Radiological protection — Minimum criteria for electron paramagnetic resonance (EPR) spectroscopy for retrospective dosimetry of ionizing radiation — Part 1: General principles

The primary purpose of this document is to provide minimum acceptable criteria required to establish a procedure for retrospective dosimetry by electron paramagnetic resonance spectroscopy and to report the results. The second purpose is to facilitate the comparison of measurements related to absorbed dose estimation obtained in different laboratories. This document covers the determination of absorbed dose in the measured material. It does not cover the calculation of dose to organs or to the body. It covers measurements in both biological and inanimate samples, and specifically: a) based on inanimate environmental materials like glass, plastics, clothing fabrics, saccharides, etc., usually made at X-band microwave frequencies (8 GHz to 12 GHz); b) in vitro tooth enamel using concentrated enamel in a sample tube, usually employing X-band frequency, but higher frequencies are also being considered; c) in vivo tooth dosimetry, currently using L-band (1 GHz to 2 GHz), but higher frequencies are also being considered; d) in vitro nail dosimetry using nail clippings measured principally at X-band, but higher frequencies are also being considered; e) in vivo nail dosimetry with the measurements made at X-band on the intact finger or toe; f) in vitro measurements of bone, usually employing X-band frequency, but higher frequencies are also being considered. For biological samples, in vitro measurements are carried out in samples after their removal from the person or animal and under laboratory conditions, whereas the measurements in vivo are carried out without sample removal and may take place under field conditions. NOTE The dose referred to in this document is the absorbed dose of ionizing radiation in the measured materials.

Radioprotection — Critères minimaux pour la spectroscopie par résonance paramagnétique électronique (RPE) pour la dosimétrie rétrospective des rayonnements ionisants — Partie 1: Principes généraux

Le but principal du présent document est de fournir un ensemble de critères minimaux acceptables requis pour établir un mode opératoire pour la dosimétrie rétrospective par spectroscopie par résonance paramagnétique électronique et pour présenter les résultats dans un rapport. Son second objectif est de faciliter la comparaison des mesures associées à l'estimation de la dose absorbée de différents laboratoires. Le présent document couvre la détermination de la dose absorbée dans le matériau mesuré. Il ne couvre pas le calcul de la dose délivrée aux organes ou à l'organisme entier. Il ne concerne que les mesurages de dosimétrie effectués sur des échantillons biologiques et des échantillons inertes, et plus particulièrement: a) les mesurages de matériaux environnementaux inertes, tels que les verres, les polymères, les tissus pour vêtements, les saccharides, etc. généralement réalisés avec des fréquences micro‑ondes dans la bande X (8 GHz à 12 GHz); b) les mesurages in vitro de prélèvement d'émail dentaire, placé dans un tube porte‑échantillon, et mesuré en général en bande X, mais des fréquences micro‑ondes plus élevées sont également considérées; c) les mesurages in vivo de dents, réalisés actuellement en bande L (1 GHz à 2 GHz), mais des fréquences micro‑ondes plus élevées sont également considérées; d) les mesurages in vitro de prélèvements d'ongles, effectués principalement en bande X, mais des fréquences micro‑ondes plus élevées sont également considérées; e) les mesurages in vivo des ongles, effectués en bande X sur les ongles des doigts ou des orteils; f) les mesurages in vitro de tissus osseux, réalisés en général en bande X, mais des fréquences micro‑ondes plus élevées sont également considérées. En ce qui concerne les échantillons biologiques, les mesurages in vitro sont effectués sur des échantillons prélevés sur une personne ou un animal et dans des conditions de laboratoire, tandis que les mesurages in vivo sont réalisés sans prélèvement d'échantillon et peuvent s'effectuer sur le terrain. NOTE La dose mentionnée dans le présent document est la dose absorbée de rayonnement ionisant dans les matériaux mesurés.

General Information

Status
Published
Publication Date
19-Jul-2020
Current Stage
9060 - Close of review
Completion Date
04-Mar-2031
Ref Project

Relations

Standard
ISO 13304-1:2020 - Radiological protection — Minimum criteria for electron paramagnetic resonance (EPR) spectroscopy for retrospective dosimetry of ionizing radiation — Part 1: General principles Released:7/20/2020
English language
19 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 13304-1:2020 - Radioprotection — Critères minimaux pour la spectroscopie par résonance paramagnétique électronique (RPE) pour la dosimétrie rétrospective des rayonnements ionisants — Partie 1: Principes généraux Released:7/20/2020
French language
21 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


INTERNATIONAL ISO
STANDARD 13304-1
Second edition
2020-07
Radiological protection — Minimum
criteria for electron paramagnetic
resonance (EPR) spectroscopy for
retrospective dosimetry of ionizing
radiation —
Part 1:
General principles
Radioprotection — Critères minimaux pour la spectroscopie par
résonance paramagnétique électronique (RPE) pour la dosimétrie
rétrospective des rayonnements ionisants —
Partie 1: Principes généraux
Reference number
©
ISO 2020
© ISO 2020
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2020 – All rights reserved

Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Confidentiality and ethical considerations . 2
5 Laboratory safety requirements . 3
5.1 Magnetic field . 3
5.2 Electromagnetic frequency . 3
5.2.1 in vitro measurement . 3
5.2.2 in vivo measurement . 3
5.3 Biohazards from samples . 3
6 Collection/selection and identification of samples . 3
7 Transportation and storage of samples . 4
8 Preparation of samples. 4
9 Apparatus . 5
9.1 Principles of EPR spectroscopy . 5
9.2 Requirements for EPR spectrometers . 6
9.3 Requirements for the resonator . 6
9.4 Measurements of the background signals . 6
9.5 Spectrometer stability and monitoring/control of environmental conditions . 6
9.6 Baseline drift . 7
10 Measurements of the samples . 7
10.1 General principles . 7
10.2 Choice and optimization of the measurement parameters . 7
10.2.1 General. 7
10.2.2 Microwave-related parameters . 8
10.2.3 Magnetic field parameters . 8
10.2.4 Signal channel parameters . 8
10.3 Sample positioning and loading . 9
10.4 Microwave bridge tuning .10
10.5 Use of standard samples as field markers and amplitude monitors .10
10.6 Monitoring reproducibility .10
10.7 Procedure to measure anisotropic samples .10
10.8 Coding of spectra and samples .11
11 Determination of the absorbed dose in the samples .11
11.1 Determination of the radiation-induced signal intensity .11
11.2 Conversion of the EPR signal into an estimate of absorbed dose .11
11.2.1 Conversion of the EPR signal into an estimate of absorbed dose for in
vitro dosimetry . .11
11.2.2 Conversion of the EPR signal into an estimate of absorbed dose for in vivo
tooth dosimetry .12
12 Measurement uncertainty .12
13 Investigation of dose that has been questioned .12
14 Quality assurance (QA) and quality control (QC) .13
15 Minimum documentation requirements .14
Bibliography .16
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www .iso .org/ directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www .iso .org/ patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www .iso .org/
iso/ foreword .html.
This document was prepared by Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies,
and radiological protection, Subcommittee SC 2, Radiological protection.
A list of all parts in the ISO 13304 series can be found on the ISO website.
This second edition cancels and replaces the first edition (ISO 13304-1:2013), of which it constitutes a
minor revision. The changes compared to the previous edition are as follows:
— inclusion of bibliographic references in the text;
— informative reference to ISO 13304-2 added;
— update of Bibliography.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www .iso .org/ members .html.
iv © ISO 2020 – All rights reserved

Introduction
Electron paramagnetic resonance (EPR) has become an important approach for retrospective dosimetry
in any situation where dosimetric information is potentially incomplete or unknown for an individual.
It is now applied widely for retrospective evaluation of doses that were delivered at considerable times
in the past (e.g. EPR dosimetry is one of the methods of choice for retrospective evaluation of doses to
the involved populations from the atomic weapon exposures in Japan and after the Chernobyl accident)
and has received attention for use for triage after an incident in which large numbers of people have
[1] to [12]
potentially been exposed to clinically significant levels of radiation . Various materials may be
[13] to [41]
analysed by EPR to provide information on dose . Thus, EPR is a versatile tool for retrospective
dosimetry, pertinent as well for acute exposures (past or recent, whole or partial body) and prolonged
exposures. Doses estimated with EPR were mainly used to correlate the biological effect of ionizing
radiation to received dose, to validate other techniques or methodologies, to manage casualties, or
[42]
for forensic expertise for judicial authorities . It uses mainly biological tissues of the person as the
dosimeter and also can use materials from personal objects as well as those located in the immediate
environment. EPR dosimetry is based on the fundamental properties of ionizing radiation: the generation
of unpaired electron species (often but not exclusively free radicals) proportional to absorbed dose.
The technique of EPR specifically and sensitively detects the amount of unpaired electrons that have
sufficient stability to be observed after their generation; while the amount of the detectable unpaired
electrons is usually directly proportional to the amount that was generated, these species can react,
and therefore, the relationship between the intensity of the EPR signal and the radiation dose needs
to be established for each type of use. The most extensive use of the technique has been with calcified
[43] to [50]
tissue, especially with enamel from teeth . An IAEA technical report was published on the use
[51]
for tooth enamel . To extend the possibility of EPR retrospective dosimetry, new materials possibly
suitable for EPR dosimetry are regularly studied and associated protocols established. This document
is aimed to make this technique more widely available, more easily applicable and useful for dosimetry.
Specifically, this document proposes a methodological frame and recommendations to set up, validate,
and apply protocols from sample collection to dose reporting. The application of this document to ex
[52]
vivo human tooth enamel dosimetry is described in ISO 13304-2 .
INTERNATIONAL STANDARD ISO 13304-1:2020(E)
Radiological protection — Minimum criteria for electron
paramagnetic resonance (EPR) spectroscopy for
retrospective dosimetry of ionizing radiation —
Part 1:
General principles
1 Scope
The primary purpose of this document is to provide minimum acceptable criteria required to establish
a procedure for retrospective dosimetry by electron paramagnetic resonance spectroscopy and to
report the results.
The second purpose is to facilitate the comparison of measurements related to absorbed dose
estimation obtained in different laboratories.
This document covers the determination of absorbed dose in the measured material. It does not cover
the calculation of dose to organs or to the body. It covers measurements in both biological and inanimate
samples, and specifically:
a) based on inanimate environmental materials like glass, plastics, clothing fabrics, saccharides, etc.,
usually made at X-band microwave frequencies (8 GHz to 12 GHz);
b) in vitro tooth enamel using concentrated enamel in a sample tube, usually employing X-band
frequency, but higher frequencies are also being considered;
c) in vivo tooth dosimetry, currently using L-band (1 GHz to 2 GHz), but higher frequencies are also
being considered;
d) in vitro nail dosimetry using nail clippings measured principally at X-band, but higher frequencies
are also being considered;
e) in vivo nail dosimetry with the measurements made at X-band on the intact finger or toe;
f) in vitro measurements of bone, usually employing X-band frequency, but higher frequencies are
also being considered.
For biological samples, in vitro measurements are carried out in samples after their removal from the
person or animal and under laboratory conditions, whereas the measurements in vivo are carried out
without sample removal and may take place under field conditions.
NOTE The dose referred to in this document is the absorbed dose of ionizing radiation in the measured
materials.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at http:// www .iso .org/ obp
— IEC Electropedia: available at http:// www .electropedia .org/
3.1
retrospective dosimetry (including early or emergency response)
dosimetry, usually at the level of the individual, carried out after an exposure using methods other than
conventional radiation dosimeters
3.2
electron paramagnetic resonance
EPR
electron spin resonance
ESR
magnetic resonance technique, which is similar to nuclear magnetic resonance (NMR) but based on the
net spin of unpaired electrons, such as free radicals and electron defects centres in matrices
Note 1 to entry: The terms EPR and ESR are essentially equivalent and are widely used. The term electron
magnetic resonance (EMR) also sometimes is used because it is analogous to nuclear magnetic resonance (NMR).
3.3
radical/paramagnetic centre
species with unpaired electron(s)
Note 1 to entry: Paired electrons have the same quantum state except for opposite spins; unpaired electrons
do not have a “partner” with the opposite spin. When the unpaired spin is on a molecule, it is usually termed a
radical; when the unpaired electron is in a matrix, it often is termed a paramagnetic centre.
3.4
in vivo measurement
measurement carried out within the living system, such as measurements of paramagnetic centres (3.3)
in teeth within the mouth
3.5
in vitro measurement
measurement carried out on materials outside the organism
Note 1 to entry: The term ex vivo also has been used in the literature for sample measured in vitro but irradiated
within the organism.
3.6
quality assurance
planned and systematic actions necessary to provide adequate confidence that a process, measurement,
or service satisfies given requirements for quality
3.7
quality control
planned and systematic actions intended to verify that systems and components conform with
predetermined requirements
4 Confidentiality and ethical considerations
All individual identifying information of persons who provided samples should not be attached to the
information on the samples and kept only in a secured place. The corresponding samples should be
identified by codes with indication only of parameters that are useful for scientific purposes and for
making decisions. Data linking the code to the person can be kept if they are done so in a secure manner,
with access limited to the persons in charge of the data.
2 © ISO 2020 – All rights reserved

Where appropriate, permission for obtaining and measuring the samples should be obtained under the
rules of the jurisdiction where the samples are obtained.
5 Laboratory safety requirements
5.1 Magnetic field
With conventional EPR spectrometers, the magnetic field (for EPR signals with g-factor near 2,0,
typically 350 mT for X-band and 1 200 mT for Q-band) is restricted to the region between the pole caps
of the magnets, and therefore, there is no associated health risk (can affect watches or credit cards if
brought very close to the pole gap).
Due to the open nature of some in vivo EPR spectrometers, the magnetic field (for EPR signals with
g-factor near 2,0, 40 mT for L-band) combined with large gaps between the poles has the potential
to project the 0,5 mT line beyond the confines of the room. This line needs to be determined and
appropriate shielding placed for areas that exceed this limit and that are accessed by the general public.
The establishment of the 0,5 mT limit is based on concerns about potential effects on pacemakers,
which could pose a significant hazard from the magnetic fields that are employed with open in vivo EPR
spectrometers. The conventional limit is 0,5 mT (which is very conservative) and surveys should be
[53]
made to confirm that this field is not exceeded where a person with a pacemaker could be positioned .
Effects of modulation fields on tissues or tooth restorations are not a significant hazard.
5.2 Electromagnetic frequency
5.2.1 in vitro measurement
The configurations used for in vitro measurements have no hazard for exposure of operators, as
the spectrometer usually fully constrains the microwave to the sample with no significant amount
distributed outside of the resonator.
5.2.2 in vivo measurement
Measurements in vivo have the potential hazard of local heating of tissue. The operative safety limit
is that established for NMR in terms of permissible rates of energy absorption. In practice, this is a
potential hazard only at high incident microwave power levels — typically >1 W, which is at least a
factor of 3 greater than that in existing instruments.
5.3 Biohazards from samples
Biological samples measured in vitro should be handled in conformance to the rules of the jurisdiction
for routine practice for handling biological samples.
Measurements of teeth in vivo should follow the routines practiced for ordinary dentistry in regard to
potential contamination from subjects to operators or other subjects.
6 Collection/selection and identification of samples
All samples should be collected in as uniform manner as possible and the circumstances of the collection
noted, although this may not always be able to be controlled by the measuring laboratory. If prior
coordination between the collecting and the measuring laboratories is possible, requirements about the
sample collection, selection (of donors, location, or materials) and storage (sample holder, integrity of
the sample and of the container, temperature, light, UV) should be given. If information about samples
is available, keep record of them (this information can be about the location of the sample, origin or
history of the sample, information about donor, etc.). All samples should have a unique identifying code
associated with them.
7 Transportation and storage of samples
If sample collection is made in a place other than the measuring laboratory, then samples should
be transported and stored under specified environmental conditions. These conditions should be
coordinated between the collecting and the measuring laboratories. Conditions of transportation
and storage of the sample may affect the integrity of the sample and also modify the quantity of
paramagnetic centres or the nature of the paramagnetic centres in the samples. Environmental
parameters such as light and other types of radiations (UV, X-rays, gamma), temperature, humidity,
oxygen, sample conditionings in water or disinfectant solution, for example, contamination (e.g. dust),
may significantly affect the nature and quantity of paramagnetic centres in the samples. Therefore,
specific attention should be paid as to the conditions of transportation and storage to avoid or limit as
much as possible the influence of environmental parameters on the samples. Details for transport and
[52]
storage of tooth samples for ex vivo measurements are provided in ISO 13304-2 .
If possible, the influence of these parameters on the radiation-induced signal line shape and intensity
should be investigated to establish the optimum conditions for transportation or storage and to avoid
unnecessary precautions. When samples are known to be sensitive to one or several environmental
conditions or the influence of these parameters or samples is not known, it is highly recommended that
precautions are taken so as to avoid conditions that could affect the samples.
Transportation conditions, including dates, ways of transportation, and mode of control of
transportation conditions, should be recorded. Appropriate sample packaging should always be used to
prevent sample physical damage.
Procedures to avoid X-ray exposure of the sample during airport controls should be implemented. The
dose at the X-ray hand luggage control is of the order of the microgray, so it can be considered negligible
for some applications. If not, when the sample is transported in hand luggage, then authorization for
X-ray exemption should be obtained in advance in order to avoid hindrance at the airport security
controls. X-ray dose to the hold luggage can be higher. For shipping, appropriate labelling (including a
note that the package contains radiation-sensitive dosimeters and, therefore, should not be irradiated)
should be used. When this is not possible, unirradiated identical control samples or dosimeters should
be placed in the package.
After the samples are received, they should be stored under stable conditions and the temperature and
humidity should be monitored and recorded. Exposure to light should always be avoided.
8 Preparation of samples
Sample preparation should be performed according to an established and explicit protocol. Details for
[52]
creation of a protocol for ex vivo measurements of tooth samples are provided in ISO 13304-2 .
For in vitro and ex vivo measurements, sample preparation is usually needed to accomplish several
goals, including: achieving a sample size that fits in the measurement tube; reducing anisotropy;
ensuring disinfection; eliminating paramagnetic impurities from the sample; drying the sample; and
stabilizing the EPR signals.
When required, preparation of the sample can be done by grinding, crushing, cutting, drilling, or other
mechanical treatments. During these operations, sample overheating should be avoided by using water
irrigation or other cooling systems. Metal contamination of the sample can be avoided by using hard
alloy tools.
Water irrigation of nails can influence the radiation-induced signal (RIS) and should be applied with care.
As needed, sterilization, cleaning, deproteination, and/or delipidation are performed using chemical
agents. Thermal treatment (annealing, freezing) can be used to accelerate or slow down recombination
of the radicals. Samples with significant amounts of moisture can be dried before the EPR measurements
to improve signal-to-noise ratio.
The setup of a protocol for sample preparation shall ensure no disturbing effect of the protocol on the
EPR signals (lineshape and intensity) used for dose estimation, and no generation of additional EPR
4 © ISO 2020 – All rights reserved

signals. When employing the additive dose method (see 11.2.1), it is very desirable to use protocols that
do not affect the radiation sensitivity.
The protocol should be described in details in documents, including: the duration of treatment, quality
of reagents, and the instrumentation used and its performance. All samples should be prepared
following the same protocol. Samples used for calibration have to be treated according to the same
protocol as the samples to be measured.
Any modification to the protocol should be noted and the influence of each modification evaluated (e.g.
power or frequency of ultrasonic bath, reagent quality).
All details of the procedures for each sample shall be recorded in a log of the history of the sample.
For measurements in vivo, there are no requirements for preparation of the samples. Depending
on the site that is measured, there may be a need to minimize moisture (especially when making
measurements in vivo in teeth) or to carry out some cleaning procedures (e.g. removing obvious
particulate matter from nails). Because of the limited ability to control environmental conditions fully
when making measurements in vivo, it is highly desirable to always utilize a standard sample that is in
place and with a known relationship to the sample volume so that factors that affect the measurements
(especially factors that affect the quality factor of the resonator) can be detected and accounted for in
the processing of the data.
9 Apparatus
9.1 Principles of EPR spectroscopy
EPR is a technique that specifically and sensitively detects unpaired electrons. It is based on the
[54]
resonant absorption of electromagnetic energy for transitions between electron spin states . A static
magnetic field is applied that induces net absorption from transitions between spin states if there is a
vacant level to which the spin can flip. In a magnetic field, the different spin states result in different
energy levels, with the difference in the energy being proportional to the magnetic field. A transition
between these two levels can be induced by an appropriate electromagnetic field.
Currently, continuous wave (CW) EPR spectroscopy is usually used for EPR dosimetry. In an EPR
CW spectrometer, the resonance frequency is applied to a resonant structure and absorption of the
electromagnetic waves by a sample in the resonator is detected. Typically, the resonant condition is
reached by continuously changing the main magnetic field, while a fixed frequency is applied to the
resonator. As a result, an EPR spectrum of absorption versus magnetic field intensity is obtained. Other
methods of EPR signal detection such as pulsed EPR, fast scan EPR spectroscopy, etc. are potentially
available, but to date, these have not been shown to be more effective for dosimetry application than
CW EPR. So, considerations on EPR dosimetry in this document are restricted to CW EPR, although
most of the guidelines would be applicable to other types of EPR spectroscopy.
To improve the signal-to-noise ratio, modern EPR CW spectrometers employ high-frequency magnetic
field modulation in combination with phase-sensitive detection. As a result, the original spectral line
is produced not in the form of an absorption curve, but in the form of its first derivative. In modern
spectrometers, the EPR signal is recorded in digital form using a dedicated computer. In most
spectrometers, the computer also is used to control operation of the spectrometer, e.g. for setting
measurement parameters, tuning the resonator, acquiring the signal, saving the recorded spectrum to
disk, and preliminary spectra processing (such as digital filtering, baseline correction, etc.).
Depending on the magnetic field intensity and, respectively, the resonance frequency, the following
band frequencies are commonly used for EPR dosimetry.
— X-band usually is used for EPR in vitro dosimetry because of a good compromise between sensitivity,
sample size, and sensitivity to the presence of water.
— L-band is used mainly for in vivo tooth dosimetry because of the relatively low amount of non-
resonant absorption of the microwaves due to the presence of water in biological tissues. Q-band
is mainly used in research connected with investigation of spectroscopic properties of materials
suitable for EPR dosimetry and has potential for being utilized for in vitro dosimetry. An advantage
of Q-band is that only a small sample mass is required for measurements and spectral components
can be better resolved in comparison with lower frequencies. On the other hand, such spectrometers
are not widely available, often are more complex to use, and may have a lower signal-to-noise ratio.
9.2 Requirements for EPR spectrometers
As EPR dosimetry often deals with small sample masses and low intensity signals, the sensitivity and
stability of the instruments are critical. Sensitivity and stability may be optimized by proper choice of
instrumental factors (such as selection of resonator, its tuning, and minimization of the microphonic
effects) and selection of the measurement parameters.
9.3 Requirements for the resonator
There are a number of different available designs in resonators, and therefore, it is important to choose
[54]
the one that is optimal for the particular type of materials used for dosimetry . Critical aspects
include the sensitivity for the particular type of material, the available microwave power, and the
potential for placing the sample accurately in the most sensitive region of the resonator. It is essential
to systematically monitor the sensitivity and the accuracy of the various settings, including the
modulation amplitude. While theoretical considerations should be used to decide on the approximate
optimal settings, the final tests should be actual measurements with each pertinent parameter
empirically confirmed by measurements in which the parameter (e.g. the modulation amplitude) is
varied to find the setting that gives the maximum signal-to-noise ratio.
9.4 Measurements of the background signals
EPR signals may be originated by other paramagnetic centres in the resonator and also measurement
tube for in vitro analysis. Therefore, it is essential that measurements of empty resonator and empty
measurement tube be made under the same conditions as for samples used for dosimetry. The
background signal measured without sample tube may be used to ensure that the background is indeed
due to only the resonator.
The following types of the background signal of the resonator and baseline variation may be observed,
and if the type is identified, then one can more readily take proper actions to minimize its effect.
If a stable background signal is observed, then the resonator or the sample tube may be contaminated.
Careful cleaning of the resonator or the tube may diminish the effects of this type of background signal.
In the case where the background signal varies with repositioning or reinserting the sample and does
not have a consistent nature as expected with a paramagnetic contaminant, this is likely to be due to
“microphonics”. This can occur with both low frequency (e.g. L-band) and X-band. Dosimetry often
requires that the system be pushed to the limits of sensitivity, which makes the system susceptible to
microphonic noise. This appears to be due to mechanical effects, especially from modulation fields, but
is far from being fully understood. These effects sometimes can be minimized by careful attention to all
possible sources of vibrations and rigidity in the physical components and careful electrical grounding
of all components.
9.5 Spectrometer stability and monitoring/control of environmental conditions
The spectrometer should be allowed to reach a stable operating temperature in regard to both ambient
conditions and the EPR spectrometer’s cooling water. For maximum stability under demanding
operating conditions, such as any combination of high microwave power, high magnetic field modulation
amplitude, and variable temperature work, it is important to allow the system to equilibrate under the
same conditions as the experiment that is to be performed. One hour is usually adequate to achieve
temperature equilibrium.
6 © ISO 2020 – All rights reserved

It is necessary to maintain a controlled environment for the best spectrometer performance. Air
flowing through the spectrometer, especially the cavity, may induce temperature fluctuations or
microphonics from sample vibration. Large fluctuations in the ambient temperature may degrade
performance by reducing the frequency stability of the cavity. Very humid environments may cause
water condensation. Condensation inside the cavity may be reduced by maintaining a constant purging
stream of dry nitrogen gas. Note that excessive gas flow rates may generate microphonic noise through
sample vibration.
Noise pick-up from electromagnetic fields may be encountered in some environments. It may be
possible to reduce such noise by shielding or perhaps by turning the noise source off if it is identified to
be generated by equipment near the spectrometer.
9.6 Baseline drift
Baseline drift is connected with stability of operation of the spectrometer. Baseline drift should be
minimized by optimization of operational conditions. Correction of the baseline drift effects on the
spectrum may be performed immediately after measurements with the use of the basic software of the
spectrometer, or it may be corrected during subsequent spectra processing of the radiation-induced
signal with the use of special software.
Linear baseline drift: The use of very high modulation amplitudes can produce large eddy currents
in the sidewalls of the resonator. These currents can interact with the magnetic field to produce a
torque on the resonator and create a resonant frequency shift. A linear-field-dependent or modulation-
amplitude-dependent baseline is indicative of such an effect. This phenomenon should not be observed
if the resonator end plates are properly fitted and torqued.
Slowly and randomly varying baseline: The use of high microwave power or large modulation fields can
heat the resonator and the sample. The ensuing thermal drifts in the coupling of the resonator, as well
as the frequency of the resonator, can result in a fluctuating offset in the signal. Allow the tuned cavity
and sample to come to thermal equilibrium before performing the final tuning of the cavity. Once the
resonator is equilibrated and properly tuned under equilibrium conditions, one can start acquiring a
spectrum. Avoid air drafts around the resonator, as they can randomly change the temperature of the
cavity and sample and hence the baseline of the spectrum.
10 Measurements of the samples
10.1 General principles
The goal is to measure the intensity of the radiation-induced signals with uncertainties sufficient to
meet desirable dose uncertainties. This requires appropriate conditions for acquisition of the spectra
by selection of optimal measurement parameters. In some materials, signals may be present other than
those induced by radiation, which requires that the measurement procedure should be optimized to
allow for minimizing the potential perturbation from such signals.
10.2 Choice and optimization of the measurement parameters
10.2.1 General
There are three groups of parameters for making measurements with an EPR spectrometer:
microwave-related parameters, magnetic field parameters, and signal detection parameters. The aim
of this subclause is to provide a basis for proper selection of parameters necessary to record an EPR
spectrum of radiation-induced signal from radiation-induced radicals as well as the overlapping signals.
Depending on spectrometer type, some of the measurement parameters may not be available.
10.2.2 Microwave-related parameters
10.2.2.1 Microwave frequency. It refers to the resonant frequency of the loaded microwave resonator.
It is dependent on the operation band of the spectrometer, type of resonator, and properties of the
[54]
inserted sample .
10.2.2.2 Microwave power. The EPR signal intensity increases as the square root of the microwave
power in the absence of saturation effects. Several microwave power levels should be tried to find the
optimal microwave power. Varying the microwave power produces effects on all EPR signals. Influence
of microwave power on the baseline drift is described in 9.6. The microwave power should be properly
selected in order to achieve the highest ratio of “radiation-induced signal/signals from other sources”.
10.2.3 Magnetic field parameters
10.2.3.1 Magnetic field at resonance. The value of magnetic field at resonance is determined by the
microwave frequency. The centre of the magnetic field sweep is approximately 350 mT for a frequency of
9,8 GHz and an EPR signal with g-factor near 2,0 (main line of the radiation-induced signal). It is about
40 mT for L-band and 1 200 mT for Q-band.
10.2.3.2 Magnetic field sweep width. Magnetic field sweep width is determined by the type of
dosimetric material and sometimes also by the desire to record a standard sample (see 10.5). For
example, if a marker sample of MnO is recorded simultaneously with spectrum of the sample at X-band, a
typical value of 10 mT is used to record central part of the spectrum near g-factor equal 2,0 together with
lines 3 and 4 of the standard.
10.2.3.3 Magnetic field sweep time. EPR signals are recorded with minimal distortion if the sweep
time through the signal peak-to-peak line width is at least 10 times longer than the receiver time constant
of the signal channel receiver low-pass filter (principles of selection for this parameter are described
below, in 10.2.4.2).
NOTE For undistorted recording of the radiation-induced EPR signal of tooth enamel in X-band (which has
approximately 0,4 mT in width), the sweep time is set up to 125 and 250 times longer than the time constant for a
5 mT and 10 mT sweep width, respectively. Typical sweep times are in the range between 20 s and 80 s.
10.2.4 Signal channel parameters
10.2.4.1 Receiver gain. It is convenient to have sufficient receiver gain in order to readily visualize the
signal. With excessive receiver gain, the signal is clipped.
10.2.4.2 Time constant of receiver. The time constant filter reduces random (white) noise. If the scan
is too fast for the chosen setting, the signal is distorted and reduced. The use of a time constant, such
that the time needed to scan through an EPR signal is about 10 times greater than the length of the time
constant, avoids such distortion. In the most recent spectrometers, the time constant is not used because
digital filters have replaced the previous capacity filters.
10.2.4.3 Spectrum resolution. Spectrum resolution is determined by the number of channels used
by the signal channel analog-to-digital converter (ADC) for spectral acquisition. It should be selected
to have enough number of data points to resolve spectral features important for analysis. Typically,
to provide a resolution of 0,01 mT and 0,005 mT for sweep width of 10 mT and 5 mT, respectively,
1 024 channels are used.
10.2.4.4 Conversion time. It is the duration of acquisition for each channel. This parameter is chosen
in accordance with selected sweep time, which is defined as a product of the number of channels used in
spectrum acquisition (spectrum resolution) and the conversion time of each channel.
8 © ISO 2020 – All rights reserved

10.2.4.5 Modulation frequency. The frequency of the magnetic field modulation should be set as high
as possible to achieve the best signal-to-noise ratio. Usually, the upper limit is set to prevent broadening of
very narrow EPR signals at high modulation frequency. In practice, most commercial EPR spectrometers
operate with 50 kHz or 100 kHz modulation frequency. For these values of modulation frequency, EPR
lines shall be broader than about 0,002 mT or 0,004 mT, respectively.
10.2.4.6 Modulation amplitude. Field modulation amplitude should not exceed the width of the EPR
signal. The use of the higher values is not practical because it leads to broadening of the radiation-
induced signal and reduction of signal resolution.
10.2.4.7 Sweep time and number of signal accumu
...


NORME ISO
INTERNATIONALE 13304-1
Deuxième édition
2020-07
Radioprotection — Critères minimaux
pour la spectroscopie par résonance
paramagnétique électronique (RPE)
pour la dosimétrie rétrospective des
rayonnements ionisants —
Partie 1:
Principes généraux
Radiological protection — Minimum criteria for electron
paramagnetic resonance (EPR) spectroscopy for retrospective
dosimetry of ionizing radiation —
Part 1: General principles
Numéro de référence
©
ISO 2020
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2020
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2020 – Tous droits réservés

Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 2
4 Confidentialité et considérations déontologiques . 3
5 Exigences de sécurité relatives aux laboratoires. 3
5.1 Champ magnétique . 3
5.2 Fréquence électromagnétique . 3
5.2.1 Mesurage in vitro . 3
5.2.2 Mesurage in vivo . 3
5.3 Risques biologiques pour les échantillons . 3
6 Prélèvement/choix et identification des échantillons . 4
7 Transport et stockage des échantillons . 4
8 Préparation des échantillons . 5
9 Appareillage . 6
9.1 Principes de la spectroscopie RPE . 6
9.2 Exigences relatives aux spectromètres RPE . 6
9.3 Exigences relatives au résonateur . 7
9.4 Mesurages des signaux parasites . 7
9.5 Stabilité du spectromètre et surveillance/contrôle des conditions environnementales . 7
9.6 Dérive de la ligne de base . 8
10 Mesurages des échantillons . 8
10.1 Principes généraux . 8
10.2 Choix et optimisation des paramètres de mesure . 8
10.2.1 Généralités . 8
10.2.2 Paramètres liés aux micro-ondes . 9
10.2.3 Paramètres de champ magnétique . 9
10.2.4 Paramètres du canal de signal. 9
10.3 Positionnement et chargement de l’échantillon .10
10.4 Réglage du pont de mesure micro-onde .11
10.5 Utilisation d’échantillons de référence comme marqueurs de champ et contrôleurs
d’amplitude .11
10.6 Reproductibilité du contrôle .12
10.7 Mode opératoire de mesure des échantillons anisotropes .12
10.8 Codage des spectres et des échantillons .12
11 Détermination de la dose absorbée dans les échantillons .12
11.1 Détermination de l’intensité du signal induit par le rayonnement.12
11.2 Conversion du signal RPE en une estimation de dose absorbée .13
11.2.1 Conversion du signal RPE en une estimation de dose absorbée pour la
dosimétrie in vitro .13
11.2.2 Conversion du signal RPE en une estimation de dose absorbée pour la
dosimétrie dentaire in vivo .13
12 Incertitude de mesure .14
13 Examen d’une dose suspecte.14
14 Assurance qualité et contrôle de la qualité (AQ et CQ) .15
15 Exigences minimales concernant la documentation .16
Bibliographie .18
iv © ISO 2020 – Tous droits réservés

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant: www .iso .org/ iso/ fr/ avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 85, Énergie nucléaire, technologies
nucléaires, et radioprotection, sous-comité SC 2, Radioprotection.
Une liste de toutes les parties de la série ISO 13304 se trouve sur le site web de l’ISO.
Cette deuxième édition annule et remplace la première édition (ISO 13304-1:2013), qui a fait l’objet
d’une révision technique. Les modifications apportées par rapport à l’édition précédente sont les
suivantes:
— inclusion de références bibliographiques dans le texte;
— ajout d’une référence informative à l’ISO 13304-2;
— mise à jour de la bibliographie.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
Introduction
La résonance paramagnétique électronique (RPE) est une technique couramment utilisée en dosimétrie
rétrospective lorsque les informations dosimétriques concernant un individu sont potentiellement
incomplètes ou inconnues. Elle est maintenant largement utilisée pour l’évaluation rétrospective des
doses délivrées à des moments précis dans le passé (par exemple la dosimétrie par RPE est l’une des
méthodes de choix pour l’évaluation rétrospective des doses délivrées aux populations exposées à l’arme
atomique au Japon et aux personnes exposées suite à l’accident de Tchernobyl) et elle est également
envisagée comme méthode de tri de population après des accidents impliquant un grand nombre de
[1] à [12]
personnes potentiellement exposées à des niveaux de rayonnement cliniquement significatifs .
Divers types de matériaux peuvent être analysés par la technique RPE pour estimer la dose
[13] à [41]
absorbée dans ceux-ci . Ainsi, la spectroscopie RPE est un outil polyvalent pour la dosimétrie
rétrospective, qui est aussi bien mis en œuvre pour les expositions aiguës (passées ou récentes, d’une
partie ou de l’ensemble du corps) que pour les expositions de longue durée. Les doses estimées avec la
méthode RPE ont principalement été utilisées pour établir une corrélation entre les effets biologiques
des rayonnements ionisants et la dose reçue, pour valider d’autres techniques ou méthodologies ainsi
que pour assurer la gestion des victimes d’accident d’irradiation ou de l’expertise médico-légale dans
[42]
le cadre de procédures judiciaires . Les tissus biologiques humains sont les principaux matériaux
utilisés pour la dosimétrie rétrospective par RPE, mais des matériaux provenant d’objets personnels
ainsi que des objets situés dans l’environnement immédiat des personnes exposées peuvent être
également utilisés. Le principe de la dosimétrie par RPE est basé sur les propriétés fondamentales
des rayonnements ionisants: la production d’espèces comportant des électrons non appariés (souvent,
mais non exclusivement, des radicaux libres) en quantité proportionnelle à la dose absorbée. La
technique RPE permet de détecter de manière spécifique et sensible les quantités d’électrons non
appariés suffisamment stables pour pouvoir être observés après leur création; bien que la quantité
d’électrons non appariés détectés soit en général directement proportionnelle à la quantité générée,
ces espèces peuvent réagir, d’où la nécessité d’établir, pour chaque type d’utilisation, la relation entre
l’intensité du signal RPE et la dose de rayonnement. Cette technique a été le plus souvent appliquée
[43] à [50]
sur des tissus calcifiés, notamment l’émail dentaire . Un rapport technique de l’AIEA a été
[51]
publié sur l’application de cette technique à l’émail dentaire . Afin d’étendre le champ d’application
de la dosimétrie rétrospective par RPE, de nouveaux matériaux potentiellement appropriés pour la
dosimétrie par RPE sont régulièrement étudiés et des protocoles associés établis. L’objectif du présent
document est de faciliter la diffusion de cette technique, de la rendre plus facilement applicable et
plus utile pour la dosimétrie. Spécifiquement, le présent document propose un cadre méthodologique
et des recommandations pour établir, valider et appliquer des protocoles allant du prélèvement des
échantillons jusqu’au report des doses. L’application du présent document à la dosimétrie ex vivo de
[52]
l’émail dentaire humain est décrite dans l’ISO 13304-2 .
vi © ISO 2020 – Tous droits réservés

NORME INTERNATIONALE ISO 13304-1:2020(F)
Radioprotection — Critères minimaux pour la
spectroscopie par résonance paramagnétique électronique
(RPE) pour la dosimétrie rétrospective des rayonnements
ionisants —
Partie 1:
Principes généraux
1 Domaine d’application
Le but principal du présent document est de fournir un ensemble de critères minimaux acceptables
requis pour établir un mode opératoire pour la dosimétrie rétrospective par spectroscopie par
résonance paramagnétique électronique et pour présenter les résultats dans un rapport.
Son second objectif est de faciliter la comparaison des mesures associées à l’estimation de la dose
absorbée de différents laboratoires.
Le présent document couvre la détermination de la dose absorbée dans le matériau mesuré. Il ne
couvre pas le calcul de la dose délivrée aux organes ou à l’organisme entier. Il ne concerne que les
mesurages de dosimétrie effectués sur des échantillons biologiques et des échantillons inertes, et plus
particulièrement:
a) les mesurages de matériaux environnementaux inertes, tels que les verres, les polymères, les tissus
pour vêtements, les saccharides, etc. généralement réalisés avec des fréquences micro-ondes dans
la bande X (8 GHz à 12 GHz);
b) les mesurages in vitro de prélèvement d’émail dentaire, placé dans un tube porte-échantillon,
et mesuré en général en bande X, mais des fréquences micro-ondes plus élevées sont également
considérées;
c) les mesurages in vivo de dents, réalisés actuellement en bande L (1 GHz à 2 GHz), mais des
fréquences micro-ondes plus élevées sont également considérées;
d) les mesurages in vitro de prélèvements d’ongles, effectués principalement en bande X, mais des
fréquences micro-ondes plus élevées sont également considérées;
e) les mesurages in vivo des ongles, effectués en bande X sur les ongles des doigts ou des orteils;
f) les mesurages in vitro de tissus osseux, réalisés en général en bande X, mais des fréquences
micro-ondes plus élevées sont également considérées.
En ce qui concerne les échantillons biologiques, les mesurages in vitro sont effectués sur des échantillons
prélevés sur une personne ou un animal et dans des conditions de laboratoire, tandis que les mesurages
in vivo sont réalisés sans prélèvement d’échantillon et peuvent s’effectuer sur le terrain.
NOTE La dose mentionnée dans le présent document est la dose absorbée de rayonnement ionisant dans les
matériaux mesurés.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp;
— IEC Electropedia: disponible à l’adresse http:// www .electropedia .org/ .
3.1
dosimétrie rétrospective (incluant les expertises dans des délais courts et les situations
d’urgence)
dosimétrie effectuée généralement sur une personne après une exposition à des rayonnements
ionisants en utilisant des méthodes autres que les méthodes classiques de surveillance dosimétrique
3.2
résonance paramagnétique électronique
RPE
résonance de spin électronique
RSE
technique de résonance magnétique similaire à la résonance magnétique nucléaire (RMN), mais fondée
sur la résonance des spins électroniques non appariés, tels que ceux présents dans les radicaux libres
ou ceux liés à une vacance ou une substitution d’atomes dans un réseau cristallin
Note 1 à l'article: Le terme de RPE est maintenant le plus communément utilisé. Le terme RSE est de moins en
moins employé. Le terme résonance magnétique électronique (RME), plus récent, est parfois employé, car il est
analogue au terme RMN (résonance magnétique nucléaire).
3.3
radical/centre paramagnétique
espèce contenant un ou plusieurs électrons non appariés
Note 1 à l'article: Les électrons appariés ont le même état quantique, mais des spins orientés de manière opposée;
les électrons non appariés n’ont pas de «partenaire» avec un spin électronique opposé. Lorsque le spin non
apparié se trouve sur une molécule, il est habituellement nommé «radical»; lorsque l’électron non apparié se
trouve dans une matrice, il est souvent nommé «centre paramagnétique».
3.4
mesurage in vivo
mesurage réalisé sur un système vivant comme des mesurages de centres paramagnétiques (3.3)
présents dans l’émail dentaire mesurés directement dans la cavité buccale
3.5
mesurage in vitro
mesurage de prélèvements biologiques réalisé à l’extérieur de l’organisme
Note 1 à l'article: Le terme ex vivo a également été utilisé dans la littérature pour des échantillons prélevés et
analysés in vitro, mais irradiés à l’intérieur de l’organisme.
3.6
assurance qualité
actions planifiées et systématiques nécessaires pour attester qu’un processus, un mesurage ou un
service satisfait aux exigences de qualité définies
3.7
contrôle de la qualité
actions planifiées et systématiques destinées à vérifier que les systèmes et les composants sont
conformes aux exigences prédéterminées
2 © ISO 2020 – Tous droits réservés

4 Confidentialité et considérations déontologiques
Il convient de ne joindre aucune information permettant d’identifier un donneur d’échantillons aux
informations figurant sur les échantillons et il convient que ces informations soient sécurisées. Il
convient d’identifier les échantillons correspondants par des codes avec seulement une indication
des paramètres présentant un intérêt scientifique et pour la prise de décisions. La conservation des
données reliant le code à l’identité de la personne est autorisée à condition qu’elle soit sécurisée, avec
un accès restreint aux seules personnes en charge de ces données.
Le cas échéant, il convient que la permission pour l’acquisition et le mesurage des échantillons soit
obtenue conformément à la réglementation de la juridiction dans laquelle les échantillons sont obtenus.
5 Exigences de sécurité relatives aux laboratoires
5.1 Champ magnétique
Avec des spectromètres RPE conventionnels, le champ magnétique (pour des signaux RPE avec un
facteur g proche de 2,0, typiquement 350 mT en bande X, et 1 200 mT en bande Q) est confiné dans
l’espace entre les pôles des aimants (l’entrefer) et il n’y a donc a priori aucun risque associé pour la
santé (les montres ou les cartes à lecture magnétique peuvent toutefois être endommagées si elles sont
placées à proximité de l’entrefer).
L’absence de confinement du champ magnétique de certains spectromètres RPE in vivo (pour les
signaux RPE avec un facteur g proche de 2,0, 40 mT en bande L) associée aux espacements importants
entre les pôles peut potentiellement induire des champs supérieurs à la limite admise de 0,5 mT au-delà
du périmètre du local du spectromètre. Il est nécessaire de déterminer le périmètre associé à cette
limite et qu’un blindage approprié soit mis en place pour les zones qui dépassent cette limite et qui
sont accessibles au public. L’établissement de la limite à 0,5 mT est fondé sur les effets potentiels sur
les pacemakers, qui pourraient constituer un danger important en raison des champs magnétiques qui
sont utilisés avec les spectromètres RPE in vivo à champ non confiné. La limite conventionnelle est fixée
à 0,5 mT (qui est une valeur très conservative) et il convient que des contrôles soient effectués pour
confirmer que cette limite n’est pas dépassée si une personne équipée d’un pacemaker est susceptible
[53]
de se trouver à proximité .
Les effets des champs modulés sur les tissus ou les restaurations de restauration dentaire ne constituent
pas un risque significatif.
5.2 Fréquence électromagnétique
5.2.1 Mesurage in vitro
Les configurations utilisées pour les mesurages in vitro ne présentent pas de risque connu concernant
l’exposition des opérateurs, car le spectromètre concentre généralement complètement les micro-ondes
sur l’échantillon sans qu’une quantité notable soit émise à l’extérieur du résonateur.
5.2.2 Mesurage in vivo
Les mesurages in vivo présentent le risque d’un échauffement local. La limite de sécurité fonctionnelle
est celle établie pour la RMN concernant les taux admissibles d’absorption d’énergie. Dans la pratique,
il n’y a de risque qu’à des niveaux élevés de puissance micro-onde incidente, en général > 1 W, ce qui
représente au moins un facteur trois fois supérieur à celui des instruments existants.
5.3 Risques biologiques pour les échantillons
Il convient que les échantillons d’origine biologique mesurés in vitro soient traités conformément à la
réglementation en vigueur pour les pratiques courantes de manipulation des échantillons biologiques.
Il convient que les mesurages effectués sur des dents in vivo soient conformes aux pratiques courantes
chez les professionnels de la santé bucco-dentaire eu égard à la contamination potentielle des
opérateurs ou autres personnes par les sujets examinés.
6 Prélèvement/choix et identification des échantillons
Il convient que les échantillons soient prélevés d’une manière aussi uniforme que possible et que les
conditions de prélèvement soient consignées, bien que le laboratoire de mesure ne soit pas toujours en
mesure de le contrôler. Si une coordination préalable est possible entre les laboratoires en charge des
prélèvements et ceux réalisant les mesurages, il convient que les exigences concernant les prélèvements,
la sélection (des donneurs, du lieu ou des matériaux) et la conservation (porte-échantillon, intégrité de
l’échantillon et du récipient, température, lumière, rayonnement ultraviolet) soient spécifiées. Si des
informations concernant les échantillons sont disponibles, il convient de les conserver (il peut s’agir
d’informations concernant l’emplacement, l’origine ou l’historique de l’échantillon, ou d’informations
concernant le donneur, etc.). Il convient qu’un code d’identification unique soit associé à chacun des
échantillons.
7 Transport et stockage des échantillons
Si le prélèvement des échantillons a lieu dans un endroit autre que le laboratoire de mesure, il convient
alors que ces échantillons soient transportés et conservés dans des conditions environnementales
spécifiées. Il convient que ces conditions soient convenues entre les laboratoires en charge du
prélèvement et ceux en charge du mesurage. Les conditions de transport et de conservation de
l’échantillon peuvent altérer l’intégrité de l’échantillon et modifier la quantité ou la nature des centres
paramagnétiques dans les échantillons. Les paramètres environnementaux, tels que la lumière et autres
types de rayonnements (UV, rayons X, gamma, etc.), la température, l’humidité, la teneur en oxygène, le
conditionnement des échantillons dans l’eau ou dans une solution désinfectante par exemple, ou encore
la contamination (par exemple poussière), peuvent altérer considérablement la nature et la quantité
des centres paramagnétiques dans les échantillons. En conséquence, il convient de prêter une attention
particulière aux conditions de transport et de conservation afin d’éviter ou de limiter autant que
possible l’influence des paramètres environnementaux sur les échantillons. Des informations relatives
au transport et à la conservation des échantillons d’émail dentaire pour les mesurages ex vivo sont
[52]
fournies dans l’ISO 13304-2 .
Si possible, il convient d’étudier l’influence de ces paramètres sur la forme et l’intensité de la raie
du signal induit par les rayonnements ionisants afin de déterminer les conditions optimales pour
le transport ou la conservation et d’éviter les précautions inutiles. Si les échantillons sont réputés
sensibles à une ou plusieurs conditions environnementales ou si l’influence de ces paramètres sur les
échantillons n’est pas connue, il est vivement recommandé que des précautions soient prises pour éviter
les conditions susceptibles d’affecter les échantillons.
Il convient que les conditions de transport, y compris les dates, les moyens de transport et le mode de
contrôle des conditions de transport soient consignés. Il convient que des emballages pour échantillons
soient toujours utilisés afin de protéger les échantillons contre toute détérioration physique.
Il convient que des procédures soient mises en œuvre pour éviter l’exposition des échantillons aux
rayons X lors des contrôles aux aéroports. La dose au niveau du contrôle par rayons X des bagages à main
étant de l’ordre du microgray, elle peut être considérée comme négligeable pour certaines applications.
Si tel n’est pas le cas, lorsque l’échantillon est transporté dans un bagage à main, il convient d’obtenir
par avance une autorisation dispensant le bagage du contrôle par rayons X afin d’éviter les soucis lors
des contrôles de sécurité dans les aéroports. Le bagage porté peut être soumis à une dose plus élevée
de rayons X. Pour l’expédition, il convient d’utiliser un étiquetage approprié (comprenant une note
indiquant que le colis contient des dosimètres sensibles aux rayonnements et qu’il convient de ne pas
l’irradier). Si cela n’est pas possible, il convient de placer des échantillons ou des dosimètres témoins
identiques non irradiés dans le colis.
4 © ISO 2020 – Tous droits réservés

Une fois les échantillons réceptionnés, il convient de les conserver dans des conditions stables et de
surveiller et de consigner la température et l’humidité. Il convient de toujours éviter l’exposition des
échantillons à la lumière.
8 Préparation des échantillons
Il convient que la préparation des échantillons soit effectuée selon un protocole établi et explicite. Des
détails concernant la mise au point d’un protocole applicable aux mesurages ex vivo des échantillons
[52]
d’émail dentaire sont fournis dans l’ISO 13304-2 .
Pour les mesurages in vitro et ex vivo, la préparation des échantillons est habituellement requise pour
atteindre plusieurs objectifs, parmi lesquels: l’obtention d’une taille d’échantillon adaptée au tube de
mesure, la réduction de l’anisotropie, la désinfection, l’élimination des impuretés paramagnétiques
contenues dans l’échantillon, le séchage de l’échantillon et la stabilisation des signaux RPE.
Si nécessaire, la préparation de l’échantillon peut être effectuée par broyage, concassage, découpage,
perçage ou autres traitements mécaniques. Durant ces opérations, il convient d’éviter de surchauffer
l’échantillon en utilisant un dispositif d’aspersion d’eau ou d’autres systèmes de refroidissement. La
contamination de l’échantillon par des métaux peut être évitée en utilisant des outils en alliages durs.
L’humidification des ongles peut influer sur les signaux induits par les rayonnements et il convient donc
d’appliquer cette technique avec précaution.
Selon les besoins, la stérilisation, le nettoyage, la déprotéinisation et/ou le dégraissage sont effectués
à l’aide d’agents chimiques. Il est possible de procéder à un traitement thermique (recuit, congélation)
pour accélérer ou ralentir la recombinaison des radicaux. Les échantillons présentant des taux
d’humidité élevés peuvent être séchés avant d’être soumis aux mesurages par RPE afin d’améliorer le
rapport signal/bruit.
La mise en place d’un protocole de préparation des échantillons doit garantir l’absence d’effets
perturbateurs sur les signaux RPE (forme de raie et intensité) utilisés dans le protocole d’estimation de
la dose, ainsi que toute génération de signaux RPE supplémentaires. Lors de l’utilisation de la méthode
des ajouts dosés (voir 11.2.1), il est vivement recommandé d’utiliser des protocoles qui n’affectent pas la
réponse aux rayonnements.
Il convient que le protocole soit décrit en détail dans les documents et qu’il indique les éléments suivants:
la durée de traitement, la qualité des réactifs ainsi que l’instrumentation utilisée et ses performances.
Il convient que tous les échantillons soient préparés selon le même protocole. Les échantillons utilisés
pour l’étalonnage doivent être traités selon le même protocole que les échantillons à mesurer.
Il convient que toute modification du protocole soit consignée et que l’influence de chaque modification
soit évaluée (par exemple puissance ou fréquence du bain à ultrasons, qualité des réactifs).
Tous les détails de l’application des modes opératoires pour chaque échantillon doivent être documentés
dans un historique propre à chaque échantillon.
Pour les mesurages in vivo, il n’existe aucune exigence concernant la préparation des échantillons.
Selon le site mesuré, il est possible qu’il soit nécessaire de réduire le taux d’humidité (notamment
lors de mesurages effectués in vivo sur des dents) ou de réaliser certaines opérations de nettoyage
(par exemple élimination de matière particulaire évidente sur et/ou sous les ongles). En raison de la
capacité limitée de contrôle des conditions environnantes lors des mesurages in vivo, il est vivement
recommandé de toujours utiliser un échantillon de référence validé et ayant une relation connue
avec le volume de l’échantillon, de sorte que les facteurs qui affectent les mesurages (notamment les
facteurs influant sur le facteur de qualité du résonateur) puissent être détectés et pris en compte lors
du traitement des données.
9 Appareillage
9.1 Principes de la spectroscopie RPE
La résonance paramagnétique électronique (RPE) est une technique qui détecte de manière spécifique
et sensible les électrons non appariés. Elle est fondée sur l’absorption résonante d’une énergie
[54]
électromagnétique correspondant à celle entre les états de spins électroniques . L’application
d’un champ magnétique statique permet d’induire une absorption nette par les transitions entre
les états de spins s’il y a un niveau vacant que le spin peut occuper. Dans un champ magnétique, les
différents états de spins donnent lieu à des niveaux d’énergie différents, la différence d’énergie étant
proportionnelle au champ magnétique. Une transition entre ces deux niveaux peut être induite par un
champ électromagnétique approprié.
La spectroscopie RPE à ondes continues est habituellement utilisée pour la dosimétrie par RPE. Dans
un spectromètre RPE à ondes continues, la fréquence de résonance est appliquée à une structure
résonante et l’absorption des ondes électromagnétiques par un échantillon dans le résonateur est
détectée. En général, la condition de résonance est atteinte grâce à la variation continue du champ
magnétique principal, tandis qu’une fréquence fixe est appliquée au résonateur. En conséquence,
on obtient un spectre d’absorption RPE en fonction de l’intensité du champ magnétique. D’autres
méthodes de détection de signaux par RPE, telles que la spectroscopie RPE pulsée, la spectroscopie RPE
à balayage rapide, etc. sont potentiellement disponibles, mais jusqu’à présent, il n’a pas été démontré
que ces méthodes étaient plus efficaces pour l’application en dosimétrie que la technique RPE à ondes
continues. Ainsi, dans le présent document, les considérations sur la dosimétrie par RPE se limitent à
la spectroscopie RPE à ondes continues, bien que la plupart des lignes directrices soient applicables à
d’autres types de spectroscopie RPE.
Pour améliorer le rapport signal/bruit, les spectromètres RPE à ondes continues actuels utilisent une
modulation de champ magnétique à haute fréquence associée à une détection de phase sensible. En
conséquence, la raie spectrale initiale est produite non pas sous la forme d’une courbe d’absorption,
mais sous la forme de sa première dérivée. Dans les spectromètres modernes, le signal RPE est
enregistré sous forme numérique à l’aide d’un ordinateur dédié. Dans la plupart des spectromètres,
l’ordinateur permet également de contrôler le fonctionnement du spectromètre, par exemple pour fixer
les paramètres de mesure, régler le résonateur, acquérir le signal, sauvegarder le spectre enregistré
sur le disque dur et traiter les données préliminaires (tel que filtrage numérique, correction de ligne de
base, etc.).
Selon l’intensité du champ magnétique et, respectivement, la fréquence de résonance, les fréquences de
bande suivantes sont couramment utilisées pour la dosimétrie par RPE.
— La bande X est habituellement utilisée pour la dosimétrie par RPE in vitro, car elle constitue
un bon compromis entre sensibilité, taille d’échantillon et sensibilité à la présence d’eau dans
l’échantillon mesuré.
— La bande L est principalement utilisée pour la dosimétrie in vivo de l’émail dentaire en raison du
taux relativement faible de l’absorption non résonante des micro-ondes dû à la présence d’eau
dans les tissus biologiques. — La bande Q est principalement utilisée dans le cadre de l’étude
des propriétés spectroscopiques des matériaux appropriés pour la dosimétrie par RPE et peut
potentiellement être utilisée pour la dosimétrie in vitro. L’avantage de la bande Q réside dans le
fait que les mesurages nécessitent seulement une petite masse d’échantillon et que les composantes
spectrales peuvent être mieux résolues par rapport à des fréquences plus faibles. Par contre, l’usage
de tels spectromètres n’est pas répandu, car leur utilisation est souvent plus complexe et ils peuvent
présenter un rapport signal/bruit plus faible.
9.2 Exigences relatives aux spectromètres RPE
Étant donné que pour les applications de dosimétrie par RPE, les échantillons mesurés sont souvent
de petites masses et les signaux RPE de faible intensité, la sensibilité et la stabilité des instruments
constituent des paramètres critiques. La sensibilité et la stabilité peuvent être optimisées par un choix
6 © ISO 2020 – Tous droits réservés

approprié de facteurs instrumentaux (par exemple choix et accord du résonateur, réduction des effets
microphoniques) et la sélection des paramètres de mesure.
9.3 Exigences relatives au résonateur
Sachant qu’il existe différents types de résonateurs disponibles, il est important de choisir celui qui
[54]
convient le mieux pour le type particulier de matériaux utilisés pour la dosimétrie . Les aspects
critiques comprennent la sensibilité pour le type particulier de matériau, la puissance micro-onde
disponible et la possibilité de placer l’échantillon de manière précise dans la région la plus sensible du
résonateur. Il est indispensable de contrôler systématiquement la sensibilité et l’exactitude des divers
réglages, y compris l’amplitude de modulation. Bien qu’il convienne de passer par des considérations
théoriques pour décider des réglages optimaux approximatifs, il convient également de réaliser
des essais finaux permettant de confirmer de façon empirique chaque paramètre pertinent par des
mesurages réels au cours desquels on fait varier le paramètre (par exemple l’amplitude de modulation)
pour déterminer le réglage qui donne le rapport signal/bruit maximal.
9.4 Mesurages des signaux parasites
Les signaux RPE peuvent être générés par des centres paramagnétiques présents dans le résonateur
ainsi que dans le tube de mesure lors d’une analyse in vitro. Par conséquent, il est indispensable que les
mesurages du résonateur vide et du tube de mesure vide soient réalisés dans les mêmes conditions que
pour les échantillons utilisés pour la dosimétrie. Le signal parasite mesuré sans tube porte-échantillon
peut être utilisé pour s’assurer que le bruit de fond est en réalité uniquement dû au résonateur.
Des signaux parasites provenant du résonateur et ayant un effet sur la ligne de base des spectres
peuvent être observés; si le type est identifié, il est plus facile d’entreprendre les actions nécessaires
pour réduire cet effet au minimum.
Si un signal parasite stable est observé, cela signifie qu’il est possible que le résonateur ou le tube
porte-échantillon soit contaminé. Un nettoyage soigneux du résonateur ou du tube porte-échantillon
peut réduire l’intensité du signal parasite.
Si les signaux parasites varient en fonction du repositionnement ou de la réintroduction de l’échantillon
et ce type de signal ne correspond pas à celui d’un contaminant paramagnétique prévu, cela est
probablement dû à des effets de «microphonie». Cela peut aussi bien se produire avec une basse
fréquence (par exemple en bande L) qu’en bande X. La dosimétrie exige souvent que le système soit
poussé jusqu’aux limites de sensibilité, ce qui a pour effet de le rendre sensible au bruit microphonique.
Il semble que cela soit dû aux effets mécaniques, notamment ceux issus des champs de modulation, mais
le problème est loin d’être totalement compris. Ces effets peuvent parfois être réduits à un minimum en
prêtant une attention particulière aux sources possibles de vibrations et à la rigidité des composants
physiques ainsi qu’en assurant une mise à la terre systématique de tous les composants.
9.5 Stabilité du spectromètre et surveillance/contrôle des conditions
environnementales
Il convient de laisser le spectromètre atteindre une température de fonctionnement stable vis-à-vis des
conditions ambiantes et de l’eau de refroidissement du spectromètre RPE. Pour assurer une stabilité
maximale dans des conditions de fonctionnement rigoureuses, comme toute combinaison de puissance
micro-onde élevée, d’amplitude élevée de modulation de champ magnétique et de température variable,
il est important de laisser le système s’équilibrer dans les mêmes conditions que celles de l’expérience
devant être réalisée. Un délai de 1 h permet en général d’atteindre l’équilibre thermique.
Il est nécessaire de maintenir un environnement contrôlé pour garantir les meilleures performances
du spectromètre. L’air s’écoulant à travers le spectromètre, notamment à travers la cavité, peut induire
des variations de température ou un phénomène de microphonie dû aux vibrations de l’échantillon.
D’importantes variations de la température ambiante peuvent dégrader les performances en réduisant
la stabilité de fréquence de la cavité. Des environnements très humides peuvent entraîner une
condensation d’eau. La condensation à l’intérieur de la cavité peut être réduite en maintenant un flux de
purge constant d’azote sec. Il convient de noter que des débits excessifs de gaz peuvent générer un bruit
microphonique par le biais de vibrations de l’échantillon.
Un bruit provenant de champs électromagnétiques peut être rencontré dans certains environnements.
Il est possible de réduire un tel bruit par un blindage ou peut-être par l’arrêt de la source de bruit s’il est
établi que ce bruit provient d’équipements situés à proximité du spectromètre.
9.6 Dérive de la ligne de base
La dérive de la ligne de base est liée à la stabilité de fonctionnement du spectromètre. Il convient que la
dérive de la ligne de base soit réduite au minimum par l’optimisation des conditions de fonctionnement.
La correction des effets de la dérive de la ligne de base sur le spectre peut être effectuée immédiatement
après les mesurages à l’aide du logiciel d’analyse fourni avec le spectromètre, ou au cours de l’analyse
ultérieure des spectres et du signal induit par le rayonnement à l’aide d’un logiciel spécial.
Dérive linéaire de la ligne de base: l’utilisation d’amplitudes de modulation très élevées peut
engendrer d’importants courants de Foucault dans les parois latérales du résonateur. Ces courants
peuvent interagir avec le champ magnétique pour produire un couple sur le résonateur et entraîner
un déplacement de la fr
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.