ISO 80000-4:2019
(Main)Quantities and units — Part 4: Mechanics
Quantities and units — Part 4: Mechanics
This document gives names, symbols, definitions and units for quantities of mechanics. Where appropriate, conversion factors are also given.
Grandeurs et unités — Partie 4: Mécanique
Le présent document donne les noms, les symboles, les définitions et les unités des grandeurs de la mécanique. Des facteurs de conversion sont également indiqués, s'il y a lieu.
General Information
Relations
Standards Content (Sample)
INTERNATIONAL ISO
STANDARD 80000-4
Second edition
2019-08
Quantities and units —
Part 4:
Mechanics
Grandeurs et unités —
Partie 4: Mécanique
Reference number
©
ISO 2019
© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii © ISO 2019 – All rights reserved
Contents Page
Foreword .iv
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
Bibliography .13
Alphabetical index .14
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www. iso. org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www. iso.o rg/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www. iso
.org/iso/foreword. html.
This document was prepared by Technical Committee ISO/TC 12, Quantities and units, in collaboration
with Technical Committee IEC/TC 25, Quantities and units.
This second edition cancels and replaces the first edition (ISO 80000-4:2006), which has been
technically revised.
The main changes compared to the previous edition are as follows:
— the table giving the quantities and units has been simplified;
— some definitions and the remarks have been stated physically more precisely.
A list of all parts in the ISO 80000 and IEC 80000 series can be found on the ISO and IEC websites.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www. iso. org/members. html.
iv © ISO 2019 – All rights reserved
INTERNATIONAL STANDARD ISO 80000-4:2019(E)
Quantities and units —
Part 4:
Mechanics
1 Scope
This document gives names, symbols, definitions and units for quantities of mechanics. Where
appropriate, conversion factors are also given.
2 Normative references
There are no normative references in this document.
3 Terms and definitions
Names, symbols, definitions and units for quantities used in mechanics are given in Table 1.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https: //www .iso .org/obp
— IEC Electropedia: available at http: //www .electropedia .org/
2 © ISO 2019 – All rights reserved
Table 1 — Quantities and units used in mechanics
Item No. Quantity Unit Remarks
Name Symbol Definition
4-1 mass m property of a body which expresses itself in terms of iner- kg The kilogram (kg) is one of the seven
tia with regard to changes in its state of motion as well as base units (see ISO 80000-1) of the
its gravitational attraction to other bodies International System of Units, the SI.
See also IEC 60050-113.
−3
4-2 mass density, quantity representing the spatial distribution of mass of a kg m
ρ , ρ
m
continuous material:
density
dm
ρ()r =
dV
where m is mass of the material contained in an infinitesi-
mal domain at point r and V is volume of this domain
−1 3
4-3 specific volume v kg m
reciprocal of mass density ρ (item 4-2):
v=
ρ
4-4 relative mass density, d 1 Conditions and material should be
quotient of mass density of a substance ρ and mass
specified for the reference substance.
relative density
density of a reference substance ρ :
ρ
d=
ρ
−2
4-5 surface mass density, quantity representing the areal distribution of mass of a kg m The name “grammage” should not be
ρ
A
continuous material: used for this quantity.
surface density
dm
ρ ()r =
A
dA
where m is the mass of the material at position r and A is
area
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
−1
4-6 linear mass density, quantity representing the linear distribution of mass of a kg m
ρ
l
continuous material:
linear density
dm
ρ ()r =
l
dl
where m is the mass of the material at position r and l is
length
4-7 moment of inertia tensor (ISO 80000-2) quantity representing rotational kg m The calculation of the value requires
J
inertia of a rigid body relative to a fixed centre of rotation an integration.
expressed by the tensor product:
LJ= ωω
where L is angular momentum (ISO 80000-3) of the body
relative to the reference point and ωω is its angular velocity
(ISO 80000-3)
−1
4-8 momentum kg m s
p product of mass m (item 4-1) of a body and velocity v
(ISO 80000-3) of its centre of mass:
p=mv
4-9.1 force vector (ISO 80000-2) quantity describing interaction be- N
F
tween bodies or particles
−2
kg m s
4-9.2 weight force (item 4-9.1) acting on a body in the gravitational field N In colloquial language, the name
F
g
of Earth: “weight” continues to be used where
−2
kg m s
“mass” is meant. This practice should
Fg=m
be avoided.
g
where m (item 4-1) is the mass of the body and g is the Weight is an example of a gravitational
force. Weight comprises not only the
local acceleration of free fall (ISO 80000-3)
local gravitational force but also the
local centrifugal force due to the rota-
tion of the Earth.
4-9.3 static friction force, force (item 4-9.1) resisting the motion before a body starts N For the static friction coefficient, see
F
s
to slide on a surface item 4-23.1.
−2
static friction kg m s
4-9.4 kinetic friction force, force (item 4-9.1) resisting the motion when a body slides N For the kinetic friction factor, see
F
μ
on a surface item 4-23.2.
−2
dynamic friction force kg m s
4 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
4-9.5 rolling resistance, force (item 4-9.1) resisting the motion when a body rolls on N For the rolling resistance factor, see
F
rr
a surface item 4-23.3.
−2
rolling drag, kg m s
rolling friction force
4-9.6 drag force force (item 4-9.1) resisting the motion of a body in a fluid N For the drag coefficient, see item 4-23.4.
F
D
−2
kg m s
4-10 impulse vector (ISO 80000-2) quantity describing the effect of force N s For a time interval [t , t ],
1 2
I
acting during a time interval:
−1
kg m s
Iptt, = tt−pp=D
() () ()
12 12
t
where p is momentum (item 4-8).
IF= dt
∫
t
where F is force (item 4-9.1), t is time (ISO 80000-3) and
[t , t ] is considered time interval
1 2
2 −1
4-11 angular momentum vector (ISO 80000-2) quantity described by the vector kg m s
L
product:
Lr=×p
where r is position vector (ISO 80000-3) with respect to
the axis of rotation and p is momentum (item 4-8)
4-12.1 moment of force vector (ISO 80000-2) quantity described by the vector N m The bending moment of force is
M
product:
2 −2 denoted by M .
kg m s
b
Mr=×F
where r is position vector (ISO 80000-3) with respect to
the axis of rotation and F is force (item 4-9.1)
4-12.2 torque T, M quantity described by the scalar product: N m For example, torque is the twisting
Q
moment of force with respect to the
2 −2
kg m s
T=⋅Me
longitudinal axis of a beam or shaft.
Q
where M is moment of force (item 4-12.1) and e is unit
Q
vector of direction with respect to which the torque is
considered
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
4-13 angular impulse vector (ISO 80000-2) quantity describing the effect of mo- N m s For a time interval [t , t ],
1 2
H
ment of force during a time interval:
2 −1
kg m s
HLtt, = tt−LL=D
() () ()
12 21
t
where L is angular momentum.
HMtt; = dt
()
12 ∫
t
where M is moment of force (item 4-12.1), t is time
(ISO 80000-3) and [t , t ] is considered time interval
1 2
4-14.1 pressure p quotient of the component of a force normal to a surface Pa
and its area:
−2
N m
eF −1 −2
kg m s
n
p=
A
where e is unit vector of the surface normal, F is force
n
(item 4-9.1) and A is area (ISO 80000-3)
4-14.2 gauge pressure pressure p (item 4-14.1) decremented by ambient Pa
p Often, p is chosen as a standard
e amb
pressure p : −2
N m
amb
pressure.
−1 −2
kg m s
pp=−p
eamb
Gauge pressure is positive or negative.
4-15 stress tensor (ISO 80000-2) quantity representing state of ten- Pa Stress tensor is symmetric and has
σ
sion of matter three normal-stress and three shear-
−2
N m
stress (Cartesian) components.
−1 −2
kg m s
4-16.1 normal stress scalar (ISO 80000-2) quantity describing surface action of Pa A couple of mutually opposite forces of
σ , σ
n
a force into a body equal to: magnitude F acting on the opposite
−2
N m
surfaces of a slice (layer) of homoge-
−1 −2
dF
kg m s nous solid matter normal to it, and
n
σ =
n
evenly distributed, cause a constant
dA
normal stress σ =FA in the slice
where F is the normal component of force (item 4-9.1) and
n
n
A is the area (ISO 80000-3) of the surface element
(layer).
6 © ISO 2019 – All rights reserved
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
4-16.2 shear stress scalar (ISO 80000-2) quantity describing surface action of Pa A couple of mutually opposite forces of
τ , τ
s
a force into a body equal to: magnitude F acting on the opposite
−2
N m
surfaces of a slice (layer) of homoge-
dF −1 −2
nous solid matter parallel to it, and
kg m s
t
τ =
s
evenly distributed, cause a constant
dA
shear stress τ=FA/ in the slice (layer).
where F is the tangential component of force (item 4-9.1)
t
and A is the area (ISO 80000-3) of the surface element
4-17.1 strain εε tensor (ISO 80000-2) quantity representing the deforma- 1 Strain tensor is symmetric and has
tion of matter caused by stress three linear-strain and three shear
strain (Cartesian) components.
4-17.2 relative linear strain 1
ε , (e)
quotient of change in length Dl (ISO 80000-3) of an object
and its length l (ISO 80000-3):
Dl
ε=
l
4-17.3 shear strain 1
γ
quotient of parallel displacement Dx (ISO 80000-3) of
two surfaces of a layer and the thickness d (ISO 80000-3)
of the layer:
Dx
γ =
d
4-17.4 relative volume strain 1
ϑ
quotient of change in volume DV (ISO 80000-3) of an
object and its volume V (ISO 80000-3):
DV
ϑ=
V
4-18 Poisson number 1
μ , (v)
quotient of change in width Db (width is defined in
ISO 80000-3) and change in length Dl (length is defined in
ISO 80000-3) of an object:
Db
μ=
Dl
Table 1 (continued)
Item No. Quantity Unit Remarks
Name Symbol Definition
4-19.1 modulus of elasticity, E, E , Y Pa Conditions should be specified (e.g.
m
quotient of normal stress σ (item 4-16.1) and relative
adiabatic or isothermal process).
−2
Young modulus N m
linear strain ε (item 4-17.2):
−1 −2
kg m s
σ
E=
ε
4-19.2 modulus of rigidity, G Pa Conditions should be specified (e.g.
quotient of shear stress τ (item 4-16.2) and shear strain γ
isentropic or isothermal process).
−2
shear modulus N m
(item 4-17.3):
−1 −2
kg m s
τ
G=
γ
4-19.3 modulus of K, K , B negative of the quotient of pressure p (item 4-14.1) and Pa Conditions should be specified (e.g.
m
compression, isentropic
...
NORME ISO
INTERNATIONALE 80000-4
Deuxième édition
2019-08
Grandeurs et unités —
Partie 4:
Mécanique
Quantities and units —
Part 4: Mechanics
Numéro de référence
©
ISO 2019
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2019
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
Fax: +41 22 749 09 47
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii © ISO 2019 – Tous droits réservés
Sommaire Page
Avant-propos .iv
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
Bibliographie .12
Index alphabétique.13
Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www
.iso .org/ directives).
L’attention est attirée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www .iso .org/ brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir le lien suivant : www .iso .org/ iso/ fr/ avant -propos.
Le présent document a été élaboré par le comité technique ISO/TC 12, Grandeurs et unités, en
collaboration avec le comité d’études IEC/TC 25, Grandeurs et unités.
Cette deuxième édition annule et remplace la première édition (ISO 80000-4:2006), qui a fait l’objet
d’une révision technique.
Les principales modifications par rapport à l’édition précédente sont les suivantes:
— le tableau donnant les grandeurs et les unités a été simplifié;
— certaines définitions et les remarques ont été énoncées physiquement de manière plus précise.
Une liste de toutes les parties des séries ISO 80000 et IEC 80000 se trouve sur les sites de l’ISO et de l’IEC.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www .iso .org/ fr/ members .html.
iv © ISO 2019 – Tous droits réservés
NORME INTERNATIONALE ISO 80000-4:2019(F)
Grandeurs et unités —
Partie 4:
Mécanique
1 Domaine d’application
Le présent document donne les noms, les symboles, les définitions et les unités des grandeurs de la
mécanique. Des facteurs de conversion sont également indiqués, s’il y a lieu.
2 Références normatives
Le présent document ne contient aucune référence normative.
3 Termes et définitions
Les noms, symboles, définitions et unités des grandeurs utilisées en mécanique sont donnés dans le
Tableau 1.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform : disponible à l’adresse https:// www .iso .org/ obp;
— IEC Electropedia : disponible à l’adresse http:// www .electropedia .org/ .
2 © ISO 2019 – Tous droits réservés
Tableau 1 — Grandeurs et unités utilisées en mécanique
N° Grandeur Unité Remarques
Nom Symbole Définition
4-1 masse, f m propriété d’un corps qui s’exprime en termes d’inertie kg Le kilogramme (kg) est l’une des sept uni-
en ce qui concerne les modifications de son état de tés de base (voir l’ISO 80000-1) du Système
mouvement ainsi que de son attraction gravitation- international d’unités, SI.
nelle vers d’autres corps
Voir aussi l’IEC 60050-113.
−3
4-2 masse volumique, f grandeur représentant la répartition spatiale de la kg m
ρ , ρ
m
masse d’un matériau continu :
dm
ρ()r =
dV
où m est la masse du matériau contenue dans un
domaine infinitésimal au point r et V est le volume de
ce domaine
−1 3
inverse de la masse volumique ρ (4-2) :
4-3 volume massique, m v kg m
v=
ρ
quotient de la masse volumique d’une substance ρ par
4-4 densité, f d 1 Il convient de spécifier les conditions et le
la masse volumique d’une substance de référence ρ : matériau pour la substance de référence.
ρ
d=
ρ
−2
4-5 masse surfacique, f grandeur représentant la répartition surfacique de la kg m Il convient de ne pas utiliser le terme
ρ
A
masse d’un matériau continu : « grammage » pour cette grandeur.
densité surfacique, f
dm
ρ ()r =
A
dA
où m est la masse du matériau à la position r et A
est l’aire
−1
4-6 masse linéique, f grandeur représentant la répartition linéaire de la kg m
ρ
l
masse d’un matériau continu :
dm
ρ ()r =
l
dl
où m est la masse du matériau à la position r et l est la
longueur
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
4-7 moment d’inertie, m J grandeur tensorielle représentant l’inertie d’un corps kg m Le calcul de la valeur nécessite une inté-
rigide en rotation par rapport à un centre de rotation gration.
fixe, exprimée par le produit tensoriel :
LJ= ωω
où L est le moment cinétique (ISO 80000-3) du corps
par rapport au point de référence et ωω est sa vitesse
angulaire (ISO 80000-3)
p produit de la masse m (4-1) d’un corps par la vitesse v −1
4-8 quantité de mouvement, kg m s
(ISO 80000-3) de son centre de masse :
f
p= mv
4-9.1 force, f F grandeur vectorielle décrivant l’interaction entre des N
corps ou des particules
−2
kg m s
4-9.2 poids, m F force (4-9.1) s’exerçant sur un corps dans le champ de N Dans le langage courant, le terme « poids »
g
gravitation de la Terre : continue à être utilisé au lieu de « masse ».
−2
kg m s
Il convient d’éviter cette pratique.
Fg= m
g
Le poids est un exemple de force de gravi-
où m (4-1) est la masse du corps et g est l’accélération
tation. Le poids comprend non seulement
locale due à la pesanteur (ISO 80000-3)
la force de gravitation locale, mais aussi la
force centrifuge locale due à la rotation de
la Terre.
4-9.3 force de frottement F force (4-9.1) résistant au mouvement avant qu’un N Pour le facteur de frottement statique,
s
statique, f corps ne commence à glisser sur une surface voir 4-23.1.
−2
kg m s
frottement statique, m
4-9.4 force de frottement F force (4-9.1) résistant au mouvement lorsqu’un corps N Pour le facteur de frottement cinétique,
μ
cinétique, f glisse sur une surface voir 4-23.2.
−2
kg m s
force de frottement
dynamique, f
4-9.5 résistance au roule- force (4-9.1) résistant au mouvement lorsqu’un corps N Pour le facteur de résistance au roulement,
F
rr
ment, f roule sur une surface voir 4-23.3.
−2
kg m s
force de frottement de
roulement, f
4 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
4-9.6 traînée, f force (4-9.1) résistant au mouvement d’un corps dans N Pour le coefficient de traînée, voir 4-23.4.
F
D
un fluide
−2
kg m s
4-10 impulsion, f I grandeur vectorielle décrivant l’effet d’une force N s Pour un intervalle de temps [t , t ],
1 2
s’exerçant pendant un intervalle de temps :
−1
kg m s
Iptt, = tt− pp=D
() () ()
12 12
t
où p est la quantité de mouvement (4-8).
IF= dt
∫
t
où F est la force (4-9.1), t est le temps (ISO 80000-3)
et [t , t ] est l’intervalle de temps considéré
1 2
2 −1
4-11 moment cinétique, m L grandeur vectorielle définie par le produit vectoriel : kg m s
Lr=× p
où r est le rayon vecteur (ISO 80000-3) par rapport
à l’axe de rotation et p est la quantité de mouve-
ment (4-8)
4-12.1 moment de force, m M grandeur vectorielle définie par le produit vectoriel : N m
Le moment de flexion est désigné par M .
b
2 −2
Mr=×F kg m s
où r est le rayon vecteur (ISO 80000-3) par rapport à
l’axe de rotation et F est la force (4-9.1)
4-12.2 moment de torsion, m T, M grandeur définie par le produit scalaire : N m Par exemple, le moment de torsion est
Q
torsion, f le moment de force par rapport à l’axe
2 −2
T =⋅Me kg m s
Q
longitudinal d’une poutre ou d’un arbre de
où M est le moment de force (4-12.1) et e est un machine.
Q
vecteur unité de la direction par rapport à laquelle le
moment de torsion est considéré
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
4-13 impulsion angulaire, f H grandeur vectorielle définie l’effet d’un moment de N m s Pour un intervalle de temps [t , t ],
1 2
force pendant un intervalle de temps :
2 −1
kg m s
HLtt, = tt−LL=D
() () ()
12 21
t
où L est le moment cinétique.
HMtt; = dt
()
12 ∫
t
où M est le moment force (4-12.1), t est le temps
(ISO 80000-3) et [t , t ] est l’intervalle de temps
1 2
considéré
4-14.1 pression, f p quotient de la composante d’une force perpendiculaire Pa
à une surface par l’aire de cette surface :
−2
N m
eF
n −1 −2
kg m s
p=
A
où e est le vecteur unité de la normale à la surface,
n
F est une force (4-9.1) et A est une aire (ISO 80000-3)
4-14.2 pression relative, f pression p (4-14.1) diminuée de la pression ambiante Pa
p Souvent, p est choisie comme pression
e amb
p :
−2
amb normale.
N m
pp=− p
eamb −1 −2 La pression relative est positive ou négative.
kg m s
σ
4-15 contrainte, f grandeur tensorielle représentant l’état de tension Pa Un tenseur (ISO 80000-2) de contrainte est
d’un matériau symétrique et a trois composantes (car-
−2
N m
tésiennes) de contrainte normale et trois
−1 −2
kg m s composantes (cartésiennes) de contrainte
tangentielle.
4-16.1 contrainte normale, f σ , σ grandeur scalaire décrivant l’action surfacique exercée Pa Un couple de forces mutuellement opposées
n
tension normale, f par une force sur un corps, égale à : de norme F s’exerçant sur les surfaces
−2
N m
opposées d’une tranche (couche) d’une
dF
−1 −2
n
kg m s matière solide homogène, normales à
σ =
n
dA
celle-ci et réparties uniformément,
où F est la composante normale de la force (4-9.1) et A
provoque une contrainte normale
n
est l’aire (ISO 80000-3) de l’élément de surface
constante σ =FA dans la tranche
n
(couche).
6 © ISO 2019 – Tous droits réservés
Tableau 1 (suite)
N° Grandeur Unité Remarques
Nom Symbole Définition
4-16.2 contrainte tangen- grandeur scalaire décrivant l’action surfacique exercée Pa Un couple de forces mutuellement opposées
τ , τ
s
tielle, f par une force sur un corps, égale à : de norme F s’exerçant sur les surfaces
−2
N m
opposées d’une tranche (couche) d’une
dF
t −1 −2
matière solide homogène, parallèles à
kg m s
τ =
s
dA celle-ci et réparties uniformément,
où F est la composante tangentielle de la force (4-9.1) provoque une contrainte tangentielle
t
et A est l’aire (ISO 80000-3) de l’élément de surface constante τ =FA/ dans la tranche
(couche).
εε
4-17.1 déformation, f grandeur tensorielle représentant la déformation 1 Un tenseur (ISO 80000-2) de déformation
d’une matière provoquée par une contrainte est symétrique et a trois composantes (car-
tésiennes) de dilatation linéique relative
et trois composantes (cartésiennes) de
glissement unitaire.
ε , (e)
4-17.2 dilatation linéique quotient de la variation de longueur Dl (ISO 80000-3) 1
relative, f d’un objet
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.