EN 12390-18:2021+A1:2024
(Main)Testing hardened concrete - Part 18: Determination of the chloride migration coefficient
Testing hardened concrete - Part 18: Determination of the chloride migration coefficient
This document specifies the procedure for obtaining the non-steady-state chloride migration coefficient of specimens of hardened concrete at a specified age (see Annex A). The test procedure does not take into account any interaction of concrete with the saline solution over time. The test result is a durability indicator with respect to the resistance of the concrete investigated against chloride penetration.
The test procedure does not apply to concrete specimens with surface treatments such as silanes.
If the aggregate or any other embedded elements (such as metallic fibres or conducting particles) are electrically conductive, this will influence the magnitude of chloride migration. This fact is taken into account when establishing threshold values. It prevents comparison of chloride migration values between concretes if the aggregates induce a difference of half an order of magnitude (higher or lower) of chloride migration.
Prüfung von Festbeton - Teil 18: Bestimmung des Chloridmigrationskoeffizienten
Essais pour béton durci - Partie 18 : Détermination du coefficient de migration des chlorures
Le présent document spécifie le mode opératoire permettant d’obtenir le coefficient de migration des chlorures en régime non stationnaire d’éprouvettes de béton durci à un âge spécifié (voir Annexe A). Ce mode opératoire d’essai ne prend pas en compte l’interaction du béton avec la solution saline au cours du temps. Le résultat d’essai est un indicateur de durabilité en ce qui concerne la résistance du béton étudié à la pénétration des chlorures.
Le mode opératoire d’essai ne s’applique pas aux éprouvettes de béton ayant subi des traitements de surface, par exemple à base de silanes.
Si le granulat ou tout autre élément incorporé (notamment des fibres métalliques ou des particules conductrices) sont électriquement conducteurs, cela va influer sur l’ampleur de la migration des chlorures. Ce fait est pris en compte lors de l’établissement des valeurs seuils. En effet, la comparaison des valeurs de migration des chlorures entre les bétons est impossible si les granulats induisent une différence d’un demi-ordre de grandeur (en plus ou en moins) en matière de migration des chlorures.
Preskušanje strjenega betona - 18. del: Določanje koeficienta migracije klorida
Ta dokument določa postopek za pridobivanje koeficienta migracije klorida vzorcev strjenega betona v neravnotežnem stanju pri določeni starosti (glej dodatek A). Pri preskusnem postopku se ne upošteva interakcija betona s fiziološko raztopino skozi čas. Rezultat preskusa je indikator trajnosti glede na odpornost preskušenega betona proti prodiranju klorida.
Preskusni postopek se ne uporablja za betonske vzorce s površinsko prevleko, kot so silani.
Če so agregat ali kateri koli drugi vgrajeni elementi (kot so kovinska vlakna ali prevodni delci) električno prevodni, bo to vplivalo na obseg migracije klorida. To dejstvo se upošteva pri določanju mejnih vrednosti. To preprečuje primerjavo vrednosti migracije klorida med betoni, če agregati povzročijo razliko v višini polovice reda velikosti (več ali manj) migracije klorida.
General Information
Relations
Overview
EN 12390-18:2021+A1:2024 - Testing hardened concrete - Part 18: Determination of the chloride migration coefficient - is a CEN standard that defines a laboratory procedure to obtain the non‑steady‑state chloride migration coefficient (M) of hardened concrete specimens at a specified age. The result is a durability indicator for resistance against chloride penetration (important for marine exposure and de‑icing salt environments). The method drives chloride ions into a specimen under an imposed electric field, measures penetration depth after splitting the sample, and calculates M from measured penetration, applied voltage and test parameters.
This procedure does not account for interactions between the concrete and saline solution over time, does not apply to surface‑treated specimens (e.g., silanes), and notes that electrically conductive aggregates or embedded elements (metallic fibres, conducting particles) will affect chloride migration and comparability of results.
Key topics and technical requirements
- Principle: Chloride ions are driven into a concrete specimen placed between a chloride‑free anolyte and a chloride‑containing catholyte under an external voltage. After a defined test duration the specimen is split and free chloride penetration is visualized (e.g., with 0.1 N AgNO3).
- Test output: Non‑steady‑state chloride migration coefficient (M) calculated from penetration depth, voltage, temperature, time and specimen dimensions.
- Specimen preparation: Cylindrical specimens (typical diameters 50 mm or 100 mm) with height (50 ± 2) mm; test series: at least five 50 mm specimens or three 100 mm specimens. Specimens cured and stored per EN 12390‑2.
- Apparatus & conditions: Migration cell and migration set‑up, rectifier with voltage regulator (up to 40 V), stainless steel electrodes, controlled lab temperature (20 ± 2 °C), and solutions: anolyte (0.2 N KOH or 0.3 N NaOH) and catholyte (reference 5 % NaCl in matching alkali).
- Limitations: Not suitable for surface‑treated concretes. Conductive aggregates or embedded conductive components influence results; threshold values take this into account and direct comparisons may be invalid when aggregates cause large conductivity differences.
- Documentation: Test report requirements and a precision estimate are included; Annex A provides background on chloride migration testing.
Applications and users
Who uses EN 12390‑18:
- Materials and durability laboratories performing chloride penetration testing and quality control.
- Structural and materials engineers assessing concrete durability for marine or de‑icing salt exposure.
- Specifiers and asset owners setting performance threshold values for concrete mixes and repair products.
- Researchers and product developers evaluating coatings, repair mortars and sprayed concrete (note: applicability to products covered in EN 1504‑3 and EN 14487‑1 is referenced).
Practical uses:
- Ranking and acceptance testing of concrete mixes for chloride resistance.
- Supporting durability design, maintenance planning and service‑life assessments.
- Comparative testing of repair materials and sprayed concretes (with caveats about surface treatments and conductive aggregates).
Related standards
- EN 12390‑2 (Making and curing specimens for strength tests)
- EN 14488‑1 (Testing sprayed concrete - sampling)
- EN 1504‑3 and EN 14487‑1 (mentioned for applicability to products)
Frequently Asked Questions
EN 12390-18:2021+A1:2024 is a standard published by the European Committee for Standardization (CEN). Its full title is "Testing hardened concrete - Part 18: Determination of the chloride migration coefficient". This standard covers: This document specifies the procedure for obtaining the non-steady-state chloride migration coefficient of specimens of hardened concrete at a specified age (see Annex A). The test procedure does not take into account any interaction of concrete with the saline solution over time. The test result is a durability indicator with respect to the resistance of the concrete investigated against chloride penetration. The test procedure does not apply to concrete specimens with surface treatments such as silanes. If the aggregate or any other embedded elements (such as metallic fibres or conducting particles) are electrically conductive, this will influence the magnitude of chloride migration. This fact is taken into account when establishing threshold values. It prevents comparison of chloride migration values between concretes if the aggregates induce a difference of half an order of magnitude (higher or lower) of chloride migration.
This document specifies the procedure for obtaining the non-steady-state chloride migration coefficient of specimens of hardened concrete at a specified age (see Annex A). The test procedure does not take into account any interaction of concrete with the saline solution over time. The test result is a durability indicator with respect to the resistance of the concrete investigated against chloride penetration. The test procedure does not apply to concrete specimens with surface treatments such as silanes. If the aggregate or any other embedded elements (such as metallic fibres or conducting particles) are electrically conductive, this will influence the magnitude of chloride migration. This fact is taken into account when establishing threshold values. It prevents comparison of chloride migration values between concretes if the aggregates induce a difference of half an order of magnitude (higher or lower) of chloride migration.
EN 12390-18:2021+A1:2024 is classified under the following ICS (International Classification for Standards) categories: 91.100.30 - Concrete and concrete products. The ICS classification helps identify the subject area and facilitates finding related standards.
EN 12390-18:2021+A1:2024 has the following relationships with other standards: It is inter standard links to EN 12390-18:2021, EN 12390-18:2021/FprA1. Understanding these relationships helps ensure you are using the most current and applicable version of the standard.
You can purchase EN 12390-18:2021+A1:2024 directly from iTeh Standards. The document is available in PDF format and is delivered instantly after payment. Add the standard to your cart and complete the secure checkout process. iTeh Standards is an authorized distributor of CEN standards.
Standards Content (Sample)
SLOVENSKI STANDARD
01-januar-2025
Preskušanje strjenega betona - 18. del: Določanje koeficienta migracije klorida
Testing hardened concrete - Part 18: Determination of the chloride migration coefficient
Prüfung von Festbeton - Teil 18: Bestimmung des Chloridmigrationskoeffizienten
Essais pour béton durci - Partie 18 : Détermination du coefficient de migration des
chlorures
Ta slovenski standard je istoveten z: EN 12390-18:2021+A1:2024
ICS:
91.100.30 Beton in betonski izdelki Concrete and concrete
products
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EN 12390-18:2021+A1
EUROPEAN STANDARD
NORME EUROPÉENNE
October 2024
EUROPÄISCHE NORM
ICS 91.100.30 Supersedes EN 12390-18:2021
English Version
Testing hardened concrete - Part 18: Determination of the
chloride migration coefficient
Essais pour béton durci - Partie 18 : Détermination du Prüfung von Festbeton - Teil 18: Bestimmung des
coefficient de migration des chlorures Chloridmigrationskoeffizienten
This European Standard was approved by CEN on 8 February 2021 and includes Amendment approved by CEN on 26 August
2024.
CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this
European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references
concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN
member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by
translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management
Centre has the same status as the official versions.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2024 CEN All rights of exploitation in any form and by any means reserved Ref. No. EN 12390-18:2021+A1:2024 E
worldwide for CEN national Members.
Contents Page
European foreword . 3
1 Scope . 4
2 Normative references . 4
3 Terms and definitions . 4
4 Symbols . 5
5 Principle . 5
6 Apparatus and equipment . 5
7 Preparation of specimens . 8
7.1 Preparing sub-specimens . 8
7.2 Preparing test specimens . 9
8 Procedure. 9
8.1 Installation of the test specimens in the migration cell . 9
8.2 Installation of the migration cell in the migration apparatus . 9
8.3 Test procedure . 10
9 Test evaluation . 13
9.1 Determination of the mean and maximum penetration depth . 13
9.2 Determination of the chloride migration coefficient M . 13
nss
10 Variations of the procedure . 14
10.1 Specimens of sprayed mortar and sprayed concrete . 14
11 Report . 14
12 Precision estimate . 15
Annex A (informative) Background to chloride migration testing . 17
Bibliography . 18
European foreword
This document (EN 12390-18:2021+A1:2024) has been prepared by Technical Committee CEN/TC 104
“Concrete and related products”, the secretariat of which is held by SN.
This European Standard shall be given the status of a national standard, either by publication of an
identical text or by endorsement, at the latest by April 2025, and conflicting national standards shall be
withdrawn at the latest by April 2025.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document includes Amendment 1 approved by CEN on 26 August 2024.
This document supersedes !EN 12390-18:2021".
The start and finish of text introduced or altered by amendment is indicated in the text by tags !".
A list of all parts in the EN 12390 series, published under the general title “Testing hardened concrete”,
can be found on the CEN website.
Any feedback and questions on this document should be directed to the users’ national standards body.
A complete listing of these bodies can be found on the CEN website.
According to the CEN-CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and the
United Kingdom.
1 Scope
This document specifies the procedure for obtaining the non-steady-state chloride migration coefficient
of specimens of hardened concrete at a specified age (see Annex A). The test procedure does not take
into account any interaction of concrete with the saline solution over time. The test result is a durability
indicator with respect to the resistance of the concrete investigated against chloride penetration.
The test procedure does not apply to concrete specimens with surface treatments such as silanes.
If the aggregate or any other embedded elements (such as metallic fibres or conducting particles) are
electrically conductive, this will influence the magnitude of chloride migration. This fact is taken into
account when establishing threshold values. It prevents comparison of chloride migration values
between concretes if the aggregates induce a difference of half an order of magnitude (higher or lower)
of chloride migration.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 12390-2, Testing hardened concrete — Part 2: Making and curing specimens for strength tests
EN 14488-1, Testing sprayed concrete — Sampling fresh and hardened concrete
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— IEC Electropedia: available at https://www.electropedia.org/
— ISO Online browsing platform: available at https://www.iso.org/obp
3.1
migration cell
apparatus for holding a cylindrical test specimen with a lateral sealing of non-conductive material
enabling the test specimen to be exposed on two parallel surfaces to test solutions
3.2
migration test set-up
test container with a migration cell support, migration cell test solutions, sleeve, sleeve clamps,
electrodes and electronics
3.3
migration
movement of ions under the action of an external electrical field
3.4
chloride migration coefficient
transport property which reflects the resistance against chloride penetration under the action of an
externally applied electrical field
4 Symbols
–1
c Chloride concentration at which a colour change occurs, c = 0,07 mol·l
d d
–1
c Chloride concentration of the potassium hydroxide solution (catholyte) [mol·l ]
d, h Diameter and height, respectively, of the cylindrical specimen [m]
−12 2 −1
M Chloride migration coefficient (non steady-state) [× 10 m ·s ]
nss
−1
E Voltage gradient [V·m ]
–1
erf Inverse Error Function
4 –1
F Faraday Constant, F = 9,649 · 10 J · (V·mol)
m Mass of the water-saturated test specimen [kg]
w
–1
R Gas constant, R = 8,314 J · (K·mol)
t Duration of the migration test with an external voltage over the test specimen applied [s]
T Absolute, mean temperature of both test solutions during the migration test [K]
U Absolute value of the applied voltage [V]
x Mean penetration depth of chloride ions of the two halves of the split test specimen
d
![m]"
x Maximum penetration depth ![m]"
max
z Ionic charge, for chloride ions z = 1
5 Principle
A specimen of concrete or mortar is placed between a chloride free and a chloride containing alkaline
solution and an electric voltage is applied between two external electrodes to drive the chloride ions
into the concrete specimen. After a given period of time, the specimen is split and the penetration depth
of the free chloride ions is determined by using a suitable colour indicator solution. The chloride
migration coefficient is calculated based on the measured depth of penetration, the magnitude of the
applied voltage and other parameters.
NOTE This procedure can also be applied for testing products according to EN 1504-3 [1], EN 14487-1 [2].
6 Apparatus and equipment
Laboratory room with an air temperature of (20 ± 2) °C:
1) scale with an instrumental measurement uncertainty not exceeding ±0,05 g;
2) vernier calliper gauge with an instrumental measurement uncertainty not exceeding ±0,05 mm;
3) ruler with an instrumental measurement uncertainty not exceeding ± 0,05 mm;
4) water bath for storing the test specimens under water at (20 ± 2) °C;
5) thermometer with an instrumental measurement uncertainty not exceeding ±0,5 °C;
6) drying oven with ventilation and adjustable temperature;
7) migration set-up comprising (also see Figure 1 to Figure 4):
— migration cell for test specimens with a diameter between 50 mm and 110 mm (fabric-
reinforced, electrically non-conductive rubber sleeve [see Figure 2] and, depending on the
construction of the cell, stainless steel sleeve clamps [see Figure 4]);
— migration cell support made from non-corrosive and electrically non-conductive material;
— rectifier with voltage regulator (up to 40 V);
— voltmeter, ammeter with an instrumental measurement uncertainty not exceeding ±1 V
or ±1 mA;
— stainless steel electrodes;
— catholyte reservoir: non-corroding and electrically non-conductive material.
NOTE Similar setups for the determination of the migration coefficient might be allowed according to
national provisions, provided in particular that the increase in temperature under the test (Joule effect) does not
exceed 3 °C.
Key
1 rubber sleeve 6 catholyte reservoir
2 anolyte 7 migration cell support
3 anode 8 cathode
4 test specimen 9 rectifier
5 catholyte
Figure 1 — Schematic illustration of a migration test set-up
Key
1 cathode 8 waterproof protection
2 filler opening 9 downstream cell
3 joints 10 upstream cell
4 power supply 11 !catholyte solution"
5 electrode 12 !anolyte solution"
6 anode 13 temperature probe
7 concrete specimen
Figure 2 — Schematic illustration of an alternative migration test set-up
Figure 3 — Photograph of a migration test set-up
Figure 4 — Stainless steel sleeve clamp
8) Test solutions:
— Anolyte: 0,2 N KOH (11,2 g KOH to be filled up to 1 000 ml with distilled or demineralized
water) or 0,3 N NaOH (12,0 g NaOH to be filled up to 1 000 ml with distilled or demineralized
water);
— Catholyte: 5 % NaCl (50 g NaCl on 950 g 0,2 N KOH) (the reference solution) or (50 g NaCl on
950 g 0,3 N NaOH);
If specified or agreed, other NaCl concentrations between 3 % and 10 % may be utilized. This
shall be explicitly noted in the test documentation and audit reports, and taken into account in
the calculation of the migration coefficient.
Where KOH is used to prepare the anolyte, KOH shall also be used to prepare the catholyte.
— 0,1 N Silver nitrate solution;
— 5 % Potassium dichromate solution (optional).
7 Preparation of specimens
7.1 Preparing sub-specimens
For cores with a diameter between 50 mm and 110 mm a minimum of two cubical sub-specimens are
prepared with at least 150 mm edge length, or a minimum of three cylindrical sub-specimens with a
diameter of 100 mm and a height of 200 mm. For cores with a diameter of 50 mm a minimum of two
cubical sub-specimens are necessary. The preparation and compaction of the sub-specimens shall be
executed in accordance with EN 12390-2. The troweled surfaces shall be protected from drying with
close fitting polythene sheeting or equivalent.
The cubical or cylindrical sub-specimens shall be de-moulded according to EN 12390-2.
After de-moulding, the sub-specimens shall be stored in water in accordance with EN 12390-2 until
extracting the cylindrical specimens.
7.2 Preparing test specimens
A test series comprises at least five cylindrical specimens with a diameter of (50 ± 1) mm or at least
three cylindrical specimens with a diameter of (100 ± 1) mm (diameters between 50 mm and 110 mm
are allowed). The specimens shall have a height of (50 ± 2) mm. The diameter d and the height h of each
specimen shall be determined and the result recorded to the nearest 0,1 mm. The diameter of the cores
should not be less than three times the maximum aggregate size.
The preparation should commence not earlier than 10 days before the test starts. If not otherwise
regulated, the test shall start 28 days after specimen casting.
For cubical specimens, the cores shall be extracted by drilling perpendicular to the troweled surface.
The upper side of the cores should have a distance of at least 50 mm from the troweled surface. For
cylindrical specimens, the first 50 mm layer from the troweled surface shall be sawn and discarded.
Visible spalls and holes on the test specimen face in contact with the NaCl solution (catholyte) ≤ 5 mm
in diameter can be filled with sealing material. Depending on the size and number of defects, the sealed
surface area should be less than 3 % of the test surface area. If there are spalls and holes > 5 mm in
diameter on the test surface, a 5 mm to 10 mm layer containing the above defects shall be sawn and
discarded.
Subsequently, the test specimens are to be cut parallel to the test surface to obtain a height of (50 ± 2)
mm. The sawn surfaces should be plano-parallel with a maximum deviation of 1 mm, determined at
quarter points. If necessary, the test surface may be ground.
8 Procedure
8.1 Installation of the test specimens in the migration cell
The test specimens prepared in accordance with 7.2 shall be taken from the water storage immediately
prior to testing and installed in the rubber sleeve as shown in Figure 1 or Figure 2.
Two stainless steel sleeve clamps
...
EN 12390-18:2021+A1:2024は、硬化コンクリートの試験に関する標準であり、特に非定常状態の塩化物移動係数を測定する手続きが記載されています。この標準のスコープは、特定の年齢における硬化コンクリートの試料の塩化物移動係数を取得するための手続きを定義しており、添付文書Aを参照することができます。この試験手法は、時間とともに塩水溶液との相互作用を考慮しないため、特定の条件下でのコンクリートの耐久性の指標として非常に有用です。 この標準の強みは、コンクリートの塩化物侵入に対する抵抗性を評価するための有効な指標を提供する点にあります。コンクリート中の塩化物移動の評価は、コンクリート構造物の耐久性を判断する重要な要素であり、これにより設計や施工時の適切な材料選択が促進されます。 さらに、この標準は、シランなどの表面処理を施したコンクリート試料には適用されないことを明確に示しており、試験の結果に影響を与える可能性のある要因を考慮しながら、塩化物移動に関する実用的なデータを提供しています。また、導電性の骨材やその他の埋め込まれた要素が塩化物移動に与える影響を考慮することで、基準値の設定においても精度を確保しており、耐久性試験の信頼性を高めています。 全体的に、EN 12390-18:2021+A1:2024は、塩化物移動係数の測定を通じてコンクリートの耐久性に関連する重要なデータを提供し、建設業界において非常に重要な役割を果たしている標準です。
The standard EN 12390-18:2021+A1:2024 comprehensively addresses the testing of hardened concrete by specifying the procedure for determining the chloride migration coefficient. This critical aspect of concrete analysis helps in assessing the material’s durability, particularly its resistance to chloride penetration, which is vital for structures exposed to saline environments. One of the primary strengths of this standard is its clear definition of the testing procedure, providing a robust framework for obtaining the non-steady-state chloride migration coefficient of concrete specimens. The inclusion of Annex A enriches the document by detailing the specific age parameters relevant to the specimens being tested, thereby enhancing the reliability of comparative results across different concrete mixes. The document's focus on the durability aspect, specifically indicating that the test results serve as a durability indicator against chloride penetration, underscores the standard's relevance in construction and civil engineering sectors. It highlights the necessity of this test when evaluating the long-term integrity and longevity of concrete structures, which is especially crucial in environments with high exposure to chlorides. Moreover, the standard addresses potential variables that could affect test outcomes, such as the inclusion of electrically conductive aggregates or embedded elements. This attention to detail is paramount, as it ensures that accurate threshold values can be established. By accounting for these factors, EN 12390-18:2021+A1:2024 promotes consistent and reliable comparisons of chloride migration values, thereby providing further confidence in material selection and performance prediction. However, it is also noted that the test procedure does not apply to concrete specimens with surface treatments like silanes, which is a critical consideration for practitioners when selecting testing methods based on their specific project requirements. This exclusion ensures that results reflect the natural characteristics of the concrete without the influence of treatments that could alter chloride penetration behavior. In summary, EN 12390-18:2021+A1:2024 is a valuable and highly relevant standard for those involved in the testing and evaluation of hardened concrete. Its detailed methodology for determining the chloride migration coefficient, combined with its thorough considerations for variables impacting test results, make it a vital resource for ensuring the durability of concrete structures in challenging environments.
SIST EN 12390-18:2021+A1:2025 표준은 경화된 콘크리트의 염화물 이동 계수를 측정하는 절차를 명확하게 규정하고 있습니다. 이 문서의 주요 범위는 경화된 콘크리트 샘플의 비정상 상태 염화물 이동 계수를 특정 연령에서 측정하기 위한 방법론을 설명하는 것입니다. 염화물 침투에 대한 콘크리트의 내구성을 평가하는 지표로서의 시험 결과는 실질적으로 중요하며, 콘크리트의 내구성 향상과 관련된 신뢰성을 제공합니다. 이 표준의 강점 중 하나는 시험 절차가 시간에 따른 콘크리트와 염화 용액 간의 상호작용을 고려하지 않도록 설계되었다는 점입니다. 이는 테스트 결과가 일관되며, 특정 조건 하에서 신뢰할 수 있는 내구성 지표를 제공하는 데 기여합니다. 또한, 전기 전도성을 지닌 집합체나 기타 내장 요소가 염화물 이동에 미치는 영향을 사전에 인지하고, 이러한 요소가 시험 결과에 미치는 영향을 적절하게 반영하여 임계값을 설정한다는 점도 큰 장점입니다. 이는 서로 다른 콘크리트 간의 염화물 이동 값 비교에 대한 혼동을 방지하는 데 유리합니다. 또한, 표준은 실란과 같은 표면 처리된 콘크리트 샘플에는 적용되지 않는다는 점을 명확히 하여, 폭넓은 적용성을 갖추고 있으면서도 특정한 조건을 고려한 정밀한 시험 방법을 제공합니다. 이러한 명확한 기준은 건설 업계와 연구자들 간의 효율적인 커뮤니케이션을 촉진하고, 콘크리트의 신뢰성과 내구성을 높이는 데 기여합니다. 결론적으로, SIST EN 12390-18:2021+A1:2025 표준은 염화물 침투에 대한 콘크리트의 내구성 평가를 위한 매우 중요한 문서로, 실용적이고 신뢰할 수 있는 시험 절차를 제시합니다. 이 표준은 콘크리트를 사용한 다양한 응용 분야에서 중요한 역할을 할 것으로 기대됩니다.
Die Norm EN 12390-18:2021+A1:2024 widmet sich der Prüfung von erhärtetem Beton und legt dabei spezifische Verfahren zur Bestimmung des Chloridwanderkoeffizienten fest. Ein zentraler Aspekt dieses Dokuments ist die Ermittlung des nicht-stationären Chloridwanderkoeffizienten, der für Proben von erhärtetem Beton zu einem festgelegten Alter durchgeführt wird. Dieser Koeffizient ist von hoher Relevanz, da er als Indikator für die Dauerhaftigkeit und Beständigkeit des Betons gegenüber Chloridpenetration dient. Eine der besonderen Stärken dieser Norm ist die klare Festlegung des Prüfverfahrens, das im Anhang A detailliert beschrieben ist. Die Norm bietet eine strukturierte Herangehensweise, um die Auswirkungen von Chloriden auf die Materialintegrität zu bewerten, ohne dabei die Wechselwirkungen zwischen Beton und der salinen Lösung über den Zeitverlauf zu berücksichtigen. Diese Herangehensweise sorgt für konsistente und reproduzierbare Ergebnisse. Die Norm macht zudem wichtige Einschränkungen deutlich, indem sie anmerkt, dass sie nicht auf Betonsorten anwendbar ist, die mit Oberflächenbehandlungen wie Silanen versehen sind. Dies betrifft die Praxis von Bauprojekten, wo solche Behandlungen häufig eingesetzt werden, und unterstreicht die Notwendigkeit, bei der Durchführung von Tests auf die spezifischen Eigenschaften der Betonproben zu achten. Darüber hinaus wird das Augenmerk auf elektisch leitfähige Zuschlagstoffe oder andere eingebettete Elemente gelegt, da deren Verhalten den Chloridwanderkoeffizienten erheblich beeinflussen kann. Diese Überlegung ist entscheidend, um die Vergleichbarkeit der Chloridwanderwerte zwischen verschiedenen Betonen zu gewährleisten und zu verhindern, dass Unterschiede in der Größenordnung von bis zu einem halben Wertbereich die Testergebnisse verzerren. Insgesamt bietet die EN 12390-18:2021+A1:2024 eine umfassende und praxisrelevante Grundlage zur Bewertung der Chloridwanderkoeffizienten von erhärtetem Beton. Ihre klare Struktur und die Beachtung relevanter Einflussfaktoren machen sie zu einem unverzichtbaren Instrument für Fachleute im Bauwesen, die die Haltbarkeit und Widerstandsfähigkeit von Betonkonstruktionen gegenüber Chloridbelastungen beurteilen möchten.
Le document SIST EN 12390-18:2021+A1:2025 est une norme essentielle qui définit avec précision la méthode de détermination du coefficient de migration des chlorures dans le béton durci. Le champ d'application de cette norme se concentre sur l'obtention du coefficient de migration des chlorures dans un état non permanent, spécifiquement pour des échantillons de béton durci à un âge déterminé. Cette approche méthodologique permet de fournir des résultats fiables concernant la durabilité du béton face à la pénétration des chlorures, un facteur critique dans l'évaluation de la longévité des structures en béton. Parmi les points forts de cette norme, on trouve sa capacité à établir des indicateurs de durabilité qui peuvent guider les professionnels dans le choix des matériaux et des méthodes de construction. À travers des tests rigoureux, le coefficient de migration des chlorures permet d’évaluer comment le béton se comportera en conditions réelles, notamment dans des environnements exposés à des solutions salines. Cela est particulièrement pertinent pour les infrastructures où la résistance à la pénétration des chlorures peut avoir des implications significatives pour la durabilité et la sécurité structurelle. Cependant, il est important de noter que la procédure de test exclut les spécimens de béton traités en surface, tels que ceux à base de silanes, ce qui peut limiter son application dans certaines situations spécifiques. De plus, l'influence de la conductivité électrique des granulats ou des éléments incorporés, comme les fibres métalliques ou les particules conductrices, est également prise en compte. Cela garantit que les valeurs seuils établies reflètent fidèlement les caractéristiques du béton testé, évitant ainsi des comparaisons biaisées des valeurs de migration des chlorures entre différents types de béton. En somme, la norme SIST EN 12390-18:2021+A1:2025 constitue un outil crucial pour les professionnels du bâtiment et des infrastructures cherchant à garantir la résistance à la pénétration des chlorures, tout en offrant un cadre systématique pour l'évaluation de la durabilité du béton durci. Sa pertinence dans le domaine de la construction moderne ne peut être sous-estimée, elle répond aux besoins croissants de sérier les performances des matériaux et d'assurer la qualité à long terme des ouvrages en béton.








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...