safety function.
- Helps ensure compliance with EU Directive 2014/34/EU aspects covered by the standard and supports safety claims for SIL 1 applications.
Who should use this standard
- Product designers and firmware/software engineers for gas detectors
- Manufacturers and quality/compliance teams
- Certification bodies, test laboratories and notified bodies
- System integrators, safety engineers and procurement teams specifying detector safety requirements
Related standards
- EN 61508 series (functional safety)
- EN 50402 (functional safety of gas detection systems)
- EN 60079‑29‑1 / EN 60079‑29‑4, EN 50194‑1/2 (flammable gas detector metrology)
- EN 45544 series, EN 50291‑1/2 (toxic gas/home CO detection)
- EN 50104 (oxygen)
Keywords: EN 50271:2018, gas detection standard, gas detectors software, functional safety, SIL 1, EN 61508, combustible gases, toxic gases, oxygen detection, CENELEC.
Standards Content (Sample)
SLOVENSKI STANDARD
01-oktober-2018
1DGRPHãþD
SIST EN 50271:2010
(OHNWULþQHQDSUDYH]DRGNULYDQMHLQPHUMHQMHYQHWOMLYLKSOLQRYVWUXSHQLKSOLQRYDOL
NLVLND=DKWHYHLQSUHVNXVL]DQDSUDYHVSURJUDPVNRRSUHPRLQDOLGLJLWDOQR
WHKQRORJLMR
Electrical apparatus for the detection and measurement of combustible gases, toxic
gases or oxygen - Requirements and tests for apparatus using software and/or digital
technologies
Elektrische Geräte für die Detektion und Messung von brennbaren Gasen, giftigen
Gasen oder Sauerstoff - Anforderungen und Prüfungen für Warngeräte, die Software
und/oder Digitaltechnik nutzen
Appareils électriques de détection et de mesure des gaz combustibles, des gaz toxiques
ou de l'oxygène - Exigences et essais pour les appareils utilisant un logiciel et/ou des
technologies numériques
Ta slovenski standard je istoveten z: EN 50271:2018
ICS:
13.230 Varstvo pred eksplozijo Explosion protection
29.260.20 (OHNWULþQLDSDUDWL]D Electrical apparatus for
HNVSOR]LYQDR]UDþMD explosive atmospheres
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN 50271
NORME EUROPÉENNE
EUROPÄISCHE NORM
June 2018
ICS 13.320 Supersedes EN 50271:2010
English Version
Electrical apparatus for the detection and measurement of
combustible gases, toxic gases or oxygen - Requirements and
tests for apparatus using software and/or digital technologies
Appareils électriques de détection et de mesure des gaz Elektrische Geräte für die Detektion und Messung von
combustibles, des gaz toxiques ou de l'oxygène - brennbaren Gasen, giftigen Gasen oder Sauerstoff -
Exigences et essais pour les appareils utilisant un logiciel Anforderungen und Prüfungen für Warngeräte, die Software
et/ou des technologies numériques und/oder Digitaltechnik nutzen
This European Standard was approved by CENELEC on 2017-11-06. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2018 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN 50271:2018 E
Contents
European foreword . 3
Introduction . 4
1 Scope . 5
2 Normative references . 5
3 Terms and definitions . 6
4 Design principles . 8
4.1 Basic requirements . 8
4.1.1 General . 8
4.1.2 Analogue/digital interface . 8
4.1.3 Numerical errors . 8
4.1.4 Measuring operation . 8
4.1.5 Special state indication . 8
4.2 Displays . 9
4.2.1 General . 9
4.2.2 Indication of messages . 9
4.2.3 Indication of measured values . 10
4.3 Software.10
4.3.1 General . 10
4.3.2 Re-used or commercial operating systems . 11
4.3.3 Software requirements . 11
4.3.4 Requirements for software documentation . 12
4.3.5 Requirements for the software development process . 12
4.4 Hardware .20
4.5 Digital data transmission between components of apparatus .20
4.6 Test routines .20
4.7 Instruction manual .22
4.8 Additional requirements for compliance with SIL 1 .23
5 Test of the digital unit .24
5.1 General .24
5.2 Verification of functional concept .25
5.3 Performance test .25
Annex A (normative) Hardware-software integration test .27
A.1 Functional testing/Black-box testing .27
A.2 Equivalence class test with boundary value analysis .27
Annex ZY (normative) Significant changes between this European Standard and
EN 50271:2010 .29
Annex ZZ (informative) Relationship between this European standard and the essential
requirements of Directive 2014/34/EU aimed to be covered .31
Bibliography .32
European foreword
This document (EN 50271:2018) has been prepared by CLC/SC 31-9, “Electrical apparatus for the
detection and measurement of combustible gases to be used in industrial and commercial potentially
explosive atmospheres”, of CLC/TC 31, “Electrical apparatus for potentially explosive atmospheres”,
and by CLC/TC 216 “Gas detectors”.
The following dates are fixed:
• latest date by which this document has to be (dop) 2018-12-15
implemented at national level by publication of
an identical national standard or by
endorsement
• latest date by which the national standards (dow) 2021-06-15
conflicting with this document have to
be withdrawn
This document supersedes EN 50271:2010.
The State of the Art is included in Annex ZY “Significant changes between this European Standard
and EN 50271:2010” which lists all changes to EN 50271:2010.
This document has been prepared under a mandate given to CENELEC by the European Commission
and the European Free Trade Association and covers essential requirements of EU Directive
2014/34/EU.
For the relationship with EU Directive see informative Annex ZZ, which is an integral part of this
document.
Introduction
This European Standard specifies minimum requirements for functional safety of gas detection
apparatus using software and/or digital technologies and defines criteria for reliability and avoidance of
faults. Functional safety is that part of the overall safety which is related to the measures within the
gas detection apparatus to avoid or to handle failures in such a manner that the safety function will be
ensured.
Gas detection apparatus will fail to function if dangerous failures occur. The aim of this European
Standard is to reduce the risk of dangerous equipment failures to levels appropriate to typical
applications of such apparatus.
Failure to function will also occur if such apparatus are not selected, installed or maintained in an
appropriate manner. In some applications failures of this type will dominate the functional safety
achieved. Users of gas detection apparatus will therefore need to ensure that selection, installation
and maintenance of such apparatus are carried out appropriately. Guidance for the selection,
installation, use and maintenance of gas detection apparatus are set out in EN 60079-29-2 and
EN 45544-4, respectively.
This European Standard does not include requirements for operational availability which will need to
be considered separately.
Regarding the requirements for the software development process, this European Standard specifies
a practical approach to comply with the requirements of EN 61508-3 for SIL 1 without using this
generic standard.
This European standard also specifies additional optional requirements for compliance with SIL 1 in
low demand mode operation. The following apparatus or gas detection systems are not fully covered
by this standard:
– apparatus at SIL 1 when the apparatus or gas detection system contains functionality not covered
by EN 50271
– apparatus at SIL 1 high demand mode operation
– apparatus at SIL 2 and SIL 3;
For such apparatus or gas detection systems the European standard EN 50402 should be used
instead of EN 50271. EN 50402 includes all requirements of EN 50271.
1 Scope
This European Standard specifies minimum requirements and tests for electrical apparatus for the
detection and measurement of combustible gases, toxic gases or oxygen using software and/or digital
technologies.
This European Standard is applicable to fixed, transportable and portable apparatus intended for use
in domestic premises as well as commercial and industrial applications and their software-controlled
safety related accessories.
This European Standard does not apply to external sampling systems which are not accessories, or to
apparatus of laboratory or scientific type, or to apparatus used only for process control purposes.
This European Standard supplements the requirements of the European Standards for the detection
and measurement of flammable gases and vapours (e.g. EN 60079-29-1, EN 60079-29-4, EN 50194-
1, EN 50194-2), toxic gases (e.g. EN 45544 series, EN 50291-1, EN 50291-2) or oxygen (e.g.
EN 50104).
NOTE 1 These European Standards will be mentioned in this European Standard as “metrological standards”.
NOTE 2 The examples above show the state of the standardization for gas detection apparatus at the time of
publishing this European Standard. There may be other metrological standards for which this European Standard
is also applicable.
This European Standard is a product standard which is based on the EN 61508 series. It covers part
of the phase 10 “realisation” of the overall safety life cycle defined in EN 61508-1.
Additional requirements are specified if compliance with safety integrity level 1 (SIL 1) according to the
EN 61508 series is claimed for fixed or transportable apparatus for low demand mode of operation.
They can also be applied to portable apparatus which are able to perform an automatic executive
action.
It is recommended to apply this European Standard for apparatus used for safety applications with
SIL-requirement 1 instead of EN 50402. However, the technical requirements of EN 50271 and
EN 50402 are the same for SIL 1.
NOTE 3 For apparatus used for safety applications with SIL-requirements higher than 1 EN 50402 is applicable.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
EN 50402:2017, Electrical apparatus for the detection and measurement of combustible or toxic gases
or vapours or of oxygen - Requirements on the functional safety of gas detection systems
EN 60079-29-1:2016, Explosive atmospheres - Part 29-1: Gas detectors - Performance requirements
of detectors for flammable gases
EN 61508-1:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 1: General requirements
EN 61508-2:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 2: Requirements for electrical/electronic/programmable electronic safety-related
systems
EN 61508-3:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 3: Software requirements
EN 61508-4:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 4: Definitions and abbreviations
EN 61508-5:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 5: Examples of methods for the determination of safety integrity levels
EN 61508-6:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
EN 61508-7:2010, Functional safety of electrical/electronic/programmable electronic safety-related
systems - Part 7: Overview of techniques and measures
3 Terms and definitions
For the purposes of this document, the terms and definitions given in EN 60079-29-1:2016 and the
following apply.
3.1
digital unit
part of an electrical apparatus in which data is processed digitally. Analogue-digital(A/D)-converters
and digital-analogue(D/A)-converters as interfaces to analogue units of the apparatus belong to the
digital unit
3.2
special state
all states of the apparatus other than those in which monitoring of gas concentration and/or alarming is
intended, for example the special states of warm-up, calibration mode or fault condition
[SOURCE: EN 60079-29-1:2016, 3.5.4]
3.3
software
intellectual creation comprising the programs, procedures, rules and associated documentation
pertaining to the operation of the digital unit
3.4
failure
termination of the ability of a functional unit to provide a required function or operation of a functional
unit in any way other than as required
[SOURCE: EN 61508-4:2010, 3.6.4, mod.]
3.5
parameters
settings by the manufacturer or user which affect the operation of the apparatus, e.g. changing of the
alarm set points or measuring ranges. Parameter options are included in the hardware and/or software
during design of the apparatus. Changes of parameter settings are not modifications of the software.
In the software several different levels of permission to read or to change parameters may exist
3.6
specified range of input values
range of analogue input values corresponding to the digital output range of an A/D-converter or range
of digital input values corresponding to the analogue output range of a D/A-converter. The minimum
and maximum digital values of the converter are not to be considered to be within the specified range
because minima and maxima correspond to stuck-at faults which have to be detected by the
apparatus (see 4.1.4)
3.7
defined range of input values
range of input values defined by the manufacturer of the apparatus to be valid; the defined range is a
sub-range of the specified range of input values
3.8
output data
result of the digital data processing, which is used for driving the output interfaces
Note 1 to entry: Output interfaces may be analogue or digital displays, analogue or digital outputs and/or alarm
indicators or relays.
3.9
output signal
analogue or digital signal which is available at an output interface
3.10
measured value
processed measured signal including physical unit (e.g. % LEL). A measured value may be formed
from a single signal or a combination of several measured signals. The combined measured signals
may represent different physical units, e.g. gas concentration and temperature
3.11
smallest deviation of indication
value which is determined by the applicable metrological standards. In metrological standards the
allowed tolerances for deviation of indication during type testing are given. If there are different
requirements for the tolerances in different applicable metrological standards the smallest tolerance is
the “smallest deviation of indication”
Note 1 to entry: The smallest deviation of indication is basis for the required resolution of measured signals
which use digital transmission and data processing to meet the requirements of the metrological standards when
using digital technologies
[SOURCE: EN 50402:2017, 3.22]
3.12
message
indication on a display which gives an information about the status of the apparatus (e.g. alarm,
special state, warning)
3.13
software component
part of the program that consists of one or several software modules and that can also interact with
other such constructs
3.14
software module
construct that consists of subroutines and/or data declarations and that can also interact with other
such constructs
3.15
safety function of a gas detection apparatus
any function (inclusive from gas sampling to output of the gas detection apparatus) implemented by
the gas detection apparatus which is related to safety as defined by the manufacturer
4 Design principles
4.1 Basic requirements
4.1.1 General
The metrological standards define performance requirements for gas detection apparatus which have
direct implications on the digital units and software which may be used in such apparatus. This
subclause specifies basic requirements to digital units and software to fulfil the metrological standards.
4.1.2 Analogue/digital interface
The relationship between corresponding analogue and digital values shall be unambiguous. The
output range shall be capable of coping with the defined range of input values. Input values outside
the specified range of the converter shall not result in a valid measured value. A/D- and D/A-converter
quantisation steps shall be chosen so that the requirements in 4.1.3 for the accuracy of data
representation will be fulfilled. The design shall take into account the maximum possible A/D- and D/A-
converter errors.
NOTE This assessment need not include environmental interferences to the A/D- or D/A-converters, e.g.
temperature variation, since environmental testing is covered by the metrological standards.
Outputs at the limits of the specified range of D/A-converters shall result in output signals which are
described as fault signal by the manufacturer.
4.1.3 Numerical errors
Deviations of measured values arising from quantisation, rounding and calculation errors shall be
estimated assuming worst case conditions.
These worst case conditions shall be evaluated in detail. For example, nonlinear behaviour of the
sensor signal with gas concentration, ageing of sensors, varying sensitivities for different gases and
signal variation with temperature, pressure or humidity shall be taken into consideration.
The estimated deviation of measured values shall not be greater than 50 % of the smallest deviation
of indication.
NOTE The deviation of measured values arising from the digital unit will be typically much lower than 50 % of
the smallest deviation of indication. Deviations arising from other sources (e.g. sensor) are expected to be
dominant.
4.1.4 Measuring operation
During data processing the digital unit shall automatically control the specified input data range and
handle range violations. The minimum and maximum digital values of the converter shall not be
considered to be within the specified range in order to detect stuck-at faults.
The software design and verification shall guarantee that range violations for internal and output data
do not occur. Otherwise the digital unit shall automatically control the allowed data ranges and handle
range violations.
During measuring operation, the maximum overall time of four successive updates of the measured
value and all safety relevant output signals shall not exceed the response time t90 of the apparatus or,
for alarm only apparatus, the minimum time to alarm.
NOTE This timing requirement may not be applied to output signals which are explicitly claimed by the
manufacturer to be not safety-relevant.
4.1.5 Special state indication
4.1.5.1 General
It shall not be possible for any interface to an external device to adversely affect a safety function of
the apparatus without the apparatus entering a special state.
NOTE This includes both hardware and software interfaces.
4.1.5.2 Fixed and transportable apparatus
a) Control units
While a special state is present within the entire gas detection apparatus (i.e. control unit and
external sensors or transmitters) this shall be continuously indicated by a signal. This signal shall
be transmittable except when the apparatus is intended to be used in domestic premises only.
Signals provided for indicating that the entire gas detection apparatus is in the special state “fault”
shall be such that they de-energize when the special state occurs and also on power loss. In the
case of deactivation of alarm devices, e.g. for calibration purposes, it is not required to indicate a
special state by a transmittable signal if the alarm devices are automatically re-enabled within
15 min.
b) Gas detection transmitters intended to be used with control units
The special state “calibration” shall be transmitted to the control unit continuously or the
measured value shall be transmitted during calibration. All other special states shall be
transmitted to the control unit continuously. The test routine according to 4.6 c) is excluded.
c) All other apparatus
A special state shall be continuously indicated by a signal. This signal shall be transmittable
except when the apparatus is intended to be used in domestic premises only. Signals provided for
indicating that the apparatus is in the special state “fault” shall be such that they de-energize
when the special state occurs and also on power loss. In the case of deactivation of alarm
devices, e.g. for calibration purposes, it is not required to indicate a special state by a
transmittable signal if the alarm devices are automatically re-enabled within 15 min.
In the case of digital data transmission, the term “continuously” is used with the meaning: continually,
at the rate at which the output signal is updated (see 4.1.4).
4.1.5.3 Portable apparatus
The special state “fault” shall be continuously indicated by an optical and audible signal. It is permitted
that the audible signal can be silenced.
If it is not possible to show an indication in all possible fault situations the normal operation of the
apparatus shall be confirmed by a periodic optical and audible output signal (commonly called alive
signal or confidence signal). The time interval between two signals shall not exceed 60 s.
EXAMPLE: A sudden breakdown of battery voltage cannot be indicated without implementing a second
independent power supply.
The special state “warm-up” shall be indicated by an optical and/or audible signal.
The special states “calibration mode” and “parameterization mode” shall be indicated by an optical
signal.
4.2 Displays
4.2.1 General
If a display is provided the requirements of 4.2.2 and 4.2.3 apply.
4.2.2 Indication of messages
If it is intended to indicate messages on a display:
a) it shall be possible to display all active messages simultaneously or a consolidated signal shall be
generated (e.g. indicating lights for alarms or fault) and a consolidated message shall be
displayed. It shall be possible to interrogate all active messages;
b) a unique message shall be provided for each individual gas alarm;
c) if no special state is activated, it shall be possible to interrogate the measured values of all gas
sensors.
If a message includes another subsidiary message (e.g. exceeding the 2nd alarm threshold includes
exceeding the 1st alarm threshold) it is sufficient to show the message of higher priority. After
cancelling the higher order message the subsidiary message shall remain if the reason for its
activation still exists.
It is recommended that the manufacturer defines an appropriate set of messages in order to enable
the user an easy identification of alarms, special states, etc.
4.2.3 Indication of measured values
For measured values the displayed unit of measurement and any related sign shall be unambiguous.
Any under-range or over-range measurements shall be clearly indicated according to the requirements
of the metrological standards.
4.3 Software
4.3.1 General
This clause specifies minimum requirements for the software development process which are based
on EN 61508-3. Alternative procedures are permitted provided that the applicable requirements of
EN 61508-3 are fulfilled. Compliance through “proven in use” (Route 2s of EN 61508-3) shall not be
used.
NOTE This standard specifies minimum requirements and does not give additional recommendations (in the
tables of EN 61508-3 and in EN 50402:2017 marked as “R”).
In general, software will consist of device software and, if applicable, an operating system and libraries
(e.g. mathematical functions).
The requirements of this clause shall be applied to the entire software. A distinction between safety-
related and non safety-related software is not made.
New operating systems shall be developed according to 4.3.3 to 4.3.5. Re-used or commercial
operating systems shall comply with 4.3.2.
New device software and libraries shall be developed according to 4.3.3 to 4.3.5.
Bought or re-used software modules which were previously developed according to 4.3.3 to 4.3.5 or
commercial libraries which are only available as object code shall be qualified (see 4.3.5.3.2).
Bought or re-used software modules which are relevant for the basic gas detection functionality (signal
chain from sensor to safety relevant output(s)) or the effectiveness of the test routines (according to
4.6) which were not developed according to 4.3.3 to 4.3.5 shall be treated as new code (Route 3s
according to EN 61508-3, 7.4.2.13). All other bought or re-used software modules shall be qualified
(see 4.3.5.3.2).
Only the requirements of 4.3.3, 4.3.4 a)-e), g), h) and 4.7 shall be applied to software for
parameterization of the gas detection device, which is running on external devices (e.g. PC) on
request and under control of an authorized user for a short period of time.
4.3.2 Re-used or commercial operating systems
4.3.2.1 Requirements
Re-used or commercial operating systems may be integrated without applying 4.3.3 to 4.3.5 if the
following requirements are fulfilled:
a) quasi-real time capability for compliance with the requirements of 4.1.4;
b) it shall not be possible for the user to modify the configuration of the operating system;
c) no automatic update-function for the operating system;
d) upgrades of the operating system shall only be possible under the control of the manufacturer of
the apparatus;
e) if the program is executed from volatile memory the entire software shall be fully loaded at start-
up of the apparatus. In special states which are entered by a deliberate action of the user (e.g.
modification of parameters) loading of further modules is permitted;
f) functional safety is validated to be at least SIL 1 according to EN 61508-3 or the operating system
is used with the restrictions according to 4.3.2.2.
It is pointed out that, according to 4.3.5.9, in case of modification of the operating system the impact
on the device software shall be assessed and, if necessary, modification and validation procedures
shall be performed.
4.3.2.2 Use of operating systems without validation of functional safety
An operating system without validation of functional safety is permitted to be used if the following
requirements are fulfilled.
a) The device software has a logical and temporal monitoring of program sequence.
b) The monitoring equipment according to 4.6 d) is triggered by the device software only (that is, the
device software operates the hardware IO ports and watchdog directly, without using the
operating system).
c) Output ports which are part of the safety function are exclusively driven by the device software.
However, functions of the operating system may be used if the correct settings of the output ports
are verified by the device software.
d) Input ports which are part of the safety function are read by the device software. However,
functions of the operating system may be used if the correctness of the read data are verified by
the device software.
e) The test routines according to 4.6 shall be performed by the device software or hardware.
NOTE 1 If the state of switching outputs is monitored by the device software, functions of the operating system
may be used both for driving and reading back the switching output.
NOTE 2 For digital data transmission between spatially separated components of apparatus the requirements of
4.5 apply. The device software verifies the transmitted information thus enabling the detection of side effects (e.g.
corruption) caused by the operating system of the transmitter or receiver.
4.3.3 Software requirements
a) It shall be possible for the user to identify the installed software version, for example by marking
on the installed memory component, in (if accessible) or on the apparatus or by showing it on the
display during power up or on user command.
b) It shall not be possible for the user to modify the software function. It shall be impossible to
change the program code under any operating conditions. Upgrades shall only be possible under
the control of the manufacturer.
c) Parameter settings shall be checked for validity. Invalid inputs shall be rejected. An access barrier
shall be provided against parameter changing by unauthorized persons, e.g. it may be integrated
by an authorization code in the software or may be realized by a mechanical lock. Parameter
settings shall be preserved after apparatus switch-off, after disconnection of the power supply and
while passing through a special state.
Parameters controlling the calibration of the apparatus shall not be updated before the
calibration/adjustment routine is finished successfully. It shall be possible for the user to abort the
calibration/adjustment routine.
NOTE 1 If zero and span adjustment are carried out independently in separate routines, each parameter
may be updated individually after the respective routine is finished successfully.
d) Control or status bits shall be explicitly set or re-set in each program cycle.
NOTE 2 This may not be possible for all control and status bits (e.g. for latched alarms). Additional
measures for detecting corruption are described in 4.8, requirement 4).
4.3.4 Requirements for software documentation
The software documentation shall include:
a) designation of the apparatus to which the software belongs;
b) unambiguous identification of program version;
c) if applicable, version the operating system;
d) if applicable, versions of libraries;
e) any software modification provided with the date of change and new identification data;
f) documentation of the software development process (modification included, if applicable)
according to 4.3.5;
g) source code;
h) functional description;
i) software structure (e.g. flow chart, Nassi-Shneiderman diagram).
4.3.5 Requirements for the software development process
4.3.5.1 General
The software development shall be carried out according to the model described in Figure 1.
Figure 1 — Model of the software development process
It shall be ensured by suitable measures that
a) during development of the software
b) and for all modifications on the basis of an impact analysis
all applicable phases are processed and documented. For each software version, it shall be possible
to identify all parts of the software (software-documentation included) with respect to their version and
to identify the relationship between all parts unambiguously. That is, all parts of the software and all its
documentation shall be held under configuration management.
NOTE 1 The application of these measures ensures in conjunction with the requirements for the software
documentation according to 4.3.4 that the applicable requirements of EN 61508-3 to the configuration
management of the software are fulfilled for the purpose of this European Standard.
The results of each phase of the software development process shall be verified for consistency with
the input of the phase and for correctness as regards content. The results of each phase and the
verification shall be reviewed and approved by a second person. The results of each phase, the
results of the tests and the related verification shall be documented and held under configuration
management.
This verification includes the requirement that the test plans developed in individual phases of the
software development process shall be assessed with respect to their suitability and completeness.
NOTE 2 These tests and assessments include in conjunction with further regulations described in the following
clauses the applicable requirements of EN 61508-3 for software verification.
NOTE 3 Configuration management can be achieved by use of a suitable tool or by specification of appropriate
procedures.
Coding-guidelines shall be used in the coding phase. These shall
c) be used for the development of the entire software;
d) describe programming techniques to be used;
e) proscribe the use of unsafe language constructs;
f) specify procedures for source code documentation.
The documentation of each source code module shall contain at least the following:
g) legal entity (for example company, author(s));
h) intended use;
i) for each function/procedure, its inputs and outputs, their pre- and post-conditions, and their effect
on global state.
j) history of versions.
4.3.5.2 Specification of the requirements for the software
The requirements for the software shall be specified for each interface, including: hardware
components, human interfaces, communication interfaces. A concept for detection and handling of
faults on all these hardware components and interfaces shall be defined.
NOTE 1 The interfaces to the hardware include also the interfaces to devices which are not part of the
apparatus.
The requirements for the software shall be complete and unambiguous and shall be documented in
sufficient detail in natural language. Where practical, graphical schemes, tables, mathematical
formulas etc. may be used for the sake of precision.
It shall be possible to identify each requirement for the software unambiguously.
Each requirement for the software shall be traceable to a requirement for the apparatus.
A plan for validating the software shall be developed based on the specified requirements for the
software. The objective of the validation is to demonstrate that all specified requirements for the
software are satisfied.
NOTE 2 Parts of this validation will demonstrate that certain requirements of the metrological standards that
apply to the functionality of the apparatus are fulfilled.
Validation shall be carried out with the apparatus and therefore also includes the interaction of
hardware and software. Validation shall be carried out by means of a functional/black-box-test of the
apparatus (see 4.3.5.8).
The validation plan shall include at least the following:
a) test methods and test cases for each specified requirement for the software;
b) environmental conditions;
c) tools (for example test gases);
d) pass / fail criteria.
4.3.5.3 Software architecture
4.3.5.3.1 Architecture
The software architecture shall be designed based on
a) hardware architecture;
b) specification of the requirements for the software (see 4.3.5.2).
The software architecture shall
c) define a structured and modular design;
d) ensure that software modules have a clearly defined interface to other modules;
e) specify each interaction between software and hardware;
f) define measures for detection and handling of hardware faults.
The design of the software architecture and the software design (see 4.3.5.4) shall be carried out in a
structured manner. This includes a systematic approach including at least the following steps:
g) decomposition step by step of the software function into manageable software components;
h) assignment of data structures to the software components;
i) definition of the interfaces between the software components;
j) if applicable, selection of the operating system (see 4.3.1);
k) if applicable, selection of libraries (see 4.3.1).
The software architecture shall allow for tracing each requirement for the software from 4.3.5.2 to its
implementation in the software design according to 4.3.5.4.
The hardware-software integration tests shall be specified based on the software architecture (see
4.3.5.7).
4.3.5.3.2 Tools and coding standards
Suitable, matching tools including languages, compilers, and, if used, tools for the configuration
management and automatic testing tools shall be selected. The availability of the tools over the whole
lifetime of the apparatus shall be considered.
The suitability of the tools for code generation (for example code generator, compiler) and of external
or re-used software (for example libraries) shall be assessed. At least the following criteria shall be
considered:
a) range of functions and performance;
b) operating experience;
c) updates, release notes;
d) error lists;
e) references;
f) publications related to the tool (for example tests or validation by a third party);
g) experience with similar products of the manufacturer;
h) market presence of the manufacturer.
NOTE 1 This assessment may be omitted if EN 61508 (or similar safety standard) certified tools are used.
Changing the version of the tools for code generation during the lifetime of the apparatus should be
avoided because otherwise the suitability has to be re-assessed.
The programming language and the coding standards shall support measures to avoid systematic
faults and foster predictable program execution. This can be achieved by applying the following
criteria.
Requirements for the programming language (by using coding standards, if necessary):
i) suitability for the application;
j) complete, unambiguously defined or restricted to unambiguously defined properties;
k) contain features that facilitate the detection of programming mistakes;
l) block structure.
The language should be user- or problem-orientated rather than processor/platform machine-
orientated. Widely used languages or their subsets are preferred to special purpose languages.
Low-level languages, in particular assembly languages, present problems due to their
processor/platform machine-orientated nature. Therefore, assembly languages should only be used
for tasks with low complexity. Any use of assembly language shall be justified explicitly in the software
documentation.
The programming language and the use of coding standards, if necessary, shall support
m) restriction of access to data in specific software modules (encapsulation);
n) further measures for fault avoidance, for example avoidance of unsafe constructs.
If the programming language allows unsafe constructs, their use shall be avoided by definition of a
subset. This subset shall be defined in coding standards.
NOTE 2 MISRA-C is an example of a language subset for the programming language C.
The use of the following unsafe constructs shall be avoided by the coding standards:
o) unconditional jumps excluding subroutine calls;
p) recursions;
q) dynamic variables or objects;
r) multiple entries or exits of loops;
s) multiple entries of subprograms or blocks;
t) implicit variable initialisation or declaration;
u) data of variable types (for example “void” in C);
v) equivalences of variables (for example “unions” in C), if write access occurs at more than one
place of the program;
w) automatic type conversion.
Pointer shall only be used as far as absolutely necessary.
Subprograms and blocks shall have one exit only.
4.3.5.4 Software design
The software design shall be carried out in a structured manner (see 4.3.5.3). It shall be possible to
demonstrate the implementation of each requirement for the software from 4.3.5.2.
The software design shall adhere to the following rules which shall be included i
...
Frequently Asked Questions
EN 50271:2018 is a standard published by CLC. Its full title is "Electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen - Requirements and tests for apparatus using software and/or digital technologies". This standard covers: This European Standard specifies minimum requirements and tests for electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen using software and/or digital technologies. This European Standard is applicable to fixed, transportable and portable apparatus intended for use in domestic premises as well as commercial and industrial applications. This European Standard does not apply to external sampling systems, or to apparatus of laboratory or scientific type, or to apparatus used only for process control purposes. This European Standard supplements the requirements of the European Standards for the detection and measurement of flammable gases and vapours (e.g. EN 60079 29 1, EN 60079-29-4, EN 50194 1, EN 50194 2), toxic gases (e.g. EN 45544 series, EN 50291 1, EN 50291 2) or oxygen (e.g. EN 50104). NOTE 1 These European Standards will be mentioned in this European Standard as "metrological standards". NOTE 2 The examples above show the state of the standardisation for gas detection apparatus at the time of publishing this European Standard. There may be other metrological standards for which this European Standard is also applicable. This European Standard is a product standard which is based on EN 61508 series. It covers part of the phase 10 "realisation" of the overall safety life cycle defined in EN 61508 1. Additional requirements are specified if compliance with safety integrity level 1 (SIL 1) according to EN 61508 series is claimed for fixed or transportable apparatus for low demand mode of operation. NOTE 3 Compliance with safety integrity level 1 (SIL 1) for portable apparatus is not considered because portable apparatus cannot make an automatic executive action. It is recommended to apply this European Standard for apparatus used for safety applications with SIL-requirement 1 instead of EN 50402. However, the technical requirements of EN 50271 and EN 50402 are the same for SIL 1. NOTE 4 For apparatus used for safety applications with SIL-requirements higher than 1 EN 50402 is applicable.
This European Standard specifies minimum requirements and tests for electrical apparatus for the detection and measurement of combustible gases, toxic gases or oxygen using software and/or digital technologies. This European Standard is applicable to fixed, transportable and portable apparatus intended for use in domestic premises as well as commercial and industrial applications. This European Standard does not apply to external sampling systems, or to apparatus of laboratory or scientific type, or to apparatus used only for process control purposes. This European Standard supplements the requirements of the European Standards for the detection and measurement of flammable gases and vapours (e.g. EN 60079 29 1, EN 60079-29-4, EN 50194 1, EN 50194 2), toxic gases (e.g. EN 45544 series, EN 50291 1, EN 50291 2) or oxygen (e.g. EN 50104). NOTE 1 These European Standards will be mentioned in this European Standard as "metrological standards". NOTE 2 The examples above show the state of the standardisation for gas detection apparatus at the time of publishing this European Standard. There may be other metrological standards for which this European Standard is also applicable. This European Standard is a product standard which is based on EN 61508 series. It covers part of the phase 10 "realisation" of the overall safety life cycle defined in EN 61508 1. Additional requirements are specified if compliance with safety integrity level 1 (SIL 1) according to EN 61508 series is claimed for fixed or transportable apparatus for low demand mode of operation. NOTE 3 Compliance with safety integrity level 1 (SIL 1) for portable apparatus is not considered because portable apparatus cannot make an automatic executive action. It is recommended to apply this European Standard for apparatus used for safety applications with SIL-requirement 1 instead of EN 50402. However, the technical requirements of EN 50271 and EN 50402 are the same for SIL 1. NOTE 4 For apparatus used for safety applications with SIL-requirements higher than 1 EN 50402 is applicable.
EN 50271:2018 is classified under the following ICS (International Classification for Standards) categories: 13.320 - Alarm and warning systems. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 50271:2018 has the following relationships with other standards: It is inter standard links to EN 50271:2010. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
EN 50271:2018 is associated with the following European legislation: EU Directives/Regulations: 2014/34/EU, 94/9/EC; Standardization Mandates: M/BC/CEN/92/46. When a standard is cited in the Official Journal of the European Union, products manufactured in conformity with it benefit from a presumption of conformity with the essential requirements of the corresponding EU directive or regulation.
You can purchase EN 50271:2018 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CLC standards.
La norme EN 50271:2018 établit des exigences minimales et des tests pour les dispositifs électriques de détection et de mesure des gaz combustibles, des gaz toxiques ou de l'oxygène, utilisant des logiciels et/ou des technologies numériques. Son champ d'application est vaste, englobant les appareils fixes, transportables et portables destinés à un usage dans des locaux domestiques, ainsi que dans des applications commerciales et industrielles. Un des principaux points forts de cette norme réside dans sa capacité à compléter les exigences des normes européennes existantes relatives à la détection de gaz combustibles et de vapeurs, de gaz toxiques, ou d'oxygène. En fournissant une base solide, la norme EN 50271 s'assure que les dispositifs de détection respectent des critères de sécurité rigoureux, ce qui en fait un atout fondamental pour les applications critiques. La norme se fonde sur la série EN 61508, intégrant des considérations de sécurité tout au long du cycle de vie, ce qui renforce la confiance dans les appareils certifiés. De plus, l'accent mis sur la sécurité intégrité niveau 1 (SIL 1) pour les appareils fixes et transportables renforce la pertinence de la norme dans des contextes où la sécurité est primordiale. Bien que la norme ne couvre pas les appareils portables sous le même niveau de sécurité, elle fournit des lignes directrices claires pour leur utilisation dans des applications de sécurité. En conclusion, la norme EN 50271:2018 est non seulement pertinente pour l'industrie actuelle, mais elle répond également aux défis croissants liés à la sécurité des gaz, en intégrant des technologies modernes. Sa portée étendue et ses exigences détaillées en font un document fondamental pour les fabricants et les utilisateurs d'appareils de détection de gaz, garantissant ainsi des mesures sûres et fiables dans divers contextes d'application.
Die EN 50271:2018 bietet eine umfassende Grundlage für elektrische Geräte, die zur Detektion und Messung von brennbaren Gasen, giftigen Gasen oder Sauerstoff eingesetzt werden und dabei Software und/oder digitale Technologien nutzen. Der Anwendungsbereich dieses europäischen Standards umfasst sowohl feste als auch transportable und tragbare Apparate, die in privaten Haushalten sowie in kommerziellen und industriellen Anwendungen eingesetzt werden. Dabei wird besonders hervorgehoben, dass der Standard nicht für externe Probenahmesysteme oder apparative Einrichtungen im Labor- oder Wissenschaftsbereich gilt. Die Stärken der EN 50271:2018 liegen in ihrer klaren Definition von Mindestanforderungen und Prüfungen, die sicherstellen, dass die Geräte zuverlässig und sicher arbeiten. Der Standard ergänzt zudem die Anforderungen der relevanten europäischen Standards für die Detektion und Messung von brennbaren Gasen und Dämpfen sowie von giftigen Gasen und Sauerstoff. Diese Ergänzungen tragen zur Harmonisierung der Normen und damit zur Sicherheit in der Anwendung bei. Ein weiterer bemerkenswerter Aspekt ist, dass die EN 50271:2018 als Produktstandard auf der EN 61508-Serie basiert, die eine wichtige Grundlage für den gesamten Sicherheitslebenszyklus von Apparaten darstellt. Außerdem wird betont, dass zusätzliche Anforderungen für die Einhaltung des Sicherheitsintegritätsniveaus 1 (SIL 1) für feste oder transportable Apparate spezifiziert werden, wenn dies gefordert wird. Diese Klarstellungen sind besonders relevant für Anwendungen, bei denen Sicherheit eine hohe Priorität hat. Die Relevanz der EN 50271:2018 wird nicht nur durch ihre technischen Anforderungen, sondern auch durch ihre Verbindung zu anderen metrologischen Standards untermalt, die für die Detektion von Gasen festgelegt sind. Wegen des dynamischen Status der Normung im Bereich der Gasdetektionsgeräte könnten zukünftige metrologische Standards ebenfalls von Bedeutung sein. Insgesamt bietet die EN 50271:2018 eine solide Grundlage, um sicherzustellen, dass entsprechende Apparate den erforderlichen Sicherheitsanforderungen entsprechen und damit einen wesentlichen Beitrag zur sicheren Nutzung in verschiedenen Anwendungen leisten.
The EN 50271:2018 standard provides comprehensive guidelines for electrical apparatus designed for detecting and measuring combustible gases, toxic gases, or oxygen, especially those utilizing software and digital technologies. Its extensive scope is notable, covering fixed, transportable, and portable devices meant for application in both domestic and commercial/industrial settings. One of the standard's strengths lies in its clarity regarding exclusions, specifically stating that it does not encompass external sampling systems or laboratory-specific apparatus. This delineation adds focus, ensuring that users only consider relevant devices under this standard. Moreover, EN 50271:2018 is built to complement existing European Standards that address gas detection and measurement. By referencing established metrological standards such as EN 60079-29-1 for flammable gases and EN 45544 for toxic gases, the document emphasizes a structured approach to compliance within a broader regulatory framework, promoting safety and reliability. The standard integrates principles from the EN 61508 series, particularly about safety integrity levels (SIL), which is crucial for users seeking compliance in safety-critical applications. It outlines specific requirements for SIL 1 compliance for fixed and transportable apparatus, thus enhancing the utility of the standard in environments where maintaining safety is paramount. Additionally, it highlights the non-applicability of SIL classification for portable devices, aligning expectations for users in handling equipment across different contexts effectively. Another key aspect is the recommendation to utilize EN 50271 for safety applications that require SIL 1 compliance rather than defaulting to EN 50402, despite their technical requirements being congruent for this level. This guidance streamlines the selection process for safety equipment and ensures that users have access to updated, relevant standards when making decisions. In summary, the EN 50271:2018 standard is a pivotal document in the realm of gas detection technology. Its robust framework, coupled with a clear understanding of applicability and integration with existing standards, renders it a vital resource for manufacturers and users alike, ensuring enhanced safety and operational effectiveness in gas detection applications.
SIST EN 50271:2018 표준은 가연성 가스, 독성 가스 또는 산소를 감지하고 측정하기 위해 소프트웨어 및 디지털 기술을 사용하는 전기 장치에 대한 최소 요구 사항과 시험 방법을 명시하고 있습니다. 이 표준은 고정식, 이동식 및 휴대용 장치에 적용되며, 가정용 및 상업적, 산업적 용도로 사용될 수 있도록 설계되었습니다. 외부 샘플링 시스템이나 실험실 또는 과학적 용도로만 사용하는 장치에는 적용되지 않으며, 프로세스 제어 목적의 장치에 대해서도 적용되지 않습니다. 이 표준의 강점은 안전성과 신뢰성을 높이기 위한 요구 사항을 충족하도록 설계된 점입니다. EN 61508 시리즈를 기반으로 하여 특정 안전 무결성 수준(SIL 1)에 대한 요구 사항을 포함하고 있으며, 고정식 및 이동식 장치에 대한 추가 요구 사항이 명시되어 있습니다. 이러한 기준은 안전 응용 프로그램에서의 사용을 위해 권장되며, EN 50402와 비교하여도 동일한 기술적 요구 사항을 갖추고 있습니다. 또한, 표준은 가스 감지 장치에 관련된 다른 유럽 표준(예: EN 60079, EN 50291 시리즈)에 대한 요구 사항을 보완하며, 메트로로지적 표준에 대한 언급을 통해 사용자에게 명확한 가이드라인을 제공합니다. 이는 사용자가 다양한 응용 프로그램에 적합한 장비를 선택하는 데 도움을 주며, 관련 산업 전반에 걸쳐 안전 기준을 일관되게 유지할 수 있게 합니다. 결론적으로, SIST EN 50271:2018 표준은 전기 장비의 안전성과 성능을 보장하는 데 필수적인 문서로서, 유럽 내에서 가스 감지 및 측정 장비의 기준을 설정하는 데 중요한 역할을 합니다.
SIST EN 50271:2018は、可燃性ガス、有毒ガス、または酸素の検出と測定のための電気機器に関する重要な基準です。この欧州標準は、ソフトウェアおよび/またはデジタル技術を使用する機器に対する最小要件と試験を明確に定めており、非常に有用です。また、固定式、移動式、およびポータブル機器のいずれにも適用可能であり、家庭、商業および産業用の幅広い用途に対応している点が評価されます。 この基準の強みは、可燃性ガスや有毒ガスの検出と測定に必要なメトロロジー基準を補完することにあります。具体的には、EN 60079 29 1、EN 60079-29-4、EN 50194 1、EN 50194 2などの関連基準を参考にしながら、機器の安全性と信頼性を向上させるための詳細な要求事項を提供しています。さらに、安全性の一貫性を保つために、EN 61508シリーズに基づく製品基準であり、特に安全統合レベル1(SIL 1)との適合性が求められる固定式や移動式機器に対する追加要件が明示されています。 この標準は、GHS(グローバルハーモナイズドシステム)に基づく安全規制に関連しており、産業界や商業分野にとってますます重要な役割を担っています。また、標準の適用範囲が広いため、さまざまな技術的要件に柔軟に対応可能であり、業界全体における安全基準の向上に寄与しています。 SIST EN 50271:2018は、 gas detection apparatus の標準化の現状を反映しており、今後の技術的進展にも対応できるような設計となっています。このため、ガス検出機器の信頼性と安全性を確保するための重要な指針となるでしょう。








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...