Ships and marine technology — Pressure-vacuum valves for cargo tanks and devices to prevent the passage of flame into cargo tanks

This document is applicable to pressure-vacuum valves and to devices to prevent the passage of flame, both protecting cargo tanks, that can be subject to explosive gas/vapour and/or to gas/vapour pressure or vacuum beyond the design parameters of the system/tank. It specifies the minimum requirements for performance and testing. It also specifies design and in-service performance criteria, operational testing and maintenance requirements. Design or manufacturing in accordance with this document does not imply suitability for any given installation, it indicates that certain minimum requirements have been considered and that information necessary for determination of suitability is provided to the buyer of the equipment. The flame test procedures of ISO 16852:2016 are incorporated in this document. NOTE Minimum requirements for devices to prevent the passage of flame are found in the International Maritime Organization (IMO) "International Convention for the Safety of Life at Sea, as amended" (SOLAS), Chapter II-2, Regulation 4, and IMO Maritime Safety Committee (MSC) Circular No. 677 (MSC/Circ. 677), "Revised Standards for the Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in Tankers", as amended.

Navires et technologie maritime — Soupapes de pression/dépression pour citernes à cargaison et dispositifs pour empêcher le passage des flammes vers les citernes à cargaison

Le présent document s'applique aux soupapes de pression/dépression et aux dispositifs empêchant le passage des flammes, qui assurent tous deux la protection des citernes à cargaison et qui peuvent être soumis à des gaz/vapeurs explosifs et/ou à une pression ou dépression de gaz/vapeur allant au-delà des paramètres de calcul du système/de la citerne. Il spécifie les exigences minimales en matière de performance et d'essais. Il spécifie également les critères de conception et de performance en service, les essais de fonctionnement et les exigences de maintenance. La conception ou la fabrication conformément au présent document n'implique pas l'adéquation à une installation donnée, mais indique qu'un certain nombre d'exigences minimales ont été prises en compte et que les informations nécessaires à l'adéquation d'une installation donnée sont fournies à l'acheteur de l'équipement. Le présent document fait référence aux modes opératoires d'essai d'explosion décrits dans l'ISO 16852:2016. NOTE Les exigences minimales relatives aux dispositifs empêchant le passage des flammes sont fournies dans la « Convention internationale pour la sauvegarde de la vie humaine en mer (SOLAS) », telle qu'amendée, de l'Organisation maritime internationale (OMI), Chapitre II-2, Règle 4, et dans la Circulaire n° 677 du Comité de sécurité maritime (MSC) de l'OMI (MSC/Circ. 677), « Normes révisées relatives à la conception, à la mise à l'essai et à l'emplacement des dispositifs empêchant le passage des flammes vers les citernes à cargaison à bord des navires-citernes », telle qu'amendée.

General Information

Status
Published
Publication Date
11-Feb-2021
Current Stage
6060 - International Standard published
Start Date
12-Feb-2021
Due Date
03-Jan-2021
Completion Date
12-Feb-2021
Ref Project

Relations

Standard
ISO 15364:2021 - Ships and marine technology — Pressure-vacuum valves for cargo tanks and devices to prevent the passage of flame into cargo tanks Released:2/12/2021
English language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 15364:2021 - Navires et technologie maritime — Soupapes de pression/dépression pour citernes à cargaison et dispositifs pour empêcher le passage des flammes vers les citernes à cargaison Released:2/12/2021
French language
36 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 15364
Fourth edition
2021-02
Ships and marine technology —
Pressure-vacuum valves for cargo
tanks and devices to prevent the
passage of flame into cargo tanks
Navires et technologie maritime — Soupapes de pression/dépression
pour citernes à cargaison et dispositifs pour empêcher le passage des
flammes vers les citernes à cargaison
Reference number
©
ISO 2021
© ISO 2021
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2021 – All rights reserved

Contents Page
Foreword .iv
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Symbols and abbreviated terms . 3
5 Materials . 4
6 Other requirements . 4
7 Type tests . 6
8 Flow and velocity tests . 7
8.1 Determination of capacity . 7
8.2 Capacity data . 7
8.3 Test apparatus . 8
8.4 Flow measurements . 8
9 Undamped oscillation tests . 9
10 Production control and inspections .10
11 Documentation .10
11.1 General .10
11.2 Installation instructions .12
12 Marking .13
13 Quality assurance .13
Annex A (informative) Installation requirements for ships subject to the
International Convention for the Safety of Life at Sea, as amended (SOLAS) .14
Annex B (normative) Flow test measurements .15
Annex C (normative) Devices to prevent the passage of flame .17
Annex D (informative) Materials selection guidelines .19
Annex E (informative) Corrosion protection guidelines .20
Annex F (informative) Specification information .23
Annex G (informative) Flow graph examples .24
Annex H (informative) Relevant issues for reduction of volatile organic compound (VOC)
losses during cargo handling .28
Annex I (informative) Sizing guidelines .30
Annex J (normative) Limits on valve leakage .31
Annex K (informative) Sizing, location and installation of devices .32
Bibliography .33
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the WTO
principles in the Technical Barriers to Trade (TBT), see www .iso .org/ iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 8, Ships and marine technology,
Subcommittee SC 3, Piping and machinery.
This fourth edition cancels and replaces the third edition (ISO 15364:2016), which has been technically
revised.
The main changes compared to the previous edition are as follows:
— expansion of the Scope to include devices to prevent the passage of flame into cargo tanks;
— inclusion of requirements for flame transmission tests.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2021 – All rights reserved

INTERNATIONAL STANDARD ISO 15364:2021(E)
Ships and marine technology — Pressure-vacuum valves
for cargo tanks and devices to prevent the passage of flame
into cargo tanks
1 Scope
This document is applicable to pressure-vacuum valves and to devices to prevent the passage of flame,
both protecting cargo tanks, that can be subject to explosive gas/vapour and/or to gas/vapour pressure
or vacuum beyond the design parameters of the system/tank. It specifies the minimum requirements
for performance and testing. It also specifies design and in-service performance criteria, operational
testing and maintenance requirements. Design or manufacturing in accordance with this document
does not imply suitability for any given installation, it indicates that certain minimum requirements
have been considered and that information necessary for determination of suitability is provided to the
buyer of the equipment.
The flame test procedures of ISO 16852:2016 are incorporated in this document.
NOTE Minimum requirements for devices to prevent the passage of flame are found in the International
Maritime Organization (IMO) “International Convention for the Safety of Life at Sea, as amended” (SOLAS),
Chapter II-2, Regulation 4, and IMO Maritime Safety Committee (MSC) Circular No. 677 (MSC/Circ. 677), “Revised
Standards for the Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks in
Tankers”, as amended.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 16852:2016, Flame arresters — Performance requirements, test methods and limits for use
International Maritime Organization Maritime Safety Committee circular 677 (MSC/Circ. 677), Revised
Standards for the Design, Testing and Locating of Devices to Prevent the Passage of Flame into Cargo Tanks
in Tankers, as amended by IMO MSC/Circ. 1009 and MSC/Circ. 1324
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
flame arrester
device fitted to the opening of an enclosure, or to the connecting pipe work of a system of enclosures,
and whose intended function is to allow flow but to prevent the transmission of flame
3.2
dual nozzle valve
pressure relief valve that features two high velocity vents with different opening settings integrated
into one valve, the flow characteristics of which can be of one or more of the designs full opening valve
(3.3), modulating valve (3.7) or transition point valve (3.11)
3.3
full opening valve
design that opens fully at maximum 2 % above the set pressure
3.4
high velocity vent valve
pressure relief valve designed always to have efflux velocities that prevent the flame propagation
against the flow direction
3.5
maximum experimental safe gap
MESG
maximum gap of a joint of 25 mm in width which prevents any transmission of an explosion during tests
Note 1 to entry: ISO/IEC 80079-20-1 specifies the test apparatus and the test method.
3.6
maximum intended pressure drop
largest pressure drop generated over a device for which the test laboratory verifies the corresponding
flow capacity
3.7
modulating valve
design that opens proportionally with rise in pressure
3.8
pressure-vacuum valve
device to relieve the pressure or vacuum formed inside the cargo tanks by opening the valves at the
designated setting value to protect the tank from over-pressure or vacuum exceeding the design
parameters of the tanks
3.9
standard conditions
dry air at 288,15 K (15,00 °C; 59,00 °F) and 101,325 kPa
3.10
third party inspection body
organization independent from the manufacturer and user, that is qualified to perform or witness the
tests and inspections
3.11
transition point valve
design where the valve characteristics change from modulating to full opening at a particular pressure
3.12
verified drawing
drawing certified to be authentic and complete by the third party inspection body (3.10) issuing the
test report
3.13
verified flow chart
pressure versus flow volume presented in a chart certified by the third party inspection body (3.10)
issuing the test report
2 © ISO 2021 – All rights reserved

4 Symbols and abbreviated terms
D pipe inner diameter at device connection
D minimum inner diameter of the piping between the device and the tank allowed for non-os-
min
cillating performance
L maximum length of the piping between the device and the tank allowed for non-oscillating
max
performance
L pipe length between the test tank and the device for flow testing
L pipe length between the test tank and the device during non-oscillation testing
P value of inlet pressure at which the valve disk re-establishes contact with the seat or at which
closing
lift becomes zero, when the valve is closing and pressure is decreasing
P value of inlet pressure at which the valve disk re-establishes contact with the seat or at which
closing1
lift becomes zero, when the main valve is closing and pressure is decreasing
P value of inlet pressure at which the valve disk re-establishes contact with the seat or at which
closing2
lift becomes zero, when the extra valve is closing and pressure is decreasing
P maximum pressure corresponding to the maximum flow volume (Q )
max 3
P gauge pressure at the device inlet at which the valve is designed to start opening
set
P gauge pressure at the device inlet at which the main valve is designed to start opening
set1
P gauge pressure at the device inlet at which the extra valve is designed to start opening
set2
P pressure at which a transition point valve changes from modulating to full opening
1-tpv
Q flow volume needed to open a full opening valve
1-fov
Q flow volume needed to open the second nozzle
Q flow volume needed for a valve to remain fully open
Q flow volume needed to maintain a full opening valve fully open at P
2-fov set
Q flow volume needed to open a modulating valve
1-mv
Q flow volume needed to maintain a modulating valve fully open
2-mv
Q flow volume at which a transition point valve changes from modulating to full opening
1-tpv
Q flow volume needed to maintain a transition point valve fully open at P
2-tpv 1-tpv
Q flow volume corresponding to the maximum intended pressure drop over the device
Q minimum flow required to keep the valve partially open with no contact between the disc
close
and the seat
Q flow volume needed to maintain the main and extra valves fully open at P
2 total set1
Q flow volume corresponding to the maximum intended pressure drop over the dual nozzle valve
3 total
V minimum volume of the tank allowed for non-oscillating performance
min
5 Materials
5.1 The device housing, and other parts or bolting used for pressure retention, shall be constructed of
materials suitable for the intended service and listed in a recognized national standard or International
Standard. Housings, discs, spindles, seats, springs, gaskets, seals, flame arresters (when included in the
design) and all other integral parts, including parts with coatings to prevent corrosion, shall be resistant
to attack by sea water and the liquids and vapours contained in the tank being protected (see Annex D for
guidance on the material selection). Springs plated with corrosion resistant material are not acceptable.
5.2 Non-metallic materials, other than gaskets, seals and diaphragms as allowed by 6.11, shall not be
used in the construction of pressure retaining components of the device. Resilient seals may be installed
only if the device is still capable of effectively performing its flame arresting function when the seals
are worn down, partially or completely damaged or burned. Non-metallic gaskets shall be made of non-
combustible material and suitable for the service intended.
5.3 The possibility of galvanic corrosion shall be considered in the selection of materials (see Annex E
for additional considerations on corrosion protection).
5.4 The verified drawings shall include a complete bill of materials showing conformity with this
subclause and any other material requirements listed in Clause 6.
6 Other requirements
6.1 The maximum gas leakage rate shall be provided and expressed as the volume in standard
conditions that can leak from the valve at 75 % of the nominal setting as determined by the manufacturer.
Maximum leakage rates are given in Annex J.
6.2 Housings, elements, and seal gasket materials shall be capable of withstanding the maximum and
minimum pressures and temperatures to which the device may be exposed under normal operating
conditions. Flat surfaces of flanges shall be machined to provide for adequate joint integrity.
6.3 Where welded construction is used for pressure retaining components, welded joint design details,
welding and non-destructive testing shall be in accordance with national standards or International
Standards. Welding procedures should be in accordance with the ISO 15607 series. Welders should be
qualified according to the ISO 9606 series. Non-destructive testing should comply with ISO 5817.
Alternative equivalent national standards or International Standards may be used.
6.4 Pressure-vacuum valves shall be designed, such that condensed vapour and water in the pressure-
retaining zone drain from the device into the tank and do not impair the efficiency of the device. The
design shall also prevent the accumulation of water inside the device and subsequent blockage due to
freezing. The design shall prevent pockets of water or product from accumulating.
6.5 All fasteners essential to the operation of the device shall be protected against loosening.
6.6 Devices shall be designed and constructed to minimize the effect of fouling under normal operating
conditions.
6.7 Devices shall be capable of operating over the full range of ambient air temperatures anticipated
and in freezing conditions, provided that the check-lift is operated to break the ice layer. If a heating
4 © ISO 2021 – All rights reserved

arrangement is applied, the surface temperature developed may not exceed the maximum design
temperature.
Where a valve is intended to be fitted in a ship that will be operated in climate conditions that might
hamper its operation, e.g. seawater icing, the instruction manual shall contain appropriate information
to ensure continued operation.
6.8 End-of-line devices are required to direct the efflux vertically upward. Further, for high velocity
vent valves, the minimum average velocity of efflux through a cross section of the valve’s outlet to
atmosphere shall not be less than 30 m/s for all flow rates.
6.9 A manual means (e.g. check-lift) shall be provided to verify that any valve disc and other moving
elements lift freely and fully and do not remain in the open position. The manual means shall be part
of the valve assembly and be operated without the need to add or remove parts. The design shall be
such that the device is verified not to be inoperable due to corrosion, residue build-up or icing, when the
aforementioned manual means is used in combination with the manufacturer’s requirements for visual
inspection.
6.10 Valve discs and other moving parts shall be guided by a suitable means to prevent binding and to
ensure proper self-closing (seating), taking into account the possible build-up of condensed vapours.
NOTE Maintenance in accordance with the manufacturer’s requirements is normally necessary to ensure
proper valve operation.
Valve discs and other moving parts shall close against the valve seat by metal to metal contact. Where
the valve closes against a metal seat and a resilient seal is added to reduce gas leakage, the valve’s
performance in terms of flow shall not be affected if the seal is destroyed, damaged or is otherwise
carried away.
Valve discs may be solid or made hollow so that weight material can be added to vary the lifting pressure.
If hollow discs are employed, a watertight bolted cover shall be fitted to encase the weight material. A
clear indication, visible from the outside of the valve, shall be employed to indicate the position of the
valve disc(s). The indicator shall be visible from below and from the side of the valve at deck level.
6.11 Valves may be actuated by non-metallic diaphragms except where failure would result in
unrestricted flow of tank vapours to the atmosphere or in an increase in the pressure or vacuum at which
the valve normally releases.
6.12 Relief pressure adjusting mechanisms shall be permanently secured by lockwire, locknuts, or other
suitable means to prevent devices from becoming misadjusted due to handling, installation, or vibration.
6.13 The design shall be such that the device can be examined for any build-up of residue due to vapour
condensation. For certain cargoes that solidify, heating arrangements may be necessary.
6.14 Devices shall not be bypassed or blocked open unless they are tested in the bypassed or blocked
open position in accordance with Annex C.
6.15 Flame arrester elements shall fit in the housing in such a way that flame cannot pass between the
element and the housing.
6.16 Resilient seals shall be installed only if their design is such that if the seals are partially or
completely damaged or burned, the device is still capable of effectively preventing the passage of flame.
6.17 Devices shall allow for efficient drainage of moisture without impairing their efficiency to prevent
the passage of flame.
6.18 The casing and element and gasket materials shall be capable of withstanding the highest
pressure and temperature to which the device may be exposed under both normal and specified fire test
conditions.
6.19 Detonation arresters shall be able to withstand, without damage or permanent deformation, the
internal pressure resulting from detonation when tested in accordance with Annex C.
6.20 Flame arresting elements shall be:
1) designed in such a manner that they cannot be inserted improperly in the opening;
2) securely fitted in openings so that flames cannot circumvent the screen;
3) protected against mechanical damage.
6.21 Means to offset the opening of a pressure or vacuum valve beyond the set pressure shall be
designed in a failsafe manner and shall not prevent any required inspection procedures to be carried out.
The offset opening pressure shall be verified and clearly marked.
7 Type tests
7.1 Type tests shall be conducted by a laboratory acceptable to a third party inspection body. The
laboratory shall be qualified to conduct the tests provided for by this document and shall have (or shall
have access to) the apparatus, facilities, personnel and calibrated instruments necessary for the tests.
Alternatively, the tests provided for by this document may be conducted by the manufacturer when
the tests are witnessed by a third party inspection body who can certify that the tests are conducted in
accordance with this document.
Note For certain tankers, the Laboratory must be acceptable to the Administration under whose authority
the ship operates and/or a valve is intended to be fitted.
7.2 One of each model device and each size shall be tested in accordance with Clauses 7, 8 and 9. A
change of material or coating system that negatively affects the corrosion resistance shall be considered a
change of model for the purpose of this paragraph. A change of design or construction shall be considered
a change of model for the purpose of this paragraph. Each size of each model shall be submitted for type
testing. For end-of-line deflagration flame arresters of the same design series, testing may be limited
to the smallest and the largest sizes. Devices should have the same dimensions and most unfavourable
clearances expected in the production model. If a device is modified during the test programme, or at a
later date, such that the functions of the valve or its performance characteristics are affected, the third
party inspection body shall be informed. An appropriate test related to the modified part may be required
by the third party inspection body.
Devices shall be tested in accordance with 7.2.1 and 7.2.2 and thereafter shown to meet the test
requirements of Annex C, as appropriate.
7.2.1 A corrosion test shall be conducted. In this test, a complete device shall be exposed to a 5 %
sodium chloride solution spray at a temperature of 25 °C (77 °F) for a period of 240 h, and allowed to
dry for 48 h. Following this exposure, all movable parts shall operate properly and there shall be no
corrosion deposits that cannot be washed off.
7.2.2 The pressure retaining boundary of the device shall be subjected to a hydrostatic pressure test
1)
of at least 150 % of maximum rated pressure or a minimum pressure of 345 kPa gauge (50 psig ),
whichever is greater, for 10 min without rupturing, leaking, or showing permanent distortion. For the
purposes of this test, the disc may be gagged or blocked.
1) 1 psig = 1 lbf/in gauge.
6 © ISO 2021 – All rights reserved

7.2.3 Performance characteristics as declared by the manufacturer, such as flow rates under both
positive and negative pressure, operating sensitivity, working stability for dual nozzle valve, leakage,
flow resistance and velocity, shall be verified by laboratory tests.
7.2.4 An external ice test shall be conducted for pressure-vacuum valves to verify the allowable
accumulation of an external layer of ice at which the valve check-lift will still operate. In this test, a
complete device shall be exposed to a temperature of -10 °C (14 °F) for a period of 24 h. Following this
initial exposure, 1 l (1,7 pints) of water at no more than 2 °C (35,6 °F) shall be sprayed every 10 min
on to the outside of the valve until the specified ice thickness is achieved. After achieving the specified
thickness, proper operation of the valve check-lift shall be verified. The maximum ice thickness at which
the valve check-lift will operate properly shall be noted in the instruction manual (see Clause 11).
7.2.5 Devices to prevent the passage of flame shall also be tested for flame transmission according to
ISO 16852:2016 (see Annex C).
7.3 A test report with documentation for each prototype test shall be prepared by the laboratory.
Further to the requirements given in ISO/IEC 17025:2017, 7.8, the test report shall as a minimum,
include:
— types of test conducted, and results obtained with such recorded data to allow verification of the
tests. Where detonation arresters are tested, this information shall include the maximum pressures
and velocities observed in the test;
— assessment of the mechanical design requirements in accordance with Clause 5 and 6;
— drawings of the test rig, including a description of the inlet and outlet piping attachments;
— an instruction manual;
— detailed drawings of the device;
— specific advice on approved attachments;
— types of cargo for which the device is approved;
— in the case of high velocity vents, the pressures at which the device opens and closes and the efflux
velocity;
— all the information marked on the device in accordance with Clause 12.
8 Flow and velocity tests
8.1 Determination of capacity
The capacity of the device shall be established by flow testing of at least one production model of every
type and size of venting device, under the conditions specified in 8.2 to 8.4.
Where a pressure or vacuum valve is used with a flame arrester, the capacity of the overall assembly is
different than the capacity of a standalone valve. The capacity test shall be conducted on the combined
assembly.
Capacity measurements for flame arresters in accordance with ISO 16852 is also acceptable.
8.2 Capacity data
The following requirements shall be met when establishing capacity data:
a) the pipes, as well as the connections between the pipes and the device, shall be without obstructions
causing additional turbulence;
b) the inner diameter of the test pipe shall be of the same or larger diameter than the connection
flange of the device being tested;
c) all pressure measuring points shall be arranged normal to the pipe axis and shall not influence
the flow;
d) the test medium shall be air at ambient conditions; ambient pressure and temperature shall be
recorded to convert flow rate to standard conditions;
e) all measuring instruments shall be calibrated.
8.3 Test apparatus
The test apparatus is shown in Figure 1. The dimensions of the tank (key 3) shall be sufficient to allow a
mean flow velocity of less than 0,5 m/s in the tank. All tank pressure data shall be recorded under these
conditions.
The test pipe L shall have a length of no more than 5D and a length no less than 1,5D of the test specimen.
The tank penetration should be at a location of the tank where it is essentially flat and the rounding of
the penetration shall be in accordance with a recognized national standard or International Standard
to provide uniform pressure drop influence.
Vacuum valves shall have the flow direction reversed.
CAUTION — It should be observed that the blower or fan may cause oscillation in the system if
the fan wings are not aligned or damaged. This should be avoided.
8.4 Flow measurements
8.4.1 Flow measurements for pressure-vacuum valves shall be made using the lowest and highest
setting for the specific model. Flow charts for in-between settings may be interpolated.
NOTE If the setting can be changed without making any changes to the form and shape of the valve housing
and the physical appearance of any component (e.g. by changing the magnet power, spring compression, etc.),
this does not constitute a change of model. The spring wire diameter needs not be taken into consideration.
8.4.2 The pressure at which the valve opens shall be established using a flow rate resulting in a pressure
rise no greater than 0,01 N/mm /min (10 kPa/min or 0,2953 in Hg). The set-pressure is designated as
P and shall be within ±3 % of the calculated set-pressure expressed as the correlation between the
set
closing force and the area of the disc against which tank pressure is projected.
Note For certain tankers, there can be a specified minimum opening pressure that does not allow for
negative tolerances in operation.
8.4.3 Depending on the device type, the flow measurement shall consist of the steps described in
Annex B. See Annex G for corresponding examples of flow diagrams. For high velocity vents, during each
of the measuring periods in accordance with Annex B, the average velocity of air through a cross section
of the valve’s outlet to atmosphere shall be recorded.
NOTE Manufacturers can choose to provide information regarding the dispersion of the discharged gas.
8.4.4 Flow graphs shall be drawn showing the readings from the steps specified in Annex B. Annex G
provides examples of appropriate formats of flow graphs.
8 © ISO 2021 – All rights reserved

8.4.5 Flow testing shall be conducted adhering to the test rig provided in Figure 1. All instrumentation
shall be calibrated and have an uncertainty of no more than ±5 %.
Key
1 blower or fan
2 flow meter
3 tank
4 pressure measurement
5 pressure-vacuum valve
length of connection pipe
L
NOTE Blower or fan flow is reversible depending on pressure or vacuum test.
Figure 1 — Flow test rig
9 Undamped oscillation tests
High velocity vents, including dual nozzle valves, shall be tested for undamped oscillations. The test
apparatus is shown in Figure 2. All instrumentation shall be calibrated.
This test shall be carried out with the lowest and the highest opening setting available for the particular
model, without a change of setting constituting a modification as mentioned in the note in 8.4.1. If the
highest opening setting does not exceed 130 % of the lowest opening setting, the highest setting needs
not be tested.
If a closing pressure value is established to be satisfactory, valves of the same model with higher set
pressure but the same closing pressure needs not be tested.
The length and inner diameter of the pipe and the volume of the tank shall be requested by the
manufacturer.
The tests shall be carried out for 3 min each at 10 about-equally spaced flow rates starting at 0,2Q
close
and using this rate as the step width (maximum flow in this test: 2Q ).
close
Some valve designs perform open/close cycles that cause periodic changes on the flowmeter reading
(Figure 2). In these cases, the average flow recorded in the 3 min span shall reflect the step-value in
question.
If the disc location sensor indicates contact with either seat or upper stops with a frequency of more
than 0,5 Hz, the pipe length, L , shall be shortened until this value is not exceeded. That length shall be
recorded as L and the diameter of the piping as D while the tank volume is recorded as V .
max min min
The use shall be limited to pipe length on the protected side not exceeding L and the diameter shall
max
not be less than D , while the minimum pre-volume available at any time in the tank protected (ullage
min
space) shall not be less than V .
min
For modulating valves, where there is no flow volume at the closing pressure, the first step shall start at
10 % of the flow volume, at which the valve is fully open.
Key
1 blower or fan 5 high velocity vent valve
2 flow meter 6 pressure sensor
3 tank L length of vent pipe
4 pressure measuring device
Figure 2 — Test rig for undamped oscillations
10 Production control and inspections
The manufacturer shall afford the purchaser’s representative all reasonable facilities necessary to
satisfy him/her that the material is being furnished in accordance with this document. Inspection by
the purchaser shall not interfere unnecessarily with the manufacturer’s operations. All examinations
and inspections shall be made at the place of manufacture, unless otherwise, agreed upon.
Each finished device shall be visually and dimensionally checked to ensure that the device complies
with this document, including with the specification information recommended in Annex F and the
markings specified in Clause 12. Special attention shall be given to the adequacy of welds and the
proper fit-up of joints.
Each finished device shall be tested using air to verify that the leakage is below the maximum leakage
rate specified according to 6.1.
The set pressure(s) of each finished device shall be tested with air and recorded.
11 Documentation
11.1 General
An instruction manual shall be provided. The instruction manual shall include the items described in
Table 1 and in 11.2.
The manufacturer shall supply a copy of the instruction manual, that shall be kept on board.
10 © ISO 2021 – All rights reserved

Table 1 — Product data to be included in the instruction manual
Specification Purpose A. Data location
information B. Description of test data/ applica-
tion note
1. Inner pipe diameter, Compliance with design parameters for A: Type testing certificate.
configuration of piping, tank pressure limits, and for high veloc-
B: For high velocity vents: test records
and pipe length ity vents, compliance with non-hammer-
indicating piping limitations for safe,
ing conditions. (See Annex I.)
non-hammering performance [D ,
min
L , V ].
max min
2. Maximum gas density Compliance with design parameters for B: Convert to standard conditions.
considered tank pressure limits.
3. Lowest MESG Suitability for the application. A: Type testing certificate.
B: The lowest MESG.
4. Set opening points for Suitability for the application. A: Type testing certificate.
pressure and vacuum
B: The upper and lower values applied
during flow testing shall not be exceeded.
5. Maximum pressure Compliance with design parameters for A: Verified flow charts.
drop tank pressure limits and the selected
B: The flow chart format shall show the
opening setting of the device. In the case
maximum pressure drop over the valve
of transition point valves, the minimum
for any flow volume. This value is essen-
pressure drop value to be used for pres-
tial for pressure drop calculations.
sure drop calculations is P according
1-tpv
to Annex G, while the value relevant for
a full-opening valve is P or higher
closing
depending on the required flow rate
according to Annex F.
5a. Pressure drop at max- Compliance with design parameters for A: Verified flow charts.
imum flow tank pressure limits and the select-
B: The flow chart shall show the pressure
ed opening setting of the device. (See
drop over the device at the maximum
Annex K.)
required flow rate to be established.
6. Minimum reseating Suitability for the application with A: Verified flow charts.
pressure regard to minimizing the loss of cargo
B: The flow chart format shall indicate the
vapour. (See Annex H.)
reseating pressure.
7. Maximum and mini- Suitability for the application. A: Instruction manual.
mum ambient tempera-
B: The manufacturer’s recommendations
ture
shall not be exceeded.
8. Materials of construc- Suitability for the application. A: Verified drawing.
tion
B: The combination of materials chosen
may not have lower corrosion resistance
than the version tested. The drawing
shall include a bill of materials in accord-
ance with Clause 5.
9. Surface treatment and Suitability for the application. A: Instruction manual.
coating
B: The surface treatment and coating, if
any, shall be decided by the buyer with
due consideration to Annex E.
10. Maximum gas flow Suitability for the application and com- A: Verified flow chart.
in standard conditions, pliance with design parameters for tank
B: The maximum tank pressure allowed
pressure drop of the pressure limits, alarms, liquid-filled
in normal operations less an appropriate
piping system, and maxi- breakers, filling limitations for high
fouling factor and margin for alarm and
mum tank pressure density cargoes.
breaker settings, etc., shall not be exceed-
ed when calculating the combined pres-
sure caused by the valve and the pressure
drop over the piping system.
Table 1 (continued)
Specification Purpose A. Data location
information B. Description of test data/ applica-
tion note
11. Maximum outer ice Suitability for the application. A. Type testing certificate.
layer thickness for check-
B. Due consideration shall be given to
lift operation
vessel service conditions and facilities
available for on-deck de-icing before
cargo operations and during voyage.
12. For high velocity Suitability for the application. A: Recorded in test report.
vents: the minimum aver-
B: The ability to disperse gas above deck
age velocity required for
relates to the velocity through the cross
cross section of the valve’s
section of the valve’s outlet to atmosphere.
outlet to atmosphere
13. Maximum air leakage Suitability for the application. A: Instruction manual.
rate
B: The verified product data shall state
the maximum leakage rate expressed in
air of a new valve at 75 % of the nominal
setting. The leakage rate is expected to
increase over time.
14. Warning regarding Suitability for the application. A warning to the operator shall be in the
accumulation of ice instruction manual, noting that signifi-
cant ice accumulation may prevent proper
operation of the valve.
15. Use of resilient seals, Suitability for the application A: Instruction manual.
where employed
B: Inspection and maintenance of in-
stalled resilient seals.
11.2 Installation instructions
The following shall be provided.
a) Operating instructions, including any service restrictions imposed for safe functioning of the
device (see Annex A).
b) Maintenance requirements, including information on maintenance of any corrosion prevention
system (see Annex E).
c) Instructions on when cleaning is required due to the inside build-up of residue. The instruction
manual shall also describe the method for cleaning using a diagram.
d) Verified exploded view drawings with indication for each component as to the order of disassembling
and re- assembling for inspection, cleaning, repair or removal of internal elements for replacement.
The design shall not allow the device to be incorrectly reassembled following inspection, cleaning
or repair, be it due to wrong order of parts or missing parts. Information on sizes for all components
shall be included on the drawings to ensure that the specified gas-tightness is achieved, and for the
device to be restored to the original, as-purchased condition and for valves also with regard to set
pressure and flow rate.
e) Full work descriptions, including drawings, on how replacement of wearing parts is achieved in-
service without removing the device.
f) Instructions for the user to check valve lift prior to each cargo loading and cargo unloading
operation in order to
1) verify unobstructed movement of the moving parts, and
2) ensure that fouling conditions are controlled to establish safe operation and full capacity.
12 © ISO 2021 – All rights reserved

A diagram shall be included, showi
...


NORME ISO
INTERNATIONALE 15364
Quatrième édition
2021-02
Navires et technologie maritime —
Soupapes de pression/dépression
pour citernes à cargaison et dispositifs
pour empêcher le passage des
flammes vers les citernes à cargaison
Ships and marine technology — Pressure-vacuum valves for cargo
tanks and devices to prevent the passage of flame into cargo tanks
Numéro de référence
©
ISO 2021
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2021
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2021 – Tous droits réservés

Sommaire Page
Avant-propos .iv
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
4 Symboles et abréviations . 3
5 Matériaux . 4
6 Autres exigences . 4
7 Essais de type . 6
8 Essais de débit et de vitesse . 8
8.1 Détermination de la capacité . 8
8.2 Données relatives à la capacité . 8
8.3 Appareillage d’essai . 8
8.4 Mesures de débit . 9
9 Essais d’oscillations non amorties .11
10 Contrôle de la production et inspections .12
11 Documentation .12
11.1 Généralités .12
11.2 Instructions d’installation .14
12 Marquage .15
13 Assurance qualité .15
Annexe A (informative) Exigences relatives à l’installation pour les navires concernés par
la Convention internationale pour la sauvegarde de la vie humaine en mer (SOLAS),
telle qu’amendée .16
Annexe B (normative) Essais et mesures de débits .17
Annexe C (normative) Dispositifs empêchant le passage des flammes .19
Annexe D (informative) Lignes directrices pour le choix des matériaux .21
Annexe E (informative) Lignes directrices en matière de protection contre la corrosion .22
Annexe F (informative) Informations de spécification .26
Annexe G (informative) Exemples de courbes de débit .27
Annexe H (informative) Questions importantes liées à la réduction des pertes de composés
organiques volatils (COV) pendant les manipulations de cargaison .31
Annexe I (informative) Lignes directrices pour le dimensionnement .33
Annexe J (normative) Débits de fuite limites des soupapes .34
Annexe K (informative) Dimensionnement, implantation et installation des dispositifs .35
Bibliographie .36
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/ iso/ fr/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 8, Navires et technologie maritime,
sous-comité SC 3, Tuyauteries et machines.
Cette quatrième édition annule et remplace la troisième édition (ISO 15364:2016), qui a fait l’objet d’une
révision technique.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— élargissement du domaine d’application de façon à inclure les dispositifs empêchant le passage des
flammes vers les citernes à cargaison;
— ajout d’exigences relatives aux essais de transmission de la flamme.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2021 – Tous droits réservés

NORME INTERNATIONALE ISO 15364:2021(F)
Navires et technologie maritime — Soupapes de pression/
dépression pour citernes à cargaison et dispositifs pour
empêcher le passage des flammes vers les citernes à
cargaison
1 Domaine d’application
Le présent document s’applique aux soupapes de pression/dépression et aux dispositifs empêchant
le passage des flammes, qui assurent tous deux la protection des citernes à cargaison et qui peuvent
être soumis à des gaz/vapeurs explosifs et/ou à une pression ou dépression de gaz/vapeur allant au-
delà des paramètres de calcul du système/de la citerne. Il spécifie les exigences minimales en matière
de performance et d’essais. Il spécifie également les critères de conception et de performance en
service, les essais de fonctionnement et les exigences de maintenance. La conception ou la fabrication
conformément au présent document n’implique pas l’adéquation à une installation donnée, mais
indique qu’un certain nombre d’exigences minimales ont été prises en compte et que les informations
nécessaires à l’adéquation d’une installation donnée sont fournies à l’acheteur de l’équipement.
Le présent document fait référence aux modes opératoires d’essai d’explosion décrits dans
l’ISO 16852:2016.
NOTE Les exigences minimales relatives aux dispositifs empêchant le passage des flammes sont fournies
dans la « Convention internationale pour la sauvegarde de la vie humaine en mer (SOLAS) », telle qu’amendée,
de l’Organisation maritime internationale (OMI), Chapitre II-2, Règle 4, et dans la Circulaire n° 677 du Comité de
sécurité maritime (MSC) de l’OMI (MSC/Circ. 677), « Normes révisées relatives à la conception, à la mise à l’essai
et à l’emplacement des dispositifs empêchant le passage des flammes vers les citernes à cargaison à bord des
navires-citernes », telle qu’amendée.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s’applique (y compris les
éventuels amendements).
ISO 16852:2016, Arrête-flammes — Exigences de performance, méthodes d'essai et limites d'utilisation
Organisation maritime internationale, Circulaire n° 677 du Comité de sécurité maritime (MSC/
Circ. 677), Normes révisées relatives à la conception, à la mise à l’essai et à l’emplacement des dispositifs
empêchant le passage des flammes vers les citernes à cargaison à bord des navires-citernes, telle
qu’amendée par la MSC/Circ. 1009 et la MSC/Circ. 1324 de l’OMI.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp;
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/ .
3.1
arrête-flammes
dispositif monté sur l’évent d’une enceinte ou sur la tuyauterie de raccordement d’un ensemble
d’enceintes permettant le passage d’un débit tout en empêchant la transmission d’une flamme
3.2
soupape à double sortie
soupape de surpression équipée de deux soupapes à haute vitesse dont les réglages d’ouverture
diffèrent et intégrées à une seule soupape dont les caractéristiques d’écoulement peuvent correspondre
à l’une ou plusieurs des conceptions suivantes: soupape à passage intégral (3.3), soupape à ouverture
progressive (3.7) ou soupape à point de transition (3.11)
3.3
soupape à passage intégral
type de conception dans lequel la soupape s’ouvre complètement à 2 % maximum au-dessus de la
pression de tarage
3.4
soupape à haute vitesse
soupape de surpression conçue pour toujours présenter des vitesses de flux empêchant la propagation
des flammes dans le sens inverse de l’écoulement
3.5
interstice expérimental maximal de sécurité
IEMS
interstice maximal d’un joint de 25 mm de largeur qui empêche toute transmission d’une explosion
pendant les essais
Note 1 à l'article: L’ISO/IEC 80079-20-1 spécifie l’appareil et la méthode d’essai.
3.6
perte de charge maximale attendue
plus grande perte de charge produite à travers un dispositif dont le laboratoire d’essai vérifie la capacité
d’écoulement
3.7
soupape à ouverture progressive
type de conception dans lequel l’ouverture de la soupape est proportionnelle à la montée en pression
3.8
soupape de pression/dépression
dispositif destiné à évacuer la pression ou la dépression présente dans les citernes à cargaison en
ouvrant les soupapes à la valeur de tarage définie, afin de protéger les citernes d’une surpression ou
d’une dépression dépassant les paramètres de résistance des citernes
3.9
conditions normales
air sec à 288,15 K (15,00 °C; 59,00 °F) et sous une pression de 101,325 kPa
3.10
organisme tiers chargé de l’inspection
organisme indépendant du fabricant et de l’utilisateur, qualifié pour réaliser ou assister aux essais et
inspections
3.11
soupape à point de transition
type de conception dans lequel les caractéristiques d’écoulement de la soupape passent de l’ouverture
progressive à une ouverture complète à une pression spécifique
2 © ISO 2021 – Tous droits réservés

3.12
plan contrôlé
plan certifié authentique et exhaustif par l’organisme tiers chargé de l’inspection (3.10) qui publie le
rapport d’essai
3.13
courbe de débit contrôlé
courbe représentant la pression en fonction du débit volumique, certifié par l’organisme tiers chargé de
l’inspection (3.10) qui publie le rapport d’essai
4 Symboles et abréviations
D diamètre intérieur de la tuyauterie au niveau du raccord du dispositif
D diamètre intérieur minimal de la tuyauterie entre le dispositif et la citerne permettant d’éviter
min
toute oscillation
L longueur maximale de la tuyauterie entre le dispositif et la citerne permettant d’éviter toute
max
oscillation
L longueur de conduite entre la citerne d’essai et le dispositif pour les essais d’écoulement
L longueur de conduite entre la citerne d’essai et le dispositif pour les essais d’oscillations non
amorties
P valeur de la pression d’entrée à laquelle la palette de la soupape revient au contact du siège
fermeture
avec une levée nulle, juste au moment où la soupape se ferme et que la pression diminue
P valeur de la pression d’entrée à laquelle la palette de la soupape revient au contact du siège avec
fermeture1
une levée nulle, juste au moment où la soupape principale se ferme et que la pression diminue
P valeur de la pression d’entrée à laquelle la palette de la soupape revient au contact du siège
fermeture2
avec une levée nulle, juste au moment où la soupape supplémentaire se ferme et que la pres-
sion diminue
P pression maximale correspondant au débit volumique maximal (Q )
max 3
P pression relative à l’entrée du dispositif à laquelle la soupape est réglée pour commencer à
tarage
s’ouvrir
P pression relative à l’entrée du dispositif à laquelle la soupape principale est réglée pour
tarage1
commencer à s’ouvrir
P pression relative à l’entrée du dispositif à laquelle la soupape supplémentaire est réglée pour
tarage2
commencer à s’ouvrir
P pression à laquelle une soupape à point de transition passe de l’ouverture progressive à
1-tpv
l’ouverture complète
Q débit volumique requis pour ouvrir une soupape à passage intégral
1-fov
Q débit volumique requis pour ouvrir la deuxième buse
Q débit volumique requis pour maintenir une soupape en position entièrement ouverte
Q débit volumique requis pour maintenir une soupape à passage intégral en position entière-
2-fov
ment ouverte à P
tarage
Q débit volumique requis pour ouvrir une soupape à ouverture progressive
1-mv
Q débit volumique requis pour maintenir une soupape à ouverture progressive en position
2-mv
entièrement ouverte
Q débit volumique auquel une soupape à point de transition passe de l’ouverture progressive
1-tpv
à l’ouverture complète
Q débit volumique requis pour maintenir une soupape à point de transition en position entiè-
2-tpv
rement ouverte à P
1-tpv
Q débit volumique correspondant à la perte de charge maximale attendue à travers le dispositif
Q débit minimal requis pour maintenir la soupape partiellement ouverte, sans aucun contact
fermeture
entre le disque et le siège
Q débit volumique requis pour maintenir la soupape principale et les soupapes supplémentaires
2 total
en position entièrement ouverte à P
tarage1
Q débit volumique correspondant à la perte de charge maximale attendue à travers la soupape
3 total
à double sortie
V volume minimal de la citerne admis pour éviter toute oscillation
min
5 Matériaux
5.1 Le corps du dispositif, ainsi que les autres parties ou la boulonnerie utilisées pour le maintien
sous pression, doivent être construits dans des matériaux adaptés à l’utilisation prévue et décrits dans
une norme nationale ou une Norme internationale reconnue. Les corps, palettes, tiges guidées, sièges,
ressorts, garnitures, joints, arrête-flammes (lorsqu’ils sont inclus dans la conception) et toutes les autres
pièces intégrées, y compris celles pourvues de revêtements anticorrosion, doivent être résistants à
l’attaque par l’eau de mer et les liquides et vapeurs contenus dans la citerne protégée (voir l’Annexe D
pour des recommandations relatives au choix des matériaux). Les ressorts revêtus d’un matériau
anticorrosion ne sont pas acceptables.
5.2 Les matériaux non métalliques autres que les garnitures, joints et diaphragmes admis en 6.11
ne doivent pas être utilisés pour la construction des composants sous pression du dispositif. Des joints
souples ne peuvent être installés que si le dispositif reste capable de remplir efficacement sa fonction
d’arrête-flammes lorsque les joints sont usés, partiellement ou totalement endommagés ou brûlés. Les
garnitures non métalliques doivent être en matériau non combustible et adaptées à l’utilisation prévue.
5.3 L’éventualité d’une corrosion galvanique doit être envisagée lors du choix des matériaux
(voir l’Annexe E pour les aspects complémentaires à prendre en compte concernant la protection contre
la corrosion).
5.4 Les plans contrôlés doivent inclure une nomenclature complète des matériaux démontrant la
conformité au présent paragraphe ainsi qu’à toute autre exigence relative aux matériaux, énumérée à
l’Article 6.
6 Autres exigences
6.1 Le débit de fuite maximal de gaz doit être indiqué, et défini comme le volume qui peut s’échapper
de la soupape à 75 % du réglage nominal déterminé par le fabricant, dans des conditions normales. Les
débits de fuite maximaux sont fournis dans l’Annexe J.
6.2 Les corps, éléments et matériaux de garnitures d’étanchéité doivent pouvoir résister aux pressions
et températures maximales et minimales auxquelles le dispositif peut être soumis en conditions de
4 © ISO 2021 – Tous droits réservés

fonctionnement normal. Les surfaces planes des brides doivent être usinées pour assurer une intégrité
adéquate des assemblages.
6.3 Lorsqu’une construction soudée est utilisée pour des composants sous pression, les détails de la
conception des soudures, le soudage et les essais non destructifs doivent être conformes aux normes
nationales ou aux Normes internationales. Il convient que les modes opératoires de soudage soient
conformes à la série ISO 15607. Il convient que les soudeurs soient qualifiés conformément à la série
ISO 9606. Il convient que les essais non destructifs soient conformes à l’ISO 5817.
D’autres normes nationales ou Normes internationales équivalentes peuvent être utilisées.
6.4 Les soupapes de pression/dépression doivent être conçues pour que la vapeur condensée et l’eau
présentes dans la zone sous pression s’évacuent du dispositif dans la citerne et n’altèrent pas l’efficacité
du dispositif. La conception doit également empêcher l’accumulation d’eau à l’intérieur du dispositif
et un blocage ultérieur par le gel. La conception doit empêcher l’accumulation de poches d’eau ou de
produit.
6.5 Tout desserrage des fixations essentielles au fonctionnement du dispositif doit être empêché.
6.6 Les dispositifs doivent être conçus et construits de manière à réduire le plus possible l’effet
d’encrassement en conditions de fonctionnement normal.
6.7 Les dispositifs doivent pouvoir fonctionner sur toute la plage de températures ambiantes ainsi que
dans des conditions de gel, à condition que le système de contrôle d’ouverture soit actionné pour briser
la couche de glace. Si un système de chauffe est utilisé, la température superficielle générée ne peut pas
dépasser la température maximale de conception.
Lorsqu’une soupape est destinée à être montée dans un navire qui sera manœuvré dans des conditions
climatiques susceptibles d’entraver son fonctionnement (gel de l’eau de mer, par exemple), le manuel
d’entretien doit fournir les informations appropriées pour garantir un fonctionnement continu.
6.8 Des dispositifs sont requis en bout de ligne afin de diriger les émanations verticalement vers le
haut. En outre, pour les soupapes à haute vitesse, la vitesse moyenne minimale des effluents déchargés à
l’atmosphère par l’orifice de la soupape ne doit pas être inférieure à 30 m/s pour tous les débits.
6.9 Un moyen manuel (système de contrôle d’ouverture par exemple) doit être prévu afin de vérifier
que tout disque de soupape et autre élément mobile se soulèvent librement et entièrement, et ne restent
pas en position ouverte. Le moyen manuel doit faire partie de la soupape et être actionné sans nécessiter
l’ajout ou le retrait de pièces. La conception doit permettre de vérifier que le dispositif n’est pas rendu
inopérant en raison de la corrosion, de l’accumulation de résidus ou du givrage lorsque le moyen manuel
susmentionné est utilisé en association avec les exigences du fabricant relatives à l’inspection visuelle.
6.10 Les disques de soupape et autres pièces en mouvement doivent être guidés par un moyen adapté
pour empêcher le blocage et garantir la fermeture automatique (appui), en tenant compte d’une
éventuelle accumulation de condensats.
NOTE Une maintenance conforme aux exigences du fabricant est normalement nécessaire pour garantir le
fonctionnement correct de la soupape.
Les disques de soupape et autres pièces en mouvement doivent permettre la fermeture de la soupape
par un contact métal – métal avec le siège. Lorsque la soupape se ferme contre un siège en métal et
qu’un joint souple est ajouté afin de réduire les fuites de gaz, la performance de la soupape en termes
d’écoulement ne doit pas être affectée en cas de destruction, d’endommagement ou de dépose du joint.
Les disques de soupape peuvent être pleins ou creux afin de pouvoir ajouter un matériau de lestage pour
faire varier la pression de levée. En cas d’utilisation de disques creux, un couvercle boulonné étanche à
l’eau doit être monté pour enfermer le matériau de lestage. Une indication claire, visible de l’extérieur
de la soupape doit préciser la position du (des) disque(s) de soupape. Cet indicateur doit être visible par
le dessous et par le côté de la soupape au niveau du pont.
6.11 Les soupapes peuvent être équipées de sièges non métalliques, sauf lorsque leur défaillance
entraînerait une décharge non contrôlée des effluents de la citerne à l’atmosphère ou une augmentation
de la pression ou de la dépression au-delà des valeurs auxquelles la soupape s’ouvre normalement.
6.12 Les mécanismes d’ajustement de la pression de décharge doivent être maintenus à l’aide de freins-
filets, d’écrous autofreinés ou de tout autre moyen adapté afin d’éviter un déréglage des dispositifs dû à
la manutention, à l’installation ou aux vibrations.
6.13 La conception doit permettre l’examen du dispositif afin de détecter l’accumulation de condensats.
Pour certaines cargaisons pouvant se solidifier, des systèmes de chauffe peuvent être nécessaires.
6.14 Les dispositifs ne doivent pas être contournés ou bloqués en position ouverte, à moins qu’ils
ne soient soumis à essai dans la position contournée ou bloqués en position ouverte conformément à
l’Annexe C.
6.15 Les éléments des arrête-flammes doivent être ajustés au corps, de sorte que la flamme ne puisse
pas passer entre l’élément et le corps.
6.16 Des joints souples doivent être installés uniquement si leur conception permet au dispositif de
continuer à empêcher efficacement le passage des flammes, même si les joints sont partiellement ou
intégralement endommagés ou brûlés.
6.17 Les dispositifs doivent permettre une bonne évacuation de l’humidité sans compromettre leur
capacité à empêcher efficacement le passage des flammes.
6.18 Les matériaux du corps, de l’élément et des garnitures d’étanchéité doivent pouvoir résister à la
pression et à la température maximales auxquelles le dispositif peut être soumis en conditions normales
et d’essai au feu spécifiées.
6.19 Les arrête-flammes antidétonation doivent pouvoir résister, sans dommage ni déformation
permanente, à la pression interne résultant de la détonation lorsqu’ils sont soumis à essai conformément
à l’Annexe C.
6.20 Les éléments de l’arrête-flammes doivent être:
1) conçus de sorte qu’ils ne puissent pas être insérés de manière incorrecte dans l’ouverture;
2) fixés en toute sécurité dans les ouvertures, de manière que les flammes ne puissent pas contourner
le corps;
3) être protégés contre les dommages mécaniques.
6.21 Les moyens permettant de décaler l’ouverture d’une soupape de pression ou de dépression au-
delà de la pression de tarage doivent être conçus de sorte qu’ils soient intrinsèquement sûrs et ils ne
doivent pas empêcher les procédures d’inspection exigibles. La pression d’ouverture décalée doit être
vérifiée et clairement indiquée.
7 Essais de type
7.1 Les essais de type doivent être réalisés par un laboratoire agréé par l’organisme tiers chargé de
l’inspection. Le laboratoire doit être qualifié pour effectuer les essais prévus par le présent document
6 © ISO 2021 – Tous droits réservés

et il doit disposer de (ou avoir accès à) l’appareillage, les installations, le personnel et les instruments
étalonnés nécessaires aux essais. Les essais prévus par le présent document peuvent également être
réalisés par le fabricant, à condition qu’ils soient réalisés en présence d’un organisme tiers chargé de
l’inspection qui peut certifier que ces essais sont effectués conformément au présent document.
NOTE Pour certains navires-citernes, le laboratoire doit être agréé par le gouvernement sous le pavillon
duquel le navire navigue et/ou sous l’autorité duquel il est prévu d’installer une soupape.
7.2 Chaque modèle et chaque taille de dispositif doivent être soumis à essai conformément aux
Articles 7, 8 et 9. Un changement de matériau ou de revêtement qui pourrait affecter la résistance à la
corrosion doit être assimilé à un changement de modèle suivant le présent paragraphe. Un changement
de conception ou de construction doit être assimilé à un changement de modèle suivant le présent
paragraphe. Chaque taille de chaque modèle doit être soumise aux essais de type. Pour les arrête-flammes
antidéflagration en bout de ligne appartenant au même modèle, les essais peuvent être limités à la plus
petite et la plus grande taille. Il convient que les dispositifs aient les mêmes dimensions et les jeux les plus
défavorables attendus sur le modèle de production. Si un dispositif est modifié au cours du programme
d’essai, ou à une date ultérieure, de sorte que les fonctions de la soupape ou ses caractéristiques de
performance soient affectées, l’organisme tiers chargé de l’inspection doit en être informé. Un essai
spécifique lié à la partie modifiée peut être exigé par l’organisme tiers chargé de l’inspection.
Les dispositifs doivent être soumis à essai conformément à 7.2.1 et 7.2.2, puis leur conformité aux
exigences d’essai de l’Annexe C doit être démontrée, s’il y a lieu.
7.2.1 Un essai de corrosion doit être réalisé. Pendant cet essai, un dispositif complet doit être exposé
à une solution pulvérisée à 5 % de chlorure de sodium à une température de 25 °C (77 °F) pendant
240 h, puis laissé à sécher pendant 48 h. À l’issue de cette exposition, toutes les pièces mobiles doivent
fonctionner correctement et il ne doit subsister aucun dépôt de corrosion impossible à éliminer par lavage.
7.2.2 La limite de pression du dispositif doit faire l’objet d’un essai sous pression hydrostatique
à au moins 150 % de la pression nominale maximale ou à une pression relative minimale de 345 kPa
1)
(50 psig ), la plus grande valeur étant retenue, pendant 10 min sans rupture, fuites ou déformation
permanente. Pour les besoins de cet essai, le disque peut être coincé ou bloqué.
7.2.3 Les caractéristiques de performance déclarées par le fabricant, telles que les débits en pression
ou en dépression, la sensibilité de fonctionnement, la stabilité de fonctionnement pour les soupapes à
double sortie, l’étanchéité, la résistance et la vitesse d’écoulement, doivent être contrôlées par des essais
en laboratoire.
7.2.4 Un essai extérieur en conditions de gel doit être réalisé pour les soupapes de pression/dépression
afin de vérifier l’accumulation admissible d’une couche de glace externe à laquelle le système de contrôle
d’ouverture de la soupape continue de fonctionner. Lors de cet essai, un dispositif complet doit être
exposé à une température de −10 °C (14 °F) pendant une durée de 24 h. À l’issue de cette exposition
initiale, 1 l (1,7 pinte) d’eau à une température non supérieure à 2 °C (35,6 °F) doit être pulvérisé toutes
les 10 min sur l’extérieur de la soupape jusqu’à l’obtention de l’épaisseur de glace spécifiée. Après avoir
atteint l’épaisseur spécifiée, le bon fonctionnement du système de contrôle d’ouverture de la soupape
doit être vérifié. L’épaisseur de glace maximale à laquelle le système de contrôle d’ouverture fonctionnera
correctement doit être consignée dans le manuel d’entretien (voir l’Article 11).
7.2.5 Les dispositifs empêchant le passage des flammes doivent également être soumis à un essai de
transmission de la flamme selon l’ISO 16852:2016 (voir l’Annexe C).
1) 1 psig = 1 lbf/in relatif.
7.3 Le laboratoire doit rédiger un rapport d’essai contenant la documentation associée à chaque essai
sur prototype. Outre les exigences spécifiées dans l’ISO/IEC 17025:2017, 7.8, le rapport d’essai doit au
minimum inclure:
— les types d’essais réalisés et les résultats obtenus comprenant des données enregistrées permettant
la vérification des essais. Lorsque des arrête-flammes antidétonation sont soumis à essai, cette
information doit inclure les pressions et vitesses maximales observées durant l’essai;
— l’évaluation des exigences de tenue mécanique, conformément aux Articles 5 et 6;
— les schémas du banc d’essai incluant les configurations d’entrée et de sortie des tuyauteries;
— un manuel d’entretien;
— des schémas détaillés du dispositif;
— des conseils spécifiques sur les équipements raccordés approuvés;
— les types de cargaison pour lesquels le dispositif est homologué;
— dans le cas de soupapes à haute vitesse, les pressions auxquelles le dispositif s’ouvre et se ferme et
la vitesse d’écoulement;
— toutes les informations marquées sur le dispositif conformément à l’Article 12.
8 Essais de débit et de vitesse
8.1 Détermination de la capacité
La capacité du dispositif doit être établie, en soumettant à des mesures de débit au moins un modèle de
chaque type et de chaque dimension, dans les conditions spécifiées de 8.2 à 8.4.
Si une soupape de pression ou de dépression est utilisée avec un arrête-flammes, la capacité de
l’ensemble associé est différente de la capacité d’une soupape seule. La mesure de la capacité doit être
réalisée sur l’ensemble combiné.
La mesure de la capacité des arrête-flammes suivant l’ISO 16852 est également acceptable.
8.2 Données relatives à la capacité
Les exigences suivantes doivent être satisfaites lors de l’établissement des données de capacité:
a) les conduites ainsi que les raccordements entre les conduites et le dispositif doivent être dépourvus
d’obstacles créant des turbulences supplémentaires;
b) le diamètre intérieur de la tuyauterie d’essai doit être supérieur ou égal au diamètre de la bride de
raccordement du dispositif soumis à essai;
c) tous les points de mesure de pression doivent être perpendiculaires à l’axe de la tuyauterie et ne
doivent pas perturber l’écoulement;
d) les essais doivent être réalisés avec de l’air dans les conditions ambiantes; les pression et
température ambiantes doivent être enregistrées pour convertir le débit aux conditions normales;
e) tous les instruments de mesure doivent être étalonnés.
8.3 Appareillage d’essai
L’appareillage d’essai est représenté à la Figure 1. Les dimensions de la citerne (3) doivent être
suffisantes pour obtenir une vitesse d’écoulement moyenne inférieure à 0,5 m/s dans la citerne. Toutes
les données de pression de la citerne doivent être enregistrées sous ces conditions.
8 © ISO 2021 – Tous droits réservés

La longueur de la tuyauterie d’essai L doit être comprise entre 1,5D et 5D du diamètre de raccordement
de l’équipement à soumettre à l’essai. Il convient de placer le piquage sur la citerne à un endroit
sensiblement plat de cette dernière et l’arrondi du piquage doit être conforme à une norme nationale
ou à une Norme internationale reconnue afin de garantir une influence uniforme de la perte de charge.
Le sens d’écoulement des soupapes de dépression doit être inversé.
ATTENTION — Il convient de noter que la soufflante ou le ventilateur peut engendrer des
oscillations dans le système en cas de défaut d’alignement ou d’endommagement des pales.
Il convient d’éviter ce phénomène.
8.4 Mesures de débit
8.4.1 Les mesures du débit des soupapes de pression/dépression doivent être réalisées suivant les
valeurs de tarage minimales et maximales du modèle concerné. Pour les valeurs de tarage intermédiaires,
les courbes de débit peuvent être extrapolées.
NOTE Si le réglage peut être modifié sans procéder à aucun changement de forme et de structure du corps
de soupape et de l’aspect physique des composants (par exemple en changeant la puissance des aimants, la
compression du ressort, etc.), cela ne constitue pas un changement de modèle. Le diamètre du fil de ressort n’a
pas besoin d’être pris en compte.
8.4.2 La pression d’ouverture de la soupape doit être établie en appliquant un débit entraînant
une montée en pression inférieure à 0,01 N/mm /min (10 kPa/min ou 0,295 3 in Hg). La pression de
tarage est nommée P et doit être égale à ± 3 % de la pression de tarage calculée, définie comme la
tarage
corrélation entre la force de fermeture et la surface du disque contre lequel s’exerce la pression de la
citerne.
NOTE Pour certains navires-citernes, il est possible que la pression d’ouverture minimale spécifiée ne
permette pas de tolérances négatives en fonctionnement.
8.4.3 Selon le type de dispositif, la mesure de débit doit être réalisée selon les étapes décrites à
l’Annexe B. Voir l’Annexe G pour des exemples correspondants de courbes de débit. Pour les soupapes à
haute vitesse, durant chaque essai conformément à l’Annexe B, la vitesse moyenne de l’air s’écoulant à
travers l’orifice de décharge de la soupape à l’atmosphère doit être enregistrée.
NOTE Les fabricants peuvent choisir de fournir des informations concernant la dispersion du gaz évacué.
8.4.4 Les courbes de débit doivent être tracées en reportant les valeurs relevées aux étapes décrites à
l’Annexe B. L’Annexe G fournit des exemples de courbes de débits acceptées.
8.4.5 Les essais d’écoulement doivent être réalisés en utilisant le banc d’essai représenté sur la
Figure 1. Tous les instruments doivent être étalonnés et leur incertitude ne doit pas dépasser ± 5 %.
Légende
1 soufflante ou ventilateur
2 débitmètre
3 citerne
4 mesure de pression
5 soupape de pression/dépression
L longueur du conduit de raccordement
NOTE Le sens d’écoulement de la soufflante ou du ventilateur est réversible en fonction du type d’essai
(pression ou dépression).
Figure 1 — Banc d’essai d’écoulement
10 © ISO 2021 – Tous droits réservés

9 Essais d’oscillations non amorties
Les soupapes à haute vitesse, y compris les soupapes à double sortie, doivent être soumises à des essais
d’oscillations non amorties. L’appareillage d’essai est représenté sur la Figure 2. Tous les instruments
doivent être étalonnés.
Cet essai doit être réalisé avec les valeurs de tarage minimale et maximale du modèle concerné,
sans modification du tarage constituant une modification au sens de la note en 8.4.1. Si la pression
d’ouverture maximale ne dépasse pas 130 % du tarage minimal, le tarage maximal n’a pas besoin d’être
soumis à essai.
Si une valeur de pression de fermeture satisfaisante est établie, les soupapes du même modèle à pression
de tarage plus élevée, mais à pression de fermeture identique n’ont pas besoin d’être soumises à essai.
La longueur et le diamètre intérieur de la conduite ainsi que le volume de la citerne doivent être
demandés par le fabricant.
Les essais doivent être réalisés pendant 3 min chacun, à 10 débits sensiblement équidistants, en
débutant à 0,2Q et en prenant ce débit comme largeur de palier (débit maximal pendant cet
fermeture
essai: 2Q ).
fermeture
Certains types de soupapes génèrent des cycles d’ouverture/fermeture qui entraînent des variations
périodiques des valeurs relevées sur le débitmètre (Figure 2). Dans ce cas, le débit moyen enregistré
sur l’intervalle de 3 min doit refléter la valeur de palier en question.
Si le capteur de position du disque indique un contact avec le siège ou les butées supérieures à une
fréquence supérieure à 0,5 Hz, la longueur de conduite, L , doit être réduite jusqu’à ce que cette valeur
ne soit pas dépassée. Cette longueur doit être enregistrée sous L et le diamètre de la tuyauterie
max
sous D , alors que le volume de la citerne est enregistré sous V .
min min
L’utilisation doit être limitée à la longueur de conduite du côté protégé sans dépasser L et le diamètre
max
doit être supérieur ou égal à D , alors que le prévolume minimal disponible à tout moment dans la
min
citerne protégée (espace libre) ne doit pas être inférieur à V .
min
Pour les soupapes à ouverture progressive, en l’absence de débit volumique à la pression de fermeture,
le premier palier doit débuter à 10 % du débit volumique auquel la soupape est entièrement ouverte.
Légende
1 soufflante ou ventilateur 5 soupape à haute vitesse
2 débitmètre 6 capteur de pression
3 citerne L longueur de la tuyauterie d’évent
4 dispositif de mesure de pression
Figure 2 — Banc d’essai d’oscillations non amorties
10 Contrôle de la production et inspections
Le fabricant doit mettre à disposition du représentant de l’acheteur tous les moyens raisonnables
pour qu’il/elle puisse s’assurer que le matériel est bien fourni en conformité avec le présent document.
L’inspection menée par l’acheteur ne doit pas interférer inutilement avec les activités du fabricant. Sauf
accord contraire, tous les examens et inspections doivent être réalisés sur le site de production.
Chaque dispositif fini doit être contrôlé visuellement et ses dimensions vérifiées pour s’assurer qu’il
est conforme au présent document, y compris aux informations de spécification recommandées à
l’Annexe F et aux marquages spécifiés à l’Article 12. Une attention spéciale doit être portée à la qualité
des soudures et au montage correct des joints.
Chaque dispositif produit doit être soumis à essai avec de l’air afin de vérifier que le taux de fuite est
inférieur au taux de fuite maximal spécifié conformément à 6.1.
La ou les pressions de tarage de chaque dispositif produit doivent être soumises à essai avec de l’air et
enregistrées.
11 Documentation
11.1 Généralités
Un manuel d’entretien doit être fourni. Il doit contenir les informations décrites dans le Tableau 1 et
en 11.2.
Le fabricant doit fournir une copie du manuel d’entretien, qui doit être conservée à bord.
Tableau 1 — Données de produit à faire figurer dans le manuel d’entretien
Informations de spéci- Objectif A. Emplacement des données
fication
B. Description des données d’essai/
note d’application
1. Diamètre intérieur de Conformité aux paramètres de calcul A: certificat d’essai de type.
la tuyauterie, configura- relatifs aux limites de pression de la
B: pour les soupapes à haute vitesse:
tion et longueur citerne et aux soupapes à haute vitesse,
enregistrements des essais indiquant les
respect des conditions pour éviter les
limites de la tuyauterie pour le fonc-
effets marteaux. (Voir l’Annexe I).
tionnement sans risque d’effets mar-
teaux (D , L , V ).
min max min
2. Densité maximale du Conformité aux paramètres de calcul B: conversion aux conditions normales.
gaz considéré rel
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.

Loading comments...