Standard Specification for Welded Nickel and Nickel-Cobalt Alloy Tube

SCOPE
1.1 This specification covers welded tubes made from the nickel and nickel-cobalt alloys (UNS N10001, UNS N10242, UNS N10665, UNS N12160, UNS N10629, UNS N10624, UNS N10675, UNS N10276, UNS N06455, UNS N06007, UNS N06975, UNS N08320, UNS N06985, UNS N06002, UNS N06022, UNS N06030, UNS N06058, UNS N06059, UNS N06200, UNS N06210, UNS N08031, UNS R30556, UNS N06230, UNS N06686, and UNS R20033)* listed in Table 1 intended for heat exchanger and condenser tubes and tubes for general corrosive service for heat-resisting applications.
1.2 This specification covers tube 1/8 to 3½in. (3.2 to 88.9 mm) in outside diameter and 0.015 to 0.148 in. (0.41 to 3.7 mm) inclusive, in wall thickness.
1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

General Information

Status
Historical
Publication Date
09-May-2001
Current Stage
Ref Project

Relations

Buy Standard

Technical specification
ASTM B626-00 - Standard Specification for Welded Nickel and Nickel-Cobalt Alloy Tube
English language
4 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


NOTICE: This standard has either been superseded and replaced by a new version or discontinued.
Contact ASTM International (www.astm.org) for the latest information.
Designation: B 626 – 00 An American National Standard
Standard Specification for
Welded Nickel and Nickel-Cobalt Alloy Tube
This standard is issued under the fixed designation B 626; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (e) indicates an editorial change since the last revision or reapproval.
1. Scope Check Analysis Limits for Nickel, Nickel Alloys and
Cobalt Alloys
1.1 This specification covers welded tubes made from the
E 8 Test Methods for Tension Testing of Metallic Materials
nickel and nickel-cobalt alloys (UNS N10001, UNS N10242,
E 29 Practice for Using Significant Digits in Test Data to
UNS N10665, UNS N12160, UNS N10629, UNS N10624,
Determine Conformance with Specifications
UNS N10675, UNS N10276, UNS N06455, UNS N06007,
E 55 Practice for Sampling Wrought Nonferrous Metals and
UNS N06975, UNS N08320, UNS N06985, UNS N06002,
Alloys for Determination of Chemical Composition
UNS N06022, UNS N06030, UNS N06058, UNS N06059,
E 426 Practice for Electromagnetic (Eddy-Current) Exami-
UNS N06200, UNS N06210, UNS N08031, UNS R30556,
nation of Seamless and Welded Tubular Products, Austen-
UNS N06230, UNS N06686, and UNS R20033)* listed in
itic Stainless Steel and Similar Alloys
Table 1 intended for heat exchanger and condenser tubes and
E 1473 Test Methods for Chemical Analysis of Nickel,
tubes for general corrosive service for heat-resisting applica-
Cobalt, and High-Temperature Alloys
tions.
1 1
1.2 This specification covers tube ⁄8 to 3 ⁄2in. (3.2 to 88.9
3. Ordering Information
mm) in outside diameter and 0.015 to 0.148 in. (0.41 to 3.7
3.1 It is the responsibility of the purchaser to specify all
mm) inclusive, in wall thickness.
requirements that are necessary for the safe and satisfactory
1.3 Five classes of tube are covered as follows:
performance of material ordered under this specification.
1.3.1 Class IA—Welded, sized, solution annealed, and non-
Examples of such requirements include, but are not limited to
destructively tested in accordance with 10.5.1.
the following:
1.3.2 Class IB—Welded, sized, and solution annealed.
3.1.1 Alloy (Table 1),
1.3.3 Class IIA—Welded, cold worked, solution annealed,
3.1.2 Class (see 1.3),
and nondestructively tested in accordance with 10.5.1.
3.1.3 Quantity (feet or number of lengths),
1.3.4 Class IIB—Welded, cold worked, and solution an-
3.1.4 Size (outside diameter and average wall thickness),
nealed.
3.1.5 Length (cut or random),
1.3.5 Class III—Welded, cold worked, solution annealed,
3.1.6 Certification—State if certification or a report of test
and nondestructively tested in accordance with 10.5.2.
results is required (Section 15),
1.4 All tubes shall be furnished in the solution annealed and
3.1.7 Purchaser Inspection—State which tests or inspec-
descaled condition. When atmosphere control is used, descal-
tions are to be witnessed (Section 13),
ing is not necessary.
3.1.8 Ends—Plain ends cut and deburred will be furnished,
1.5 The values stated in inch-pound units are to be regarded
unless otherwise specified, and
as the standard. The values given in parentheses are for
3.1.9 Samples for Product (Check) Analysis—State whether
information only.
samples shall be furnished (see 9.2.2).
2. Referenced Documents
4. Materials and Manufacture
2.1 ASTM Standards:
4.1 The tubes shall be made from flat-rolled alloy by an
B 880 Specification for General Requirements for Chemical
automatic welding process with no addition of filler metal.
4.2 Subsequent to welding and prior to final heat treatment,
Class II and Class III tubes shall be cold worked either in both
This specification is under the jurisdiction of ASTM Committee B02 on
Nonferrous Metals and Alloys and is the direct responsibility of Subcommittee Annual Book of ASTM Standards, Vol 02.04.
B02.07 on Refined Nickel and Cobalt and Their Alloys. Annual Book of ASTM Standards, Vol 03.01.
Current edition approved May 10, 2000. Published June 2000. Originally Annual Book of ASTM Standards, Vol 14.02.
published as B 626 – 77. Last previous edition B 626 – 99a. Annual Book of ASTM Standards, Vol 03.05.
* New designations established in accordance with ASTM E 527 and SAE Annual Book of ASTM Standards, Vol 03.03.
J1086, Practice for Numbering Metals and Alloys (UNS). Annual Book of ASTM Standards, Vol 03.06.
Copyright © ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959, United States.
B 626
TABLE 1 Chemical Requirements
Composition Limits, %
Ni Cr Mo Fe W C Si Co Mn V P S Ti Cu Cb Al Zr La N B Cb Ta Ni+ Mg
max max max (Nb) (Nb) Mo
+Ta
Ni-Mo Alloys
A
N10001 remainder 1.0 26.0- 4.0-6.0 . 0.05 1.0 2.5 1.0 0.2- 0.04 0.03 . . .
max 30.0 max max max 0.4
A
N10665 remainder 1.0 26.0- 2.0 max . 0.02 0.10 1.0 1.0 . 0.04 0.03 . . .
max 30.0 max max max
N10675 65.0 min 1.0- 27.0- 1.0-3.0 3.0 0.01 0.10 3.0 3.0 0.20 0.030 0.010 0.20 0.20 . 0.50 0.10 . . . 0.20 0.20 94.0-
3.0 32.0 max max max max max max max max max max max 98.0
A
N10629 remainder 0.5- 26.0- 1.0-6.0 . 0.01 0.05 2.5 1.5 . 0.04 0.01 . 0.5 . 0.1- . . . . . . .
1.5 30.0 max max max max 0.5
A
N10624 remainder 6.0- 21.0- 5.0-8.0 . 0.01 0.10 1.0 1.0 . 0.025 0.01 . 0.5 . . . . . . . . .
10.0 25.0 max max max max
Ni-Mo-Cr-Fe
Alloy
A
N10242 remainder 7.0- 24.0- 2.0 max 0.03 0.80 1.00 0.80 0.030 0.015 0.50 0.50 0.006
9.0 26.0 max max max max max max
Low C Ni-
Mo-Cr Alloys
A
N10276 remainder 14.5- 15.0- 4.0-7.0 3.0- 0.010 0.08 2.5 1.0 0.35 0.04 0.03 . . .
16.5 17.0 4.5 max max max max
A
N06022 remainder 20.0- 12.5- 2.0-6.0 2.5- 0.015 0.08 2.5 0.5 0.35 0.02 0.02 . . .
22.5 14.5 3.5 max max max max
A
N06455 remainder 14.0- 14.0- 3.0 max . 0.015 0.08 2.0 1.0 . 0.04 0.03 0.70 . .
18.0 17.0 max max max max
Ni-Cr-Fe-
Mo-Cu
Alloys
A
N06007 remainder 21.0- 5.5- 18.0-21.0 1.0 0.05 1.0 2.5 1.0- . 0.04 0.03 . 1.5- 1.75-
23.5 7.5 max max max 2.0 2.5 2.5
A
N06975 47.0-52.0 23.0- 5.0- remainder . 0.03 1.0 . 1.0 . 0.03 0.03 0.70- 0.70- .
26.0 7.0 max max 1.50 1.20
A
N06985 remainder 21.0- 6.0- 18.0-21.0 1.5 0.015 1.0 5.0 1.0 . 0.04 0.03 . 1.5- 0.50
23.5 8.0 max max max max max 2.5 max
A
N06030 remainder 28.0- 4.0- 13.0-17.0 1.5- 0.03 0.8 5.0 1.5 . 0.04 0.02 . 1.0- 0.30-
31.5 6.0 4.0 max max max 2.4 1.50
Ni-Fe-Cr-Mo
Alloys
A
N08320 25.0-27.0 21.0- 4.0- remainder . 0.05 1.0 . 2.5 . 0.04 0.03 4xC . .
23.0 6.0 max max min
A
See 9
B 626
TABLE 1 Chemical Requirements (continued)
Composition Limits, %
Ni Cr Mo Fe W C Si Co Mn V P S Ti Cu Cb Al Zr La N B Cb Ta Ni+ Mg
max max max (Nb) (Nb) Mo
+Ta
Ni-Cr-Mo-Fe
Alloy
A
N06002 remainder 20.5- 8.0- 17.0-20.0 0.20- 0.05- 1.0 0.5- 1.0 . 0.04 0.03 . . .
23.0 10.0 1.0 0.15 2.5 max
Ni-Fe-Cr-Co
Alloy
A
R30556 19.0-22.5 21.0- 2.5- remainder 2.0- 0.05- 0.20- 16.0- 0.50- . 0.04 0.015 . . . 0.10- 0.001- 0.005- 0.10- 0.02 0.30 0.3-
23.0 4.0 3.5 0.15 0.80 21.0 2.00 0.50 0.10 0.10 0.30 max max 1.25
Ni-Cr-W-Mo
Alloy
A
N06230 remainder 20.0- 1.0- 3.0 max 13.0- 0.05- 0.25- 5.0 0.30- . 0.03 0.015 . . . 0.20- . 0.005- . 0.015 . .
24.0 3.0 15.0 0.15 0.75 max 1.00 0.50 0.050 max
Low C-Ni-
Cr-Mo Alloy
N06058 balance 20.0- 19.0- 1.5 max 0.3 0.010 0.10 0.3 0.50 0.015 0.010 . 0.50 . 0.40 0.02-
23.0 21.0 max max max max max max max 0.15
N06059 balance 22.0- 15.0- 1.5 max . 0.010 0.010 0.3 0.5 . 0.015 0.010 . 0.50 . 0.1- . . . . . . .
24.0 16.5 max max max max 0.4
Low C-Ni-
Cr-Mo-Cu
Alloy
A
N06200 remainder 22.0- 15.0- 3.0 max . 0.010 0.08 2.0 0.50 . 0.025 0.010 . 1.3- . 0.50
24.0 17.0 max max max 1.9 max
Low C-Ni-
Fe-Cr-
Mo-Cu Alloy
N08031 30.0-32.0 26.0- 6.0- balance . 0.015 0.3 . 2.0 . 0.020 0.010 . 1.0- . . . . 0.15- . . .
28.0 7.0 max max 1.4 0.25
Low C-Ni-
Cr-Mo-W
Alloy
A
N06686 remainder 19.0- 15.0- 5.0 max 3.0- 0.010 0.08 . 0.75 . 0.04 0.02 0.02- . . . . . . . . .
23.0 17.0 4.4 max max 0.25
Ni-Co-Cr-Si
Alloy
A
N12160 remainder 26.0- 1.0 3.5 max 1.0 0.15 2.4- 27.0- 1.5 . 0.030 0.015 0.20- . . . . . . . 1.0 . . .
30.0 max max max 3.0 33.0 max 0.80 max
Cr-Ni-Fe-N
Alloy
R20033 30.0-33.0 31.0- 0.50- balance . 0.015 0.050 . 2.0 . 0.02 0.01 . 0.3- . . . . 0.35- . . . . .
35.0 2.0 max max 1.20 0.60
Low C-Ni-
Mo-Cr-Ta
Alloy
A
N06210 remainder 18.0- 18.0- 1.0 max . 0.015 0.08 1.0 0.5 0.35 0.02 0.02 . . . . . . . 1.5-
20.0 20.0 max max max 2.2
A
See 9
B 626
weld and base metal or in weld metal only. The method and temperature until the distance between the platens is five times
amount of cold working may be specified by the purchaser. the wall thickness of the tube. The weld shall be positioned 90°
When cold drawn, the purchaser may specify the minimum
from the direction of the applied force.
amount of reduction in cross-sectional area or wall thickness,
6.2.1 Superficial ruptures resulting from surface imperfec-
or both.
tions shall not be cause for rejection.
6.3 Flange Test—A section of tube shall be capable of
5. Chemical Composition
having a flange turned over at a right angle to the body of the
5.1 The material shall conform to the composition limits
tube without cracking or showing flaws. The width of the
specified in Table 1.
flange shall be not less than 15 % of the tube diameter.
5.2 If a product (check) analysis is made by the purchaser,
6.3.1 Superficial ruptures resulting from surface imperfec-
the material shall conform to the requirements specified in
tions shall not be cause for rejection.
Table 1 subject to the permissible tolerance in B 880.
6.4 Hydrostatic Test—When tested by the manufacturer, the
tube shall be subjected to internal hydrostatic pressure deter-
6. Mechanical Properties and Other Requirements
mined by the following equation, but the pressure shall not
6.1 Tensile Test—The material shall conform to the tensile
exceed 1000 psi (6.89 MPa):
properties prescribed in Table 2.
6.2 Flattening Test—A section of tube not less than 4 in. P 5 2St/D (1)
(102 mm) in length shall be capable of withstanding, without
where:
cracking, flattening under a load applied gradually at room
P = hydrostatic test pressure, psi (MPa),
S = allowable fiber stress for material as follows:
TABLE 2 Mechanical Properties
S
Elongation Alloy psi MPa
Yield Strength in 2 in. Nickel-molybdenum:
Tensile Strength,
Alloy (0.2 Offset) min, (50.8 mm)
UNS N10001 25 000 172
min, ksi (MPa)
A
ksi (MPa) or 4D , UNS N10665 27 500 190
min, %
UNS N10675 27 500 190
UNS N10629 27 500 190
Ni-Mo
UNS N10624 26 000 180
UNS N10001 100 (690) 45 (310) 40
Nickel-molybdenum-chromium-iron:
UNS N10665 110 (760) 51 (350) 40
UNS N10242 26 500 182
UNS N10675 110 (760) 51 (350) 40
Low carbon nickel-molybdenum-chromium:
UNS N10629 110 (760) 51 (350) 40
UNS N10276 25 000 172
UNS N10624 104 (720) 46 (320) 40
UNS N06022 25 000 172
Ni-Mo-Cr-Fe
UNS N06455 25 000 172
UNS N10242 105 (725) 45 (310) 40
Low C Ni-Mo-Cr
Nickel-chromium-iron-molybdenum-copper:
UNS N10276 100 (690) 41 (283) 40
UNS N06007 22 000 152
UNS N06022 100 (690) 45 (310) 45
UNS N06975 21 000 145
UNS N06455 100 (690) 40 (276) 40
UNS N06985 22 500 155
Ni-Cr-Fe-Mo-Cu
UNS N06030 21 000 145
UNS N06007 90 (621) 35 (241) 35
Nickel-iron-chromium-molybdenum:
UNS N06975 85 (586) 32 (221) 40
UNS N08320 18 500 127
UNS N06985 90 (621) 35 (241) 45
Nickel-chromium-molybdenum-iron:
UNS N06030 85 (586) 35 (241) 30
UNS N06002 23 000 159
Ni-Fe-Cr-Mo
Nickel-iron-chromium-cobalt:
UNS N08320 75 (517) 28 (193) 35
UNS R30556 25 000 172
Ni-Cr-Mo-Fe
Nickel-chromium-tungsten-molybdenum:
UNS N06002 100 (690) 40 (276) 35
UNS N06230 27 500 190
Ni-Fe-Cr-Co
Low carbon nickel-chromium-molybdenum:
UNS R30556 100 (690) 45 (310) 40
UNS N06058 27 500 190
Ni-Cr-W-Mo
UNS N06059 25 000 172
B
UNS N06230 110 (760) 45 (310) 40
Low carbon-nickel-chromium-molybdenum-copper:
Low C-Ni-Cr-Mo
UNS N06200 25 000 172
UNS N06058 110 (760) 52 (360) 40
Nickel-iron-chromium-molybdenum-copper low carbon:
UNS N06059 100 (690) 45 (310) 45
UNS N08031 22 500 155
Low C-Ni-Cr-Mo-Cu
Low carbon nickel-chromium-molybdenum-tungsten:
UNS N06200 100 (690) 41 ()283 45
UNS N06686 25 000 172
low-carbon Ni-Fe-Cr-
Nickel-cobalt-chromium-silicon:
Mo-Cu
UNS N12160 22 500 155
UNS N08031 94 (650) 40 (276) 40
Low carbon chromium-nickel-iron-nitrogen:
Low C-Ni-Cr-Mo-W
UNS R20033 27 000 186
UNS N06686 100 (690) 45 (310) 45
Low carbon nickel-molybdenum-chromium-tantalum:
Ni-Co-Cr-Si
UNS N06210 25 000 172
UNS N12160 90 (620) 35 (240) 40
low Carbon Cr-Ni-Fe-N
UNS R20033 109 (750) 55 (380) 40
t = minimum wall thickness, in. (mm), equal to the speci-
Low-C Ni-Mo-Cr-Ta
UNS N06210 100 (690) 45 (310) 45
fied average wall minus the permissible “minus” wall
A
D refers to the diameter of the tension specimen.
tolerance, Table 2, or the specified minimum wall
B
Solution annealed at a minimum temperature of 2200° F (1204° C) followed by
thickness, and
a water quench or rapidly cooled by other means.
B 626
6.6.2.2 Test signals produced by imperfections such as
D = outside diameter of the tube, in. (mm).
dinges, straightener marks, loose ID bead and cutting chips,
6.4.1 Any tube showing leaks during the hydrostatic test
scratches, steel die stamps, chattered flash trim, stop marks, or
shall be rejected.
tube reducer ripple, may be judged as injurious or noninjurious
6.5 Pneumatic Test—When tested by the manufacturer, the
depending on visual observation of their severity or the type of
tube shall be subjected to an internal air pressure of 75 psi
signal they produce on the testing equipment used, or both.
(0.52 MPa), minimum, for 5 s without showing evidence of
6.6.2.3 Any imperfection of the above type exceeding 0.004
leakage. The test method used shall permit easy visual detec-
in. (0.102 mm) or 12 ⁄2 % of the specified wall thickness,
tion of any leakage, such as by having the tube under water or
(whichever is greater) in depth shall be considered injurious. If
by the pressure differential method. Any evidence of leakage
the imperfection is judged as injurious, the tubes shall be
shall be cause for rejection.
rejected but may be reconditioned and retested providing the
6.6 Eddy Current Test—When tested by the manufacturer,
dimensional requirements are met. To be accepted, retested
the tube shall be subjected to an electromagnetic (eddy current)
tubes shall meet the test requirement. If the imperfection is
test in accordance with the applicable requirements of Practice
explore
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.