Automatic steam traps — Production and performance characteristic tests

This document specifies the production and performance relevant test requirements for automatic steam traps used for condensate removal/recovery services for optimized utilization of energy, in refinery, power generation or other general applications where steam is used as a medium of heat transfer. The tests can be classified as production tests and performance characteristic tests and can be conducted to ensure the correct functioning of a steam trap or to evaluate the performance of a particular design. This document specifies the tests performed relative to each one of these two categories and briefly describes the corresponding test methods.

Purgeurs automatiques de vapeur d'eau — Essais de production et essais des caractéristiques de fonctionnement

Le présent document spécifie les exigences d’essai de production et d'essai des caractéristiques de fonctionnement applicables pour les purgeurs automatiques de vapeur d’eau utilisés pour des services d’évacuation/de récupération de condensat pour une utilisation optimisée de l’énergie, dans les raffineries, les centrales électriques ou d’autres applications générales où la vapeur d’eau est utilisée comme un moyen de transfert de chaleur. Les essais peuvent être classés comme des essais de production et des essais de caractéristiques de performance et peuvent être conduits afin de s’assurer du fonctionnement correct d’un purgeur de vapeur d’eau ou pour évaluer les performances d’une conception particulière. Le présent document spécifie les essais à effectuer pour chacune de ces deux catégories et décrit brièvement les méthodes d’essai correspondantes.

General Information

Status
Published
Publication Date
22-Jun-2023
Technical Committee
Drafting Committee
Current Stage
6060 - International Standard published
Start Date
23-Jun-2023
Due Date
14-Oct-2023
Completion Date
23-Jun-2023
Ref Project

Relations

Buy Standard

Standard
ISO 5117:2023 - Automatic steam traps — Production and performance characteristic tests Released:23. 06. 2023
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 5117:2023 - Purgeurs automatiques de vapeur d'eau — Essais de production et essais des caractéristiques de fonctionnement Released:23. 06. 2023
French language
33 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
REDLINE ISO/FDIS 5117 - Automatic steam traps — Production and performance characteristic tests Released:20. 02. 2023
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
ISO/FDIS 5117 - Automatic steam traps — Production and performance characteristic tests Released:20. 02. 2023
English language
31 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 5117
First edition
2023-06
Automatic steam traps — Production
and performance characteristic tests
Purgeurs automatiques de vapeur d'eau — Essais de production et
essais des caractéristiques de fonctionnement
Reference number
ISO 5117:2023(E)
© ISO 2023

---------------------- Page: 1 ----------------------
ISO 5117:2023(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
  © ISO 2023 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 5117:2023(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Test methods . 2
4.1 Production test — Shell testing . 2
4.2 Performance characteristic tests . 2
4.2.1 Operational check . 2
4.2.2 Minimum operating pressure . 3
4.2.3 Maximum operating pressure (PMO) . 3
4.2.4 Maximum operating back pressure (PMOB) . 3
4.2.5 Air venting capability . 3
4.2.6 Operating temperature (TO) . 3
4.2.7 Condensate capacity (QH or QC) . 3
4.2.8 Live steam loss . 3
4.2.9 Determination of minimum operating pressure . 3
4.2.10 Determination of maximum operating pressure . 4
4.2.11 Determination of maximum operating back pressure . 4
4.2.12 Determination of air venting capability . 4
4.2.13 Determination of operating temperature . 4
4.2.14 Determination of condensate capacity . 4
4.2.15 Determination of live steam loss . 4
5 Inspection . 4
Annex A (normative) Test methods for the determination of discharge capacity .5
Annex B (normative) Test methods for the determination of steam loss .19
Bibliography .31
iii
© ISO 2023 – All rights reserved

---------------------- Page: 3 ----------------------
ISO 5117:2023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
ISO draws attention to the possibility that the implementation of this document may involve the use
of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed
patent rights in respect thereof. As of the date of publication of this document, ISO had not received
notice of (a) patent(s) which may be required to implement this document. However, implementers are
cautioned that this may not represent the latest information, which may be obtained from the patent
database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all
such patent rights.
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 153, Valves, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 69, Industrial valves, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This first edition cancels and replaces ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988, which have
been technically revised.
The main changes are as follows:
— merging of ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988;
— update of the technical content according to state-of-the-art;
— addition of the terminological entry on subcooling (3.2);
— addition of a data sheet for test methods A and B on steam trap discharge capacity in A.3.3 and in
A.4.3;
— addition of a computation formula [Formula (B.4)];
— addition of a data sheet for test methods A and B on steam loss test in B.3.4 and B.4.4.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO 2023 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 5117:2023(E)
Introduction
Testing of steam traps provides conformance of product performance to the intended function. This
document addresses the requirements for production testing and performance testing of steam traps.
Production test ensures the shell integrity to the maximum working pressure while the performance
test ensures the functional requirement of steam traps. Performance test should be considered as type
test.
Testing is the most reliable method to validate a product including design, material selection and
manufacturing processes. It may also serve as a guide for steam traps selection. It can allow the users
to compare different types of steam traps, designs and brands.
Currently the test requirements are mostly driven by the manufacturer or the users and each may have
their own specification. This document will create common understanding on the qualifications, and
end-user total cost-of-ownership by eliminating unintentional design flaws and planned obsolescence.
Ultimately, this document will improve performance and safety in the plants by enabling any customer
to specify durable type-tested industrial valves.
v
© ISO 2023 – All rights reserved

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 5117:2023(E)
Automatic steam traps — Production and performance
characteristic tests
1 Scope
This document specifies the production and performance relevant test requirements for automatic
steam traps used for condensate removal/recovery services for optimized utilization of energy, in
refinery, power generation or other general applications where steam is used as a medium of heat
transfer.
The tests can be classified as production tests and performance characteristic tests and can be
conducted to ensure the correct functioning of a steam trap or to evaluate the performance of a
particular design. This document specifies the tests performed relative to each one of these two
categories and briefly describes the corresponding test methods.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 6553, Automatic steam traps — Marking
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
production test
tests carried out by the manufacturer to confirm that each automatic steam trap functions correctly
Note 1 to entry: These tests may be witnessed by the purchaser or his representative. In this case, these tests are
referred to as acceptance tests.
3.2
subcooling
temperature-related phenomenon which is the difference between the steam saturation temperature
to the actual temperature of steam/condensate either at steam trap inlet or exit
Note 1 to entry: This may be the accountable parameter in some of the steam trap type like thermostatic steam
traps.
Note 2 to entry: The water with a temperature value below the saturation temperature is called the subcooled
condensate. But also, the saturation temperature always corresponds to the pressure at which the system is
operating.
1
© ISO 2023 – All rights reserved

---------------------- Page: 6 ----------------------
ISO 5117:2023(E)
4 Test methods
4.1 Production test — Shell testing
Each steam trap shall be tested to confirm the integrity of its shell under pressure.
The test fluid, the choice of which is left to the discretion of the manufacturer, shall be either:
— water, which may contain a corrosion inhibitor, kerosene or any other suitable liquid having a
viscosity not greater than that of water;
— steam, air, or any other suitable gas.
NOTE Various statutory authorities require specific approval of test procedures where the test is conducted
using steam, air, or other gas.
Any internal trim which does not withstand the test pressure may be removed before the test.
The steam trap shall be essentially vented off air when testing with a liquid.
Steam traps shall not be painted or otherwise coated with materials capable of sealing against leakage
before the shell pressure tests are completed. Chemical corrosion protection treatments and internal
linings are permitted. If pressure tests in the presence of a representative of the purchaser are specified,
painted steam traps from stock may be re-tested without removal of paint.
Test equipment shall not subject the steam trap to externally applied stresses which can affect the
results of the tests.
The shell test shall be performed by applying pressure inside the assembled steam trap with the ends
closed.
For all steam traps, the hydraulic shell test shall be performed at a pressure 1,5 times the maximum
allowable pressure at 20 °C.
For steam traps with a nominal diameter less than or equal to DN 50 and with pressure range up to
PN 40 or Class 300, a hydraulic shell test can be performed using gas at a pressure (gauge pressure) of
6 bar (0,6 MPa). For gas test, safety measures shall be taken.
Visually detectable leakage through the pressure retaining walls is not acceptable.
Test durations shall not be less than those specified in Table 1.
Table 1 — Minimum durations for shell tests
Nominal steam trap size Minimum test duration
DN [s]
DN ≤ 50 15
65 ≤ DN ≤ 200 60
250 ≤ DN 180
4.2 Performance characteristic tests
4.2.1 Operational check
The operational performance of the steam trap shall be checked under the steam and condensate. The
test set up shall produce the steam and condensate in the desired condition. Steam shall be fed into the
steam trap. Condensate shall be introduced intermittently if required.
2
  © ISO 2023 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 5117:2023(E)
When only steam is present, the steam trap shall close. When the steam becomes condensate, the steam
trap shall open (the time taken will vary as a function of the steam trap type); when the condensate has
been discharged, the steam trap shall again close. The test is complete when at least one complete cycle
has been performed. The condensate can also be fed to the steam trap to quicken the cycle and to verify
the performance.
Certain types of steam trap may be tested with air or water.
A manufacturer may describe the operations of a particular type of steam trap by referring to one or
more of the following performance characteristic tests. A brief explanation of the derivation of each
characteristic is given below.
The performance test may be considered on sample basis as type test based on the type of steam
traps. Sample steam traps shall be tested to ensure that they open to discharge condensate and close
satisfactorily. Further details are given in 4.2.2 to 4.2.15. This test does not apply to the labyrinth (or
orifice) steam traps (see ISO 6704).
4.2.2 Minimum operating pressure
The steam trap shall be tested to determine the minimum pressure (atmospheric or above) at which the
correct opening and closing will occur.
4.2.3 Maximum operating pressure (PMO)
The steam trap shall be tested to determine the maximum pressure at which the correct opening and
closing will occur.
4.2.4 Maximum operating back pressure (PMOB)
The steam trap shall be tested to determine the maximum pressure permissible at the outlet of the
device which allows correct functioning.
4.2.5 Air venting capability
The steam trap shall be tested to determine its ability to discharge air.
4.2.6 Operating temperature (TO)
The steam trap shall be tested to determine the temperature at which the device operates and in
particular the temperature at which it passes its specified capacity.
4.2.7 Condensate capacity (QH or QC)
The steam trap shall be flow tested to determine its condensate capacity throughout its operating
pressure range.
4.2.8 Live steam loss
The steam trap shall be tested to determine the amount of live steam lost via the steam trap.
4.2.9 Determination of minimum operating pressure
Operational checks, as described in 4.2.1, shall be carried out while successively reducing the test
pressure until the steam trap fails to open and close correctly.
The minimum operating pressure is the lowest test pressure at which correct operation is observed.
3
© ISO 2023 – All rights reserved

---------------------- Page: 8 ----------------------
ISO 5117:2023(E)
4.2.10 Determination of maximum operating pressure
The maximum operating pressure of the steam trap may be verified by carrying out operational checks,
as described in 4.2.1, while successively increasing the test pressure up to the steam trap's maximum
operating pressure.
The steam trap shall open and close correctly throughout the test.
4.2.11 Determination of maximum operating back pressure
Operational checks, as described in 4.2.1, shall be carried out with the outlet from the steam trap
connected to a vessel in which the pressure can be raised, independent of the test pressure upstream
of the steam trap. While maintaining a reference pressure at the steam trap's inlet, the pressure at its
outlet is to be raised successively until the steam trap fails to open and close correctly.
The maximum operating back pressure is the highest pressure applied to the steam trap's outlet at
which correct operation is still observed.
4.2.12 Determination of air venting capability
Air shall be introduced at a specified temperature into the steam trap or upstream piping. The air
venting capability shall be checked by an air flow measurement carried out at minimum and maximum
operating pressures, the temperature inside the steam trap being recorded.
4.2.13 Determination of operating temperature
Steam shall be fed into the steam trap to effect closure. Condensate, at saturated steam temperature,
shall then be introduced and, unless the steam trap opens immediately, shall be allowed to cool slowly
at the steam trap's inlet.
The temperature of the condensate, measured at the steam trap's inlet, at which the device opens, is the
operating temperature.
The operating temperatures are the temperatures of the condensate, measured at the inlet to the steam
trap, at which the steam trap passes its specified capacities.
4.2.14 Determination of condensate capacity
The capacity of the steam trap shall be determined by measuring the amount of condensate that is
discharged from the device under specified conditions of pressure differential and condensate
temperature.
The test shall be carried out with condensate at different temperatures and at different pressures
within the steam trap's operating range to be specified, according to the test requirements detailed in
Annex A.
4.2.15 Determination of live steam loss
To determine the amount of live steam lost, if any, by the steam trap, use one of the test methods in
Annex B.
5 Inspection
Samples of the finished steam traps shall be visually examined and dimensionally checked to ensure
that the steam traps correspond to the stated specification and shall be marked in accordance with
ISO 6553.
4
  © ISO 2023 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 5117:2023(E)
Annex A
(normative)

Test methods for the determination of discharge capacity
A.1 General
This annex specifies two test methods to determine the discharge capacity of automatic steam traps.
A.2 Test arrangements
The test arrangements for condensate capacity determination are shown in Figures A.1 and A.2.
To reduce thermal losses to a minimum, all piping and equipment shall be insulated to a value R, in
2 −1
m ⋅°C⋅h⋅J , according to Formula (A.1).
−3
R≥×07, 510 (A.1)
The instruments used for the measurements shall comply with International Standards, for example,
ISO 4185, the ISO 5167 (series) and ISO 5168 for flow measurements.
The condensate removal device shall not be modified in any way from its commercial form.
5
© ISO 2023 – All rights reserved

---------------------- Page: 10 ----------------------
ISO 5117:2023(E)
Key
A water supply L test device
B flow meter q M water-cooled condenser
m1
C steam water mixer N scale
D flow meter q V1 valve 1
m2
E calorimeter V2 valve 2
F steam supply V3 valve 3
G steam vent V4 valve 4
H flash tank accumulator V5 valve 5
I temperature difference indicator Δθ AA arrangement A
J gate or full bore valve V4 BB arrangement B
K drain
NOTE 1 The diameter of the pipework from the accumulator to the condensate removal device is the same as,
or greater than, the diameter of the pipework to the inlet connection on the device.
NOTE 2 The distance L does not exceed 10 internal pipe diameters.
1
NOTE 3 The distance L is not less than 10 and not more than 20 internal pipe diameters.
2
NOTE 4 The distance L is measured vertically from the water level to the centre of the inlet connection of the
3
test device.
Figure A.1 — Test arrangement for test method A
6
  © ISO 2023 – All rights reserved

---------------------- Page: 11 ----------------------
ISO 5117:2023(E)
Key
A vent N test device
B safety valve O slope
C pressure reducing valve P vacuum breaker
D steam supply L distance between sensors and test device
1
E circulator R open pit
F calibrated scale V1 valve 1
G temperature controller (optional) V2 valve 2
H scale V3 valve 3 – temperature control
I injector line V4 valve 4
K accumulator V5 valve 5 – gate or full bore ball valve
L gauge glass V6 valve 6 – gate or full bore ball valve
M cold water V7 valve 7
NOTE 1 The piping from the accumulator to the test device is of the same diameter as the inlet connection on
the test device. This inlet to the piping from the accumulator is well rounded.
NOTE 2 The distance L between the sensors and the test device does not exceed 20 internal pipe diameters.
1
NOTE 3 The distance L is measured vertically from the centre of the inlet pipe connection of the test device
2
and does not exceed 450 mm.
NOTE 4 In Figure A.2, a steam injector is used for heating the water in the accumulator. It is also possible to
use a steam circulating coil inside the accumulator or any other means.
Figure A.2 — Test arrangement for test method B – Continuous and intermittent flow
7
© ISO 2023 – All rights reserved

---------------------- Page: 12 ----------------------
ISO 5117:2023(E)
A.3 Test method A
A.3.1 Procedure
The method A is applicable only to continuous discharge measurement.
It is emphasized that Figure A.1 shows two alternative test arrangements for condensate measurement
and that the choice is left to the test laboratory.
Start with all valves closed.
a) Warm up the system by gradually opening valves V1, V2, V3, V4 and V5.
b) Adjust valves V1, V2 and V3 with valve V4 wide open and valve V5 closed to bring the system
into equilibrium. Equilibrium is defined as a steady water level in the accumulator with the vent
valve V3 partially open and a difference of 3 °C or less showing on the temperature differential
indicator.
c) Observe and record the following data as appropriate depending on the method of condensate
determination:
p = steam supply pressure, in bar(g) or MPa(g);
1
p = accumulator steam pressure, in bar(g) or MPa(g);
2
p = steam trap inlet pressure, in bar(g) or MPa(g);
3
p = steam trap outlet pressure, in bar(g) or MPa(g);
4
θ = steam supply temperature, in °C;
1
θ = water supply temperature, in °C;
2
Δθ = temperature differential (subcooling) between steam in the accumulator and fluid entering
the steam trap, in °C;
X = steam supply quality, in %;
L = accumulator water level, in m;
3
Δt = time interval, in h, min or s;
q = water supply flow rate, in kg/h;
m1
q = steam supply flow rate, in kg/h;
m2
m = mass of condensate and tank at the start, in kg;
c1
m = mass of condensate and tank at the end, in kg.
c2
d) Record the data specified in A.3.1 c) at 5 min intervals for a minimum total of five sets of
observations.
e) During the test period observations as appropriate shall not exceed the following limits:
— the difference between the maximum and minimum tank level shall not exceed 50 mm;
— the maximum value of the tank level shall not exceed 450 mm at any time during the test;
— the maximum temperature differential (Δθ) shall not exceed 3 °C during the test;
— no individual steam trap inlet pressure (p ) observation shall vary by more than 1 % of the
3
average of all observations;
8
  © ISO 2023 – All rights reserved

---------------------- Page: 13 ----------------------
ISO 5117:2023(E)
— the calculated vent steam flow rate (q ) shall not exceed a maximum value equal to an exit
m6
velocity of 0,31 m/s in the tank.
f) Repeat the operations specified in A.3.1 a) to e), as necessary to produce three sets of observations
which result in three calculated capacity ratings, none of which varies from the average by more
than 10 %.
A.3.2 Flow calculations
Flow shall be calculated according to Formulae (A.2) to (A.7).
q = (q + q - q ) ± q (A.2)
mf m1 m3 m4 m8
or
mm−
()
cc21
q = ×3600 (A.3)
mf
Δt
where
q is the discharge flow rate, in kg/h;
mf
q is the water flow rate, in kg/h;
m1
q is the steam flow rate to heat water supply (q ), in kg/h.
m3 m1
q is the flash steam flow rate in the accumulator, in kg/h;
m4
m mass of condensate and tank at the start, in kg;
c1
m mass of condensate and tank at the end, in kg;
c2
Δt is the time interval, in s.
()hh−
31
qq=× (A.4)
m3 m1
hh−
()
23
hh−
()
35
qq=+q × (A.5)
()
mm41 m3
()hh−
45
2
π D
q =× ××03, 13 600 (A.6)
m4,max
4 V
1
LL−
π () 3600
2 31 32
qD=× × × (A.7)
m8
4 ΔtV
2
where
q is the accumulator storage rate, in kg/h;
m8
h is the specific enthalpy of the supply water, in kJ/kg;
1
h is the specific enthalpy of the supply steam, in kJ/kg;
2
h is the specific enthalpy of saturated water at the supply pressure, in kJ/kg;
3
h is the specific enthalpy of saturated steam in the accumulator, in kJ/kg;
4
9
© ISO 2023 – All rights reserved

---------------------- Page: 14 ----------------------
ISO 5117:2023(E)
h is the specific enthalpy of saturated water in the accumulator, in kJ/kg;
5
3
V is the specific volume of saturated steam in the accumulator, in m /kg;
1
3
V is the specific volume of saturated water in the accumulator, in m /kg;
2
D is the inside diameter of the accumulator, in m;
L is the initial accumulator tank level, in m;
31
L is the final accumulator tank level, in m.
32
A.3.3 Datasheet
Table A.1 provides an example of a datasheet for method A.
10
  © ISO 2023 – All rights reserved

---------------------- Page: 15 ----------------------
ISO 5117:2023(E)
11
© ISO 2023 – All rights reserved

Table A.1 — Example of a datasheet — Test method A
Steam trap discharge capacity - Test method A
Test n°: Date of test: Calculation by: Manufacturer name:
Serial n°: Size: Description and type of device: Inside diameter of accumulator, D:
Data Data Calculation
Run numbers
average
Item Unit Item Unit
Steam supply pressure, p bar or MPa    Reference used for steam/water data
1
Accumulator steam pressure, bar or MPa    Specific enthalpy of water supply, h kJ/kg
1
p
2
Steam trap inlet pressure, p bar or MPa    Specific enthalpy of steam supply, h kJ/kg
3 2
Steam trap outlet pressure, p bar or MPa    Specific enthalpy of saturated water at kJ/kg
4
steam supply pressure, h
3
Steam supply temperature, θ °C    Specific enthalpy of saturated steam at kJ/kg
1
accumulator pressure, h
4
Water supply temperature, θ °C    Specific enthalpy of saturated water at kJ/kg
2
accumulator pressure, h
5
3
Subcooled temperature, Δθ °C    Specific volume of saturated steam at m /kg
accumulator pressure, V
1
3
Steam supply quality, X %    Specific volume of saturated water at m /kg
accumulator pressure, V
2
Change in accumulator level, m    Steam to heat water supply, kg/h
L – L q = q × [(h - h )/(h - h )]
31 32 m3 m1 3 1 2 3
Water supply flow rate, q kg/h    Flash steam flow in accumulator, kg/h
m1
q = [(q + q ) × (h - h )/(h – h )]
m4 m1 m3 3 5 4 5
Steam supply flow rate, q kg/h    Water flow rate to accumulator, kg/h
m2
q = q + q - q
m5 m1 m3 m4
Time elapsed, Δt s    Steam flow to vent, kg/h
q = q - q + q
m6 m2 m3 m4

---------------------- Page: 16 ----------------------
ISO 5117:2023(E)
12
  © ISO 2023 – All rights reserved

Table A.1 (continued)
2
The trap ca
...

NORME ISO
INTERNATIONALE 5117
Première édition
2023-06
Purgeurs automatiques de vapeur
d'eau — Essais de production et
essais des caractéristiques de
fonctionnement
Automatic steam traps — Production and performance characteristic
tests
Numéro de référence
ISO 5117:2023(F)
© ISO 2023

---------------------- Page: 1 ----------------------
ISO 5117:2023(F)
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2023
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
  © ISO 2023 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 5117:2023(F)
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives .1
3 Termes et définitions . 1
4 Méthodes d’essai . 2
4.1 Essai de production — Essais de l’enveloppe . 2
4.2 Essais de caractéristiques de performance . 3
4.2.1 Contrôle fonctionnel . 3
4.2.2 Pression minimale en service . 3
4.2.3 Pression maximale en service (PMO) . 3
4.2.4 Contre-pression maximale en service (PMOB) . 3
4.2.5 Aptitude à l’évacuation d’air . 3
4.2.6 Température de service (TO) . 3
4.2.7 Débit de condensat (QH ou QC) . 3
4.2.8 Perte de vapeur vive . 4
4.2.9 Détermination de la pression minimale en service . 4
4.2.10 Détermination de la pression maximale en service . 4
4.2.11 Détermination de la contre-pression maximale en service . 4
4.2.12 Détermination de l’aptitude à l’évacuation d’air . 4
4.2.13 Détermination de la température de service . 4
4.2.14 Détermination de l’aptitude au condensat . 4
4.2.15 Détermination de la perte de vapeur vive . 5
5 Inspection . 5
Annexe A (normative) Méthodes d'essai pour la détermination de l’aptitude à l’évacuation .6
Annexe B (normative) Méthodes d’essai pour la détermination de la perte de vapeur .20
Bibliographie .33
iii
© ISO 2023 – Tous droits réservés

---------------------- Page: 3 ----------------------
ISO 5117:2023(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier, de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document a
été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir
www.iso.org/directives).
L’ISO attire l’attention sur le fait que la mise en application du présent document peut entraîner
l’utilisation d’un ou de plusieurs brevets. L’ISO ne prend pas position quant à la preuve, à la validité
et à l’applicabilité de tout droit de brevet revendiqué à cet égard. À la date de publication du présent
document, l’ISO n'avait pas reçu notification qu’un ou plusieurs brevets pouvaient être nécessaires à sa
mise en application. Toutefois, il y a lieu d’avertir les responsables de la mise en application du présent
document que des informations plus récentes sont susceptibles de figurer dans la base de données de
brevets, disponible à l'adresse www.iso.org/brevets. L’ISO ne saurait être tenue pour responsable de ne
pas avoir identifié tout ou partie de tels droits de propriété.
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir www.iso.org/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 153, Robinetterie, en collaboration
avec le Comité Technique CEN/TC 69, Robinetterie industrielle, du Comité européen de normalisation
(CEN) conformément à l’Accord de coopération technique entre l’ISO et le CEN (Accord de Vienne).
La présente édition annule et remplace l’ISO 6948:1981, l’ISO 7841:1988 et l’ISO 7842:1988, qui ont été
techniquement révisées.
Les principales modifications sont les suivantes:
— fusion de l’ISO 6948:1981, l’ISO 7841:1988 et l’ISO 7842:1988;
— mise à jour du contenu technique selon l’état de l’art;
— ajout de l'entrée terminologique sur le refroidissement intermédiaire (3.2);
— ajout d’une fiche de données pour les méthodes d’essai A et B sur l’aptitude à l’évacuation des
purgeurs de vapeur d’eau en A.3.3 et en A.4.3 ;
— ajout d’une formule de calcul [Formule (B.4)];
— ajout d’une fiche de données pour les méthodes d’essai A et B sur l’essai de perte de vapeur en B.3.4
et B.4.4.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www.iso.org/fr/members.html.
iv
  © ISO 2023 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 5117:2023(F)
Introduction
Les essais de purgeurs de vapeur d’eau assurent la conformité de la performance des produits à la
fonction prévue. Le présent document traite des exigences pour les essais de production et les essais
de performance des purgeurs de vapeur d’eau. L’essai de production assure l’intégrité de l’enveloppe à
la pression maximale de service, tandis que l’essai de performance assure l’exigence fonctionnelle des
purgeurs de vapeur d’eau. Il convient que l’essai de performance soit considéré comme un essai de type.
Les essais sont la méthode la plus fiable pour valider un produit, y compris la conception, la sélection
des matériaux et les procédés de fabrication. Ils peuvent également servir de guide pour la sélection
des purgeurs de vapeur d’eau. Ils peuvent permettre aux utilisateurs de comparer différents types de
purgeurs de vapeur d’eau, conceptions et marques.
Actuellement, les exigences d’essai sont le plus souvent établies par le fabricant ou les utilisateurs,
et chacun peut avoir ses propres spécifications. Le présent document va créer une compréhension
commune sur les qualifications et le coût total de propriété de l’utilisateur final en éliminant les défauts
de conception involontaires et l’obsolescence programmée.
Finalement le présent document va améliorer le fonctionnement et la sécurité dans les usines en
permettant à tout client de spécifier des appareils de robinetterie industriels durables soumis à des
essais de type.
v
© ISO 2023 – Tous droits réservés

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 5117:2023(F)
Purgeurs automatiques de vapeur d'eau — Essais
de production et essais des caractéristiques de
fonctionnement
1 Domaine d’application
Le présent document spécifie les exigences d’essai de production et d'essai des caractéristiques de
fonctionnement applicables pour les purgeurs automatiques de vapeur d’eau utilisés pour des services
d’évacuation/de récupération de condensat pour une utilisation optimisée de l’énergie, dans les
raffineries, les centrales électriques ou d’autres applications générales où la vapeur d’eau est utilisée
comme un moyen de transfert de chaleur.
Les essais peuvent être classés comme des essais de production et des essais de caractéristiques de
performance et peuvent être conduits afin de s’assurer du fonctionnement correct d’un purgeur de
vapeur d’eau ou pour évaluer les performances d’une conception particulière. Le présent document
spécifie les essais à effectuer pour chacune de ces deux catégories et décrit brièvement les méthodes
d’essai correspondantes.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s'applique (y compris les
éventuels amendements).
ISO 6553, Purgeurs automatiques de vapeurs d'eau — Marquage
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s’appliquent.
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp
— IEC Electropedia: disponible à l’adresse https:// www .electropedia .org/
3.1
essai de production
essais effectués par le fabricant pour confirmer que chaque purgeur automatique de vapeur d’eau
fonctionne correctement
Note 1 à l'article: L’acheteur ou son représentant peut assister à ces essais. Dans ce cas, ces essais sont dénommés
essais de réception.
3.2
refroidissement intermédiaire
phénomène lié à la température, qui est défini comme la différence entre la température de saturation
de la vapeur et la température réelle de la vapeur/du condensat à l’entrée ou à la sortie d’un purgeur de
vapeur d’eau
Note 1 à l'article: Ceci peut être le paramètre fiable pour certains types de purgeurs de vapeur d’eau, comme les
purgeurs de vapeur d’eau thermostatiques.
1
© ISO 2023 – Tous droits réservés

---------------------- Page: 6 ----------------------
ISO 5117:2023(F)
Note 2 à l'article: L’eau avec une valeur de température inférieure à la température de saturation est appelée
condensat sous-refroidi. Par ailleurs, la température de saturation correspond toujours à la pression à laquelle le
système fonctionne.
4 Méthodes d’essai
4.1 Essai de production — Essais de l’enveloppe
Chaque purgeur de vapeur d’eau doit être soumis à l’essai afin de confirmer l’intégrité de son enveloppe
à la pression.
Le fluide d’essai, dont le choix est laissé à la discrétion du fabricant, doit être soit:
— de l’eau pouvant contenir un inhibiteur de corrosion, du pétrole ou tout autre liquide approprié
ayant une viscosité inférieure ou égale à celle de l’eau;
— de la vapeur, de l’air, ou tout autre gaz approprié.
NOTE Différentes autorités réglementaires exigent une approbation spécifique des modes d’essai lorsque
l'essai est effectué avec de la vapeur, de l’air, ou tout autre gaz.
Les équipements internes qui ne résistent pas à la pression d’essai peuvent être retirés avant l’essai.
Le purgeur de vapeur d’eau doit être principalement purgé d’air lors d’essais effectués avec un liquide.
Les purgeurs de vapeur d’eau ne doivent pas être peints ou revêtus à l’aide de matériaux susceptibles
de colmater les fuites possibles avant que les essais de l’enveloppe n’aient été menés à terme. Les
traitements chimiques de protection contre la corrosion et les revêtements internes sont autorisés. Si
des essais sous pression en présence d’un agent mandaté par l’acheteur sont spécifiés, des purgeurs
de vapeur d’eau peints pris dans le stock peuvent être soumis à un nouvel essai sans enlèvement de la
peinture.
L’appareillage d’essai ne doit pas soumettre le purgeur de vapeur d’eau à des contraintes externes qui
peuvent affecter les résultats des essais.
L’essai de l’enveloppe doit être effectué en appliquant la pression à l’intérieur du purgeur de vapeur
d’eau entièrement équipé, ses extrémités étant fermées.
Pour tous les purgeurs de vapeur d’eau, l’essai hydraulique de l’enveloppe doit être effectué à une
pression égale à 1,5 fois la pression maximale admissible à 20 °C.
Pour les purgeurs de vapeur d’eau de diamètre nominal inférieur ou égal à DN 50 et avec une gamme de
pressions allant jusqu’à PN 40 ou Class 300, l’essai hydraulique de l’enveloppe peut être effectué avec du
gaz à une pression (pression relative) de 6 bar (0,6 MPa). Pour les essais au gaz, des mesures de sécurité
doivent être adoptées.
Aucune fuite détectable à l’œil nu au travers des parois sous pression ne doit être acceptée.
La durée des essais ne doit pas être inférieure aux valeurs spécifiées dans le Tableau 1.
Tableau 1 — Durées minimales des essais de l’enveloppe
Taille nominale du purgeur Durée minimale
de vapeur d’eau de l’essai
DN [s]
DN ≤ 50 15
65 ≤ DN ≤ 200 60
250 ≤ DN 180
2
  © ISO 2023 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 5117:2023(F)
4.2 Essais de caractéristiques de performance
4.2.1 Contrôle fonctionnel
Les performances fonctionnelles du purgeur de vapeur d’eau doivent être contrôlées sous de la vapeur
et du condensat. Le montage d’essai doit produire la vapeur et le condensat dans l’état désiré. De la
vapeur doit être introduite dans le purgeur de vapeur d’eau. Du condensat doit être introduit par
intermittence si nécessaire.
Lorsque seule de la vapeur est présente, le purgeur de vapeur d’eau doit se refermer. Lorsque la vapeur
devient du condensat, le purgeur de vapeur d’eau doit s’ouvrir (le temps d’ouverture varie en fonction
du type de purgeur de vapeur d’eau); lorsque le condensat a été évacué, le purgeur de vapeur d’eau doit
se refermer à nouveau. L’essai est achevé lorsqu’au moins un cycle complet a été effectué. Le condensat
peut également être introduit dans le purgeur de vapeur d’eau pour accélérer le cycle et pour vérifier la
performance.
Certains types de purgeurs de vapeur d’eau peuvent être soumis à l’essai avec de l’air ou de l’eau.
Un fabricant peut décrire le fonctionnement d’un type particulier de purgeur de vapeur d’eau en
se référant à un ou plusieurs des essais des caractéristiques de performance suivants. Une brève
explication du calcul de chaque caractéristique est donnée ci-dessous.
L’essai de fonctionnement peut être considéré sur une base d’échantillonnage comme un essai de type
basé sur le type de purgeurs de vapeur d’eau. Un échantillonnage de purgeurs de vapeur d’eau doit être
soumis à l’essai afin de s’assurer que ces purgeurs de vapeur d’eau s’ouvrent pour évacuer du condensat
et se referment de manière satisfaisante. Des détails complémentaires sont donnés en 4.2.2 à 4.2.15. Cet
essai ne s’applique pas aux purgeurs de vapeur d’eau à chicanes ou à orifices (voir l’ISO 6704).
4.2.2 Pression minimale en service
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer la pression minimale (supérieure
ou égale à la pression atmosphérique) à laquelle l’ouverture et la fermeture se font de manière correcte.
4.2.3 Pression maximale en service (PMO)
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer la pression maximale à laquelle
l’ouverture et la fermeture se font de manière correcte.
4.2.4 Contre-pression maximale en service (PMOB)
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer la pression maximale admissible
à la sortie du purgeur de vapeur d’eau permettant un fonctionnement correct.
4.2.5 Aptitude à l’évacuation d’air
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer son aptitude à évacuer l’air.
4.2.6 Température de service (TO)
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer la température à laquelle le
mécanisme fonctionne, et en particulier, la température à laquelle il évacue le débit spécifié.
4.2.7 Débit de condensat (QH ou QC)
Le purgeur de vapeur d’eau doit être soumis à un essai d’écoulement pour déterminer son débit de
condensat sur sa gamme de pression de service.
3
© ISO 2023 – Tous droits réservés

---------------------- Page: 8 ----------------------
ISO 5117:2023(F)
4.2.8 Perte de vapeur vive
Le purgeur de vapeur d’eau doit être soumis à un essai pour déterminer la quantité de vapeur vive
perdue par le purgeur de vapeur d’eau.
4.2.9 Détermination de la pression minimale en service
Des essais de fonctionnement, tels que décrits en 4.2.1, doivent être effectués en réduisant
successivement la pression d’essai jusqu’à ce que le purgeur de vapeur d’eau cesse de s’ouvrir et de se
fermer correctement.
La pression minimale en service est la pression d’essai la plus faible à laquelle un fonctionnement
correct est observé.
4.2.10 Détermination de la pression maximale en service
La pression maximale en service du purgeur de vapeur d’eau peut être vérifiée en effectuant des essais
de fonctionnement, tels que décrits en 4.2.1, tout en augmentant successivement la pression d’essai
jusqu’à la pression maximale en service du purgeur de vapeur d’eau.
Le purgeur de vapeur d’eau doit s’ouvrir et se fermer de façon satisfaisante durant toute la durée de cet
essai.
4.2.11 Détermination de la contre-pression maximale en service
Des essais de fonctionnement, tels que décrits en 4.2.1, doivent être effectués après avoir relié la sortie du
purgeur de vapeur d’eau à une enceinte dans laquelle la pression peut être augmentée indépendamment
de la pression d’essai en amont du purgeur de vapeur d’eau. Tout en maintenant une pression de
référence à l’entrée du purgeur de vapeur d’eau, la pression à la sortie est augmentée successivement
jusqu’à ce que le purgeur de vapeur d’eau cesse de s’ouvrir et de se fermer correctement.
La contre-pression maximale en service est la plus forte pression appliquée à la sortie du purgeur de
vapeur d’eau à laquelle un fonctionnement correct est encore observé.
4.2.12 Détermination de l’aptitude à l’évacuation d’air
De l’air doit être introduit dans le purgeur de vapeur d’eau ou dans la tuyauterie amont à une
température spécifiée. L’aptitude à l’évacuation d’air doit être contrôlée par des mesures de débit d’air à
la pression minimale en service et à la pression maximale en service, la température interne du purgeur
de vapeur d’eau étant enregistrée.
4.2.13 Détermination de la température de service
De la vapeur doit être introduite dans le purgeur de vapeur d’eau afin de provoquer sa fermeture. Du
condensat, à la température de la vapeur d’eau saturée, doit ensuite être introduit et, à moins que le
purgeur de vapeur d’eau ne s’ouvre immédiatement, doit être laissé à refroidir lentement à l’entrée du
purgeur de vapeur d’eau.
La température du condensat, mesurée à l’entrée du purgeur de vapeur d’eau, à laquelle le purgeur de
vapeur d’eau s’ouvre est la température de service.
Les températures de service sont les températures du condensat mesurées à l’entrée du purgeur de
vapeur d’eau, auxquelles le purgeur de vapeur d’eau aura les capacités spécifiées.
4.2.14 Détermination de l’aptitude au condensat
Le débit du purgeur de vapeur d’eau doit être déterminé en mesurant la quantité de condensat évacuée
par le dispositif dans des conditions spécifiées de pression différentielle et de température de condensat.
4
  © ISO 2023 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 5117:2023(F)
L’essai doit être effectué avec le condensat à des températures et des pressions diverses dans la gamme
de fonctionnement du purgeur de vapeur d’eau à spécifier, selon les exigences d’essai détaillées dans
l’Annexe A.
4.2.15 Détermination de la perte de vapeur vive
Pour déterminer la quantité de vapeur vive perdue, le cas échéant, par le purgeur de vapeur d’eau,
utiliser l’une des méthodes d’essai de l’Annexe B.
5 Inspection
Les échantillons de purgeurs de vapeur d’eau finis doivent être examinés visuellement et contrôlés
dimensionnellement afin de s’assurer que les purgeurs de vapeur d’eau correspondent aux prescriptions
énoncées et doivent être marqués conformément à l’ISO 6553.
5
© ISO 2023 – Tous droits réservés

---------------------- Page: 10 ----------------------
ISO 5117:2023(F)
Annexe A
(normative)

Méthodes d'essai pour la détermination de l’aptitude
à l’évacuation
A.1 Généralités
La présente annexe spécifie deux méthodes d’essai permettant de déterminer le débit des purgeurs
automatiques de vapeur d’eau.
A.2 Installations d’essai
Les installations d’essai permettant de déterminer le débit de condensat sont représentées sur les
Figures A.1 et A.2.
Pour réduire les pertes de chaleur au minimum, toutes les tuyauteries et tout l’appareillage doivent être
2 −1
isolés à une valeur R, en m ⋅°C⋅h⋅J , selon la Formule (A.1).
−3
R≥×07, 510 (A.1)
Les instruments utilisés pour les mesurages doivent être conformes aux Normes internationales, par
exemple l'ISO 4185, la série ISO 5167 et l'ISO 5168 pour les mesurages de débit.
Le dispositif d’évacuation du condensat ne doit subir aucune modification par rapport à la forme sous
laquelle il est commercialisé.
6
  © ISO 2023 – Tous droits réservés

---------------------- Page: 11 ----------------------
ISO 5117:2023(F)
Légende
A alimentation en eau L dispositif soumis à essai
B débitmètre q M condenseur refroidi à l’eau
m1
C mélangeur eau-vapeur d’eau N balance
D débitmètre q V1 appareil de robinetterie 1
m2
E calorimètre V2 appareil de robinetterie 2
F alimentation en vapeur d’eau V3 appareil de robinetterie 3
G évacuation de la vapeur V4 appareil de robinetterie 4
H accumulateur de vaporisation V5 appareil de robinetterie 5
I indicateur de température différentielle Δθ AA installation A
J robinet-vanne ou robinet à tournant sphérique BB installation B
(à passage intégral)
K purge
NOTE 1 Le diamètre de la tuyauterie reliant l’accumulateur au dispositif d’évacuation du condensat est le
même ou supérieur au diamètre de la tuyauterie du raccord d’entrée de ce dispositif.
NOTE 2 La distance L n’est pas supérieure à 10 fois le diamètre intérieur de la tuyauterie.
1
NOTE 3 La distance L n’est pas inférieure à 10 fois et pas supérieure à 20 fois le diamètre intérieur de la
2
tuyauterie.
NOTE 4 La distance L est mesurée verticalement à partir du niveau de l'eau au centre du raccord d’entrée du
3
dispositif d’essai.
Figure A.1 — Installation d’essai pour la méthode d’essai A
7
© ISO 2023 – Tous droits réservés

---------------------- Page: 12 ----------------------
ISO 5117:2023(F)
Légende
A ventilation N dispositif soumis à essai
B soupape de sécurité O pente
C détendeur P casse-vide
D alimentation en vapeur d’eau L distance entre les capteurs et le dispositif soumis à essai
1
E circulateur R cuve ouverte
F échelle calibrée V1 appareil de robinetterie 1
G appareil de réglage de la température V2 appareil de robinetterie 2
(facultatif)
H balance V3 appareil de robinetterie 3 – réglage de la température
I conduite d’injection V4 appareil de robinetterie 4
K accumulateur V5 appareil de robinetterie 5 – robinet-vanne ou robinet
à tournant sphérique (à passage intégral)
L niveau V6 appareil de robinetterie 6 – robinet-vanne ou robinet
à tournant sphérique (à passage intégral)
M eau froide V7 appareil de robinetterie 7
NOTE 1 Les tuyauteries reliant l’accumulateur au dispositif soumis à essai sont de même diamètre que
le raccord d’entrée du dispositif soumis à essai. L’entrée de tuyauterie dans l’accumulateur est de rayon bien
arrondi.
NOTE 2 La distance L entre les capteurs et le dispositif à essai ne dépasse pas 20 fois le diamètre intérieur de
1
la tuyauterie.
NOTE 3 La distance L est mesurée verticalement à partir du centre du raccord d’entrée du dispositif soumis à
2
essai et ne dépasse pas 450 mm.
NOTE 4 Sur la Figure A.2, un injecteur de vapeur est utilisé pour chauffer l’eau dans l’accumulateur. Il est
également possible d’utiliser un serpentin transportant la vapeur d’eau à l’intérieur de l’accumulateur ou tout
autre moyen.
Figure A.2 — Installation d’essai pour la méthode d’essai B – Débit continu et intermittent
8
  © ISO 2023 – Tous droits réservés

---------------------- Page: 13 ----------------------
ISO 5117:2023(F)
A.3 Méthode d’essai A
A.3.1 Mode opératoire
La méthode d’essai A est applicable seulement à un mesurage de débit continu.
Il est à noter que la Figure A.1 représente deux variantes d’installation d'essai pour le mesurage du
condensat et que le choix de la variante est laissé au laboratoire d’essai.
Commencer l’essai avec tous les appareils de robinetterie fermés.
a) Mettre le circuit en température en ouvrant progressivement les appareils de robinetterie V1, V2,
V3, V4 et V5.
b) Régler les appareils de robinetterie V1, V2 et V3, l'appareil de robinetterie V4 étant en position
d’ouverture totale et l'appareil de robinetterie V5 en position de fermeture pour amener le circuit
à l’équilibre. Par équilibre, on entend un niveau d’eau constant dans l’accumulateur avec l'appareil
de robinetterie de purge V3 partiellement ouvert et une différence de 3 °C ou moins enregistrée sur
l’indicateur de température différentielle.
c) Observer et noter les données suivantes selon leur pertinence par rapport à la méthode de
détermination du condensat:
p = pression d’alimentation en vapeur d’eau, en bar(g) ou MPa(g);
1
p = pression de vapeur d’eau dans l’accumulateur, en bar(g) ou MPa(g);
2
p = pression d’entrée dans le purgeur de vapeur d’eau, en bar(g) ou MPa(g);
3
p = pression de sortie du purgeur de vapeur d’eau, en bar(g) ou MPa(g);
4
θ = température d’alimentation en vapeur d’eau, en °C;
1
θ = température d’alimentation en eau, en °C;
2
Δθ = différence de température (refroidissement intermédiaire) entre la vapeur d’eau dans
l’accumulateur et le fluide entrant dans le purgeur de vapeur d’eau, en °C;
X = qualité d’alimentation en vapeur d’eau, en %;
L = niveau d’eau dans l’accumulateur, en m;
3
Δt = intervalle de temps, en h, min ou s;
q = débit d’alimentation en eau, en kg/h;
m1
q = débit d’alimentation en vapeur d’ea
...

2023-01-0302
ISO/FDIS 5117:2023(E)
ISO TC 153/WG 15
Secretariat: AFNOR
Automatic steam traps — Production and performance characteristic tests
Purgeurs automatiques de vapeur d'eau — Essais de production et essais des caractéristiques de
fonctionnement

---------------------- Page: 1 ----------------------
ISO/FDIS 5117:2023(E)
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no
part of this publication may be reproduced or utilized otherwise in any form or by any means,
electronic or mechanical, including photocopying, or posting on the internet or an intranet, without
prior written permission. Permission can be requested from either ISO at the address below or
ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
© ISO 2023 – All rights reserved
ii © ISO 2023– All rights reserved

---------------------- Page: 2 ----------------------
ISO/FDIS 5117:2023(E)
Contents
Foreword . iv
Introduction. vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Test methods . 2
4.1 Production test — Shell testing . 2
4.2 Performance characteristic tests . 3
4.2.1 Operational check . 3
4.2.2 Minimum operating pressure . 3
4.2.3 Maximum operating pressure (PMO) . 3
4.2.4 Maximum operating back pressure (PMOB) . 3
4.2.5 Air venting capability . 3
4.2.6 Operating temperature (TO) . 3
4.2.7 Condensate capacity (QH or QC) . 3
4.2.8 Live steam loss . 3
4.2.9 Determination of minimum operating pressure . 4
4.2.10 Determination of maximum operating pressure . 4
4.2.11 Determination of maximum operating back pressure . 4
4.2.12 Determination of air venting capability . 4
4.2.13 Determination of operating temperature . 4
4.2.14 Determination of condensate capacity . 4
4.2.15 Determination of live steam loss . 5
5 Inspection . 5
Annex A (normative) Test methods for the determination of discharge capacity . 6
Annex B (normative) Test methods for the determination of steam loss . 22
Bibliography . 37

© ISO 2023 – All rights reserved © ISO 2023 – All iii
rights reserved

---------------------- Page: 3 ----------------------
ISO/FDIS 5117:2023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 153, Valves, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 69, Industrial valves, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This first edition cancels and replaces ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988, which have
been technically revised.
The main changes are as follows:
— merging of ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988;
— update of the technical content according to state-of-the-art;
— addition of the definition 3.2terminological entry on subcooling; (3.2);
— addition of a data sheet for test methods A and B on steam trap discharge capacity in A.3.3 and in
A.4.3;
— addition of a computation formula [Formula (B.4)];
— addition of a data sheet for test methods A and B on steam loss test in B.3.4 and B.4.4.
© ISO 2023 – All rights reserved
iv © ISO 2023– All rights reserved

---------------------- Page: 4 ----------------------
ISO/FDIS 5117:2023(E)
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
© ISO 2023 – All rights reserved © ISO 2023 – All v
rights reserved

---------------------- Page: 5 ----------------------
ISO/FDIS 5117:2023(E)
Introduction
Testing of steam traps provides conformance of product performance to the intended function. This
document addresses the requirements for production testing and performance testing of steam traps.
Production test ensures the shell integrity to the maximum working pressure while the performance test
ensures the functional requirement of steam traps. Performance test should be considered as type test.
Testing is the most reliable method to validate a product including design, material selection and
manufacturing processes. It may also serve as a guide for steam traps selection. It can allow the users to
compare different types of steam traps, designs and brands.
Currently the test requirements are mostly driven by the manufacturer or the users and each may have
their own specification. This document will create common understanding on the qualifications, and end-
user total cost-of-ownership by eliminating unintentional design flaws and planned obsolescence.
Ultimately, this document will improve performance and safety in the plants by enabling any customer
to specify durable type-tested industrial valves.
© ISO 2023 – All rights reserved
vi © ISO 2023– All rights reserved

---------------------- Page: 6 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 5117:2023(E)

Automatic steam traps — Production and performance
characteristic tests
1 Scope
This document specifies the production and performance relevant test requirements for automatic
steam traps used for condensate removal/recovery services for optimized utilization of energy, in
refinery, power generation or other general applications where steam is used as a medium of heat
transfer.
The tests can be classified as production tests and performance characteristic tests and can be
conducted to ensure the correct functioning of a steam trap or to evaluate the performance of a
particular design. This document specifies the tests performed relative to each one of these two
categories and briefly describes the corresponding test methods.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 6553, Automatic steam traps — Marking
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at https://www.electropedia.org/
3.1
production test
tests carried out by the manufacturer to confirm that each automatic steam trap functions correctly
Note 1 to entry: These tests may be witnessed by the purchaser or his representative. In this case, these tests are
referred to as acceptance tests.
3.2
subcooling
temperature-related phenomenon which is the difference between the steam saturation temperature to
the actual temperature of steam/condensate either at steam trap inlet or exit
Note 1 to entry: This may be the accountable parameter in some of the steam trap type like thermostatic steam
traps.
© ISO 2023 – All rights reserved 1

---------------------- Page: 7 ----------------------
ISO/FDIS 5117:2023(E)
Note 2 to entry: The water with a temperature value below the saturation temperature is called the subcooled
condensate. But also, the saturation temperature always corresponds to the pressure at which the system is
operating.
4 Test methods
4.1 Production test — Shell testing
Each steam trap shall be tested to confirm the integrity of its shell under pressure.
The test fluid, the choice of which is left to the discretion of the manufacturer, shall be either:
— water, which may contain a corrosion inhibitor, kerosene or any other suitable liquid having a
viscosity not greater than that of water;
— steam, air, or any other suitable gas.
NOTE Various statutory authorities require specific approval of test procedures where the test is conducted
using steam, air, or other gas.
Any internal trim which does not withstand the test pressure may be removed before the test.
The steam trap shall be essentially vented off air when testing with a liquid.
Steam traps shall not be painted or otherwise coated with materials capable of sealing against leakage
before the shell pressure tests are completed. Chemical corrosion protection treatments and internal
linings are permitted. If pressure tests in the presence of a representative of the purchaser are specified,
painted steam traps from stock may be re-tested without removal of paint.
Test equipment shall not subject the steam trap to externally applied stresses which can affect the
results of the tests.
The shell test shall be performed by applying pressure inside the assembled steam trap with the ends
closed.
For all steam traps, the hydraulic shell test shall be performed at a pressure 1,5 times the maximum
allowable pressure at 20 °C.
For steam traps with a nominal diameter less than or equal to DN 50 and with pressure range up to
PN 40 or Class 300, a hydraulic shell test can be performed using gas at a pressure (gauge pressure) of
6 bar (0,6 MPa). For gas test, safety measuremeasures shall be taken.
Visually detectable leakage through the pressure retaining walls is not acceptable.
Test durations shall not be less than those specified in Table 1.
Table 1 — Minimum durations for shell tests
Nominal steam trap size Minimum test duration
DN [s]
DN ≤ 50 15
65 < DN < 200 60
180
250 ≤ DN
© ISO 2023 – All rights reserved
2 © ISO 2023 – All rights reserved

---------------------- Page: 8 ----------------------
ISO/FDIS 5117:2023(E)
4.2 Performance characteristic tests
4.2.1 Operational check
The operational performance of the steam trap shall be checked under the steam and condensate. The
test set up shall ably produce the steam and condensate in the desired condition. Steam shall be fed into
the steam trap. Condensate shall be introduced intermittently if required.
When only steam is present, the steam trap shall close. When the steam becomes condensate, the steam
trap shall open (the time taken will vary as a function of the steam trap type); when the condensate has
been discharged, the steam trap shall again close. The test is complete when at least one complete cycle
has been performed. The condensate can also be fed to the steam trap to quicken the cycle and to verify
the performance.
Certain types of steam trap may be tested with air or water.
A manufacturer may describe the operations of a particular type of steam trap by referring to one or
more of the following performance characteristic tests. A brief explanation of the derivation of each
characteristic is given below.
The performance test may be considered on sample basis as type test based on the type of steam traps.
Sample steam traps shall be tested to ensure that they open to discharge condensate and close
satisfactorily. Further details are given in 4.32.2 to 4.32.15. This test does not apply to the labyrinth (or
orifice) steam traps (see ISO 6704).
4.2.2 Minimum operating pressure
The steam trap shall be tested to determine the minimum pressure (atmospheric or above) at which the
correct opening, and closing will occur.
4.2.3 Maximum operating pressure (PMO)
The steam trap shall be tested to determine the maximum pressure at which the correct opening, and
closing will occur.
4.2.4 Maximum operating back pressure (PMOB)
The steam trap shall be tested to determine the maximum pressure permissible at the outlet of the
device which allows correct functioning.
4.2.5 Air venting capability
The steam trap shall be tested to determine its ability to discharge air.
4.2.6 Operating temperature (TO)
The steam trap shall be tested to determine the temperature at which the device operates and in
particular the temperature at which it passes its specified capacity.
4.2.7 Condensate capacity (QH or QC)
The steam trap shall be flow tested to determine its condensate capacity throughout its operating
pressure range.
4.2.8 Live steam loss
The steam trap shall be tested to determine the amount of live steam lost via the steam trap.
© ISO 2023 – All rights reserved © ISO 2023 – All 3
rights reserved

---------------------- Page: 9 ----------------------
ISO/FDIS 5117:2023(E)
4.2.9 Determination of minimum operating pressure
Operational checks, as described in 4.32.1, shall be carried out while successively reducing the test
pressure until the steam trap fails to open and close correctly.
The minimum operating pressure is the lowest test pressure at which correct operation is observed.
4.2.10 Determination of maximum operating pressure
The maximum operating pressure of the steam trap may be verified by carrying out operational checks,
as described in 4.32.1, while successively increasing the test pressure up to the steam trap's maximum
operating pressure.
The steam trap shall open and close correctly throughout the test.
4.2.11 Determination of maximum operating back pressure
Operational checks, as described in 4.32.1, shall be carried out with the outlet from the steam trap
connected to a vessel in which the pressure can be raised, independent of the test pressure upstream of
the steam trap. While maintaining a reference pressure at the steam trap's inlet, the pressure at its outlet
is to be raised successively until the steam trap fails to open and close correctly.
The maximum operating back pressure is the highest pressure applied to the steam trap's outlet at
which correct operation is still observed.
4.2.12 Determination of air venting capability
Air shall be introduced at a specified temperature into the steam trap or upstream piping. The air
venting capability shall be checked by an air flow measurement carried out at minimum and maximum
operating pressures, the temperature inside the steam trap being recorded.
4.2.13 Determination of operating temperature
Steam shall be fed into the steam trap to effect closure. Condensate, at saturated steam temperature,
shall then be introduced and, unless the steam trap opens immediately, shall be allowed to cool slowly
at the steam trap's inlet.
The temperature of the condensate, measured at the steam trap's inlet, at which the device opens, is the
operating temperature.
The operating temperatures are the temperatures of the condensate, measured at the inlet to the steam
trap, at which the steam trap passes its specified capacities.
4.2.14 Determination of condensate capacity
The capacity of the steam trap shall be determined by measuring the amount of condensate that is
discharged from the device under specified conditions of pressure differential and condensate
temperature.
The test shall be carried out with condensate at different temperatures and at different pressures within
the steam trap's operating range to be specified, according to the test requirements detailed in Annex A.
© ISO 2023 – All rights reserved
4 © ISO 2023 – All rights reserved

---------------------- Page: 10 ----------------------
ISO/FDIS 5117:2023(E)
4.2.15 Determination of live steam loss
To determine the amount of live steam lost, if any, by the steam trap, use one of the test methods in
Annex B.
5 Inspection
Samples of the finished steam traps shall be visually examined and dimensionally checked to ensure that
the steam traps correspond to the stated specification and shall be marked in accordance with ISO 6553.
© ISO 2023 – All rights reserved © ISO 2023 – All 5
rights reserved

---------------------- Page: 11 ----------------------
ISO/FDIS 5117:2023(E)
Annex A
(normative)

Test methods for the determination of discharge capacity
A.1 General
This annex specifies two test methods to determine the discharge capacity of automatic steam traps.
A.2 Test arrangements
The test arrangements for condensate capacity determination are shown in Figures A.1 and A.2.
To reduce thermal losses to a minimum, all piping and equipment shall be insulated to a value R, in
2 −1
m⋅°C⋅h⋅J , according to Formula (A.1).
−3
R ≥×0,75 10 (A.1)
The instruments used for the measurements shall comply with International Standards, for example,
ISO 4185, the ISO 5167 (series) and ISO 5168 for flow measurements.
The condensate removal device shall not be modified in any way from its commercial form.
© ISO 2023 – All rights reserved
6 © ISO 2023 – All rights reserved

---------------------- Page: 12 ----------------------
ISO/FDIS 5117:2023(E)

© ISO 2023 – All rights reserved © ISO 2023 – All 7
rights reserved

---------------------- Page: 13 ----------------------
ISO/FDIS 5117:2023(E)

Key
A water supply L test device
B flow meter q M water-cooled condenser
m1
C steam water mixer N scale
D flow meter qm2 V1 valve 1
E calorimeter V2 valve 2
F steam supply V3 valve 3
G steam vent V4 valve 4
H flash tank accumulator V5 valve 5
I temperature difference indicator Δθ AA arrangement A
J gate or full bore valve V4 BB arrangement B
K drain
NOTE 1 The diameter of the pipework from the accumulator to the condensate removal device is the same as, or
greater than, the diameter of the pipework to the inlet connection on the device.
NOTE 2 The distance L does not exceed 10 internal pipe diameters.
1
NOTE 3 The distance L2 is not less than 10 and not more than 20 internal pipe diameters.
NOTE 4 The distance L is measured vertically from the water level to the centre of the inlet connection of the
3
test device.
© ISO 2023 – All rights reserved
8 © ISO 2023 – All rights reserved

---------------------- Page: 14 ----------------------
ISO/FDIS 5117:2023(E)
Figure A.1 — Test arrangement for test method A


Key
© ISO 2023 – All rights reserved © ISO 2023 – All 9
rights reserved

---------------------- Page: 15 ----------------------
ISO/FDIS 5117:2023(E)
A vent N test device
B safety valve O slope
C pressure reducing valve P vacuum breaker
D steam supply L distance between sensors and test device
1
E circulator R open pit
F calibrated scale V1 valve 1
G temperature controller (optional) V2 valve 2
H scale V3 valve 3 – temperature control
I injector line V4 valve 4
K accumulator V5 valve 5 – gate or full bore ball valve
L gauge glass V6 valve 6 – gate or full bore ball valve
M cold water V7 valve 7
NOTE 1 The piping from the accumulator to the test device is of the same diameter as the inlet connection on the
test device. This inlet to the piping from the accumulator is well rounded.
NOTE 2 The distance L1 between the sensors and the test device does not exceed 20 internal pipe diameters.
NOTE 3 The distance L is measured vertically from the centre of the inlet pipe connection of the test device and
2
does not exceed 450 mm.
NOTE 4 In Figure A.2, a steam injector is used for heating the water in the accumulator. It is also possible to use
a steam circulating coil inside the accumulator or any other means.
Figure A.2 — Test arrangement for test method B – Continuous and intermittent flow
A.3 Test method A
A.3.1 Procedure
The method A is applicable only to continuous discharge measurement.
It is emphasized that Figure A.1 shows two alternative test arrangements for condensate measurement
and that the choice is left to the test laboratory.
Start with all valves closed.
a) Warm up the system by gradually opening valves V1, V2, V3, V4 and V5.
b) Adjust valves V1, V2 and V3 with valve V4 wide open and valve V5 closed to bring the system into
equilibrium. Equilibrium is defined as a steady water level in the accumulator with the vent valve V3
partially open and a difference of 3 °C or less showing on the temperature differential indicator.
c) Observe and record the following data as appropriate depending on the method of condensate
determination:
p1 = steam supply pressure, in bar(g) or MPa(g);
p = accumulator steam pressure, in bar(g) or MPa(g);
2
© ISO 2023 – All rights reserved
10 © ISO 2023 – All rights reserved

---------------------- Page: 16 ----------------------
ISO/FDIS 5117:2023(E)
p = steam trap inlet pressure, in bar(g) or MPa(g);
3
p4 = steam trap outlet pressure, in bar(g) or MPa(g);
θ = steam supply temperature, in °C;
1
θ2 = water supply temperature, in °C;
Δθ = temperature differential (subcooling) between steam in the accumulator and fluid entering the
steam trap, in °C;
X = steam supply quality, in %;
L = accumulator water level, in m;
3
Δt = time interval, in h, min or s;
q = water supply flow rate, in kg/h;
m1
q = steam supply flow rate, in kg/h;
m2
m = mass of condensate and tank at the start, in kg;
c1
m = mass of condensate and tank at the end, in kg.
c2
d) Record the data specified in A.3.1 c) at 5 min intervals for a minimum total of five sets of
observations.
e) During the test period observations as appropriate shall not exceed the following limits:
— the difference between the maximum and minimum tank level shall not exceed 50 mm;
— the maximum value of the tank level shall not exceed 450 mm at any time during the test;
— the maximum temperature differential (Δθ) shall not exceed 3 °C during the test;
— no individual steam trap inlet pressure (p ) observation shall vary by more than 1 % of the
3
average of all observations;
— the calculated vent steam flow rate (q ) shall not exceed a maximum value equal to an exit
m6
velocity of 0,31 m/s in the tank.
f) Repeat the operations specified in A.3.1 a) to e), as necessary to produce three sets of observations
which result in three calculated capacity ratings, none of which varies from the average by more
than 10 %.
A.3.2 Flow calculations
Flow shall be calculated according to Formulae (A.2) to (A.7).
qmf = (qm1 + qm3 - qm4) ± qm8 (A.2)
© ISO 2023 – All rights reserved © ISO 2023 – All 11
rights reserved

---------------------- Page: 17 ----------------------
ISO/FDIS 5117:2023(E)
or
(mm− )
c2 c1
q ×3600 (A.3)
mf
∆t
where
 qmf is the discharge flow rate, in kg/h;
 q is the water flow rate, in kg/h;
m1
 q is the steam flow rate to heat water supply (q ), in kg/h.
m3 m1
q is the flash steam flow rate in the accumulator, in kg/h;
m4
m mass of condensate and tank at the start, in kg;
c1
m mass of condensate and tank at the end, in kg;
c2
Δt is the time interval, in s.
(hh− )
3 1
qq × (A.4)
m3 m1
(hh− )
2 3
(hh− )
3 5
(A.5)
q = (q +×q )
m4 m1 m3
(hh− )
4 5
2
π D
q × ×0,31× 3 600 (A.6)
m4,max
4 V
1
π (LL− ) 3600
2 31 32
qD=×× × (A.7)
m8
4 ∆tV
2
where
q q is the flash steam flow rate in the accumulator storage rate, in kg/h.;
m4

m8
(A.5)
3 600 (A.6)
( )
𝜋𝜋 𝐿𝐿 −𝐿𝐿 3 600
2 31 32
𝑞𝑞 = ×𝐷𝐷 × × (A.7)
𝑚𝑚8
4 𝛥𝛥𝛥𝛥 𝑉𝑉
2
where
 q is the accumulator storage rate, in kg/h;
m8
 m is the mass of condensate and tank at the start, in kg;
c1
 m is the mass of condensate and tank at the end, in kg;
c2
 h is the specific enthalpy of the supply water, in kJ/kg;
1
© ISO 2023 – All rights reserved
12 © ISO 2023 – All rights reserved

=
=
=

---------------------- Page: 18 ----------------------
ISO/FDIS 5117:2023(E)
 h is the specific enthalpy of the supply steam, in kJ/kg;
2
 h is the specific enthalpy of saturated water at the supply pressure, in kJ/kg;
3
 h is the specific enthalpy of saturated steam in the accumulator, in kJ/kg;
4
 h is the specific enthalpy of saturated water in the accumulator, in kJ/kg;
5
3
 V is the specific volume of saturated steam in the accumulator, in m /kg;
1
3
 V is the specific volume of saturated water in the accumulator, in m /kg;
2
 Δt is the time interval, in s;
 D is the inside diameter of the accumulator, in m;
 L is the initial accumulator tank level, in m;
31
 L is the final accumulator tank level, in m.
32
A.3.3 Datasheet
Table A.1 provides an example of a datasheet for method A.
© ISO 2023 – All rights reserved © ISO 2023 – All 13
rights reserved

---------------------- Page: 19 ----------------------
ISO/FDIS 5117:2023(E)
Table A.1 — Example of a datasheet — Test method A
Steam trap discharge capacity - Test method A
Test n°: Date of test: Calculation by: Manufacturer name:
Serial n°: Size: Description and type of device: Test n°: Date of test:Calculation
Inserted Cells
by:Manufacturer name:
Inserted Cells
Serial n°: Size: Description and type of device: Inside diameter of
accumulator, D:
Inserted Cells
Data
Data Calculation
Run numbers
average
Item Unit Item Unit
Steam supply pressure, p bar or MPa        Reference used for steam/water data
1
Accumulator steam pressure, p 2 bar or MPa        Specific enthalpy of water supply, h 1 kJ/kg
Steam trap inlet pressure, p 3 bar or MPa        Specific enthalpy of steam supply, h 2 kJ/kg
Steam trap outlet pressure, p 4 bar or MPa        Specific enthalpy of saturated water at steam kJ/kg
supply pressure, h 3
Steam supply temperature, θ 1 °C        Specifi
...

FINAL
INTERNATIONAL ISO/FDIS
DRAFT
STANDARD 5117
ISO/TC 153
Automatic steam traps — Production
Secretariat: AFNOR
and performance characteristic tests
Voting begins on:
2023-03-06
Purgeurs automatiques de vapeur d'eau — Essais de production et
essais des caractéristiques de fonctionnement
Voting terminates on:
2023-05-01
ISO/CEN PARALLEL PROCESSING
RECIPIENTS OF THIS DRAFT ARE INVITED TO
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
Reference number
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/FDIS 5117:2023(E)
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN-
DARDS TO WHICH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS. © ISO 2023

---------------------- Page: 1 ----------------------
ISO/FDIS 5117:2023(E)
FINAL
INTERNATIONAL ISO/FDIS
DRAFT
STANDARD 5117
ISO/TC 153
Automatic steam traps — Production
Secretariat: AFNOR
and performance characteristic tests
Voting begins on:
Purgeurs automatiques de vapeur d'eau — Essais de production et
essais des caractéristiques de fonctionnement
Voting terminates on:
COPYRIGHT PROTECTED DOCUMENT
© ISO 2023
ISO/CEN PARALLEL PROCESSING
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
RECIPIENTS OF THIS DRAFT ARE INVITED TO
ISO copyright office
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
CP 401 • Ch. de Blandonnet 8
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
CH-1214 Vernier, Geneva
DOCUMENTATION.
Phone: +41 22 749 01 11
IN ADDITION TO THEIR EVALUATION AS
Reference number
Email: copyright@iso.org
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO­
ISO/FDIS 5117:2023(E)
Website: www.iso.org
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
Published in Switzerland
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN­
DARDS TO WHICH REFERENCE MAY BE MADE IN
ii
  © ISO 2023 – All rights reserved
NATIONAL REGULATIONS. © ISO 2023

---------------------- Page: 2 ----------------------
ISO/FDIS 5117:2023(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Test methods . 2
4.1 Production test — Shell testing . 2
4.2 Performance characteristic tests . 2
4.2.1 Operational check . 2
4.2.2 Minimum operating pressure . 3
4.2.3 Maximum operating pressure (PMO) . 3
4.2.4 Maximum operating back pressure (PMOB) . 3
4.2.5 Air venting capability . 3
4.2.6 Operating temperature (TO) . 3
4.2.7 Condensate capacity (QH or QC) . 3
4.2.8 Live steam loss . 3
4.2.9 Determination of minimum operating pressure . 3
4.2.10 Determination of maximum operating pressure . 4
4.2.11 Determination of maximum operating back pressure . 4
4.2.12 Determination of air venting capability . 4
4.2.13 Determination of operating temperature . 4
4.2.14 Determination of condensate capacity . 4
4.2.15 Determination of live steam loss . 4
5 Inspection . 4
Annex A (normative) Test methods for the determination of discharge capacity .5
Annex B (normative) Test methods for the determination of steam loss .19
Bibliography .31
iii
© ISO 2023 – All rights reserved

---------------------- Page: 3 ----------------------
ISO/FDIS 5117:2023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non­governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 153, Valves, in collaboration with the
European Committee for Standardization (CEN) Technical Committee CEN/TC 69, Industrial valves, in
accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).
This first edition cancels and replaces ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988, which have
been technically revised.
The main changes are as follows:
— merging of ISO 6948:1981, ISO 7841:1988 and ISO 7842:1988;
— update of the technical content according to state­of­the­art;
— addition of the terminological entry on subcooling (3.2);
— addition of a data sheet for test methods A and B on steam trap discharge capacity in A.3.3 and in
A.4.3;
— addition of a computation formula [Formula (B.4)];
— addition of a data sheet for test methods A and B on steam loss test in B.3.4 and B.4.4.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO 2023 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/FDIS 5117:2023(E)
Introduction
Testing of steam traps provides conformance of product performance to the intended function. This
document addresses the requirements for production testing and performance testing of steam traps.
Production test ensures the shell integrity to the maximum working pressure while the performance
test ensures the functional requirement of steam traps. Performance test should be considered as type
test.
Testing is the most reliable method to validate a product including design, material selection and
manufacturing processes. It may also serve as a guide for steam traps selection. It can allow the users
to compare different types of steam traps, designs and brands.
Currently the test requirements are mostly driven by the manufacturer or the users and each may have
their own specification. This document will create common understanding on the qualifications, and
end-user total cost-of-ownership by eliminating unintentional design flaws and planned obsolescence.
Ultimately, this document will improve performance and safety in the plants by enabling any customer
to specify durable type-tested industrial valves.
v
© ISO 2023 – All rights reserved

---------------------- Page: 5 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 5117:2023(E)
Automatic steam traps — Production and performance
characteristic tests
1 Scope
This document specifies the production and performance relevant test requirements for automatic
steam traps used for condensate removal/recovery services for optimized utilization of energy, in
refinery, power generation or other general applications where steam is used as a medium of heat
transfer.
The tests can be classified as production tests and performance characteristic tests and can be
conducted to ensure the correct functioning of a steam trap or to evaluate the performance of a
particular design. This document specifies the tests performed relative to each one of these two
categories and briefly describes the corresponding test methods.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 6553, Automatic steam traps — Marking
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
3.1
production test
tests carried out by the manufacturer to confirm that each automatic steam trap functions correctly
Note 1 to entry: These tests may be witnessed by the purchaser or his representative. In this case, these tests are
referred to as acceptance tests.
3.2
subcooling
temperature­related phenomenon which is the difference between the steam saturation temperature
to the actual temperature of steam/condensate either at steam trap inlet or exit
Note 1 to entry: This may be the accountable parameter in some of the steam trap type like thermostatic steam
traps.
Note 2 to entry: The water with a temperature value below the saturation temperature is called the subcooled
condensate. But also, the saturation temperature always corresponds to the pressure at which the system is
operating.
1
© ISO 2023 – All rights reserved

---------------------- Page: 6 ----------------------
ISO/FDIS 5117:2023(E)
4 Test methods
4.1 Production test — Shell testing
Each steam trap shall be tested to confirm the integrity of its shell under pressure.
The test fluid, the choice of which is left to the discretion of the manufacturer, shall be either:
— water, which may contain a corrosion inhibitor, kerosene or any other suitable liquid having a
viscosity not greater than that of water;
— steam, air, or any other suitable gas.
NOTE Various statutory authorities require specific approval of test procedures where the test is conducted
using steam, air, or other gas.
Any internal trim which does not withstand the test pressure may be removed before the test.
The steam trap shall be essentially vented off air when testing with a liquid.
Steam traps shall not be painted or otherwise coated with materials capable of sealing against leakage
before the shell pressure tests are completed. Chemical corrosion protection treatments and internal
linings are permitted. If pressure tests in the presence of a representative of the purchaser are specified,
painted steam traps from stock may be re-tested without removal of paint.
Test equipment shall not subject the steam trap to externally applied stresses which can affect the
results of the tests.
The shell test shall be performed by applying pressure inside the assembled steam trap with the ends
closed.
For all steam traps, the hydraulic shell test shall be performed at a pressure 1,5 times the maximum
allowable pressure at 20 °C.
For steam traps with a nominal diameter less than or equal to DN 50 and with pressure range up to
PN 40 or Class 300, a hydraulic shell test can be performed using gas at a pressure (gauge pressure) of
6 bar (0,6 MPa). For gas test, safety measures shall be taken.
Visually detectable leakage through the pressure retaining walls is not acceptable.
Test durations shall not be less than those specified in Table 1.
Table 1 — Minimum durations for shell tests
Nominal steam trap size Minimum test duration
DN [s]
DN ≤ 50 15
65 < DN < 200 60
250 ≤ DN 180
4.2 Performance characteristic tests
4.2.1 Operational check
The operational performance of the steam trap shall be checked under the steam and condensate. The
test set up shall produce the steam and condensate in the desired condition. Steam shall be fed into the
steam trap. Condensate shall be introduced intermittently if required.
2
  © ISO 2023 – All rights reserved

---------------------- Page: 7 ----------------------
ISO/FDIS 5117:2023(E)
When only steam is present, the steam trap shall close. When the steam becomes condensate, the steam
trap shall open (the time taken will vary as a function of the steam trap type); when the condensate has
been discharged, the steam trap shall again close. The test is complete when at least one complete cycle
has been performed. The condensate can also be fed to the steam trap to quicken the cycle and to verify
the performance.
Certain types of steam trap may be tested with air or water.
A manufacturer may describe the operations of a particular type of steam trap by referring to one or
more of the following performance characteristic tests. A brief explanation of the derivation of each
characteristic is given below.
The performance test may be considered on sample basis as type test based on the type of steam
traps. Sample steam traps shall be tested to ensure that they open to discharge condensate and close
satisfactorily. Further details are given in 4.2.2 to 4.2.15. This test does not apply to the labyrinth (or
orifice) steam traps (see ISO 6704).
4.2.2 Minimum operating pressure
The steam trap shall be tested to determine the minimum pressure (atmospheric or above) at which the
correct opening and closing will occur.
4.2.3 Maximum operating pressure (PMO)
The steam trap shall be tested to determine the maximum pressure at which the correct opening and
closing will occur.
4.2.4 Maximum operating back pressure (PMOB)
The steam trap shall be tested to determine the maximum pressure permissible at the outlet of the
device which allows correct functioning.
4.2.5 Air venting capability
The steam trap shall be tested to determine its ability to discharge air.
4.2.6 Operating temperature (TO)
The steam trap shall be tested to determine the temperature at which the device operates and in
particular the temperature at which it passes its specified capacity.
4.2.7 Condensate capacity (QH or QC)
The steam trap shall be flow tested to determine its condensate capacity throughout its operating
pressure range.
4.2.8 Live steam loss
The steam trap shall be tested to determine the amount of live steam lost via the steam trap.
4.2.9 Determination of minimum operating pressure
Operational checks, as described in 4.2.1, shall be carried out while successively reducing the test
pressure until the steam trap fails to open and close correctly.
The minimum operating pressure is the lowest test pressure at which correct operation is observed.
3
© ISO 2023 – All rights reserved

---------------------- Page: 8 ----------------------
ISO/FDIS 5117:2023(E)
4.2.10 Determination of maximum operating pressure
The maximum operating pressure of the steam trap may be verified by carrying out operational checks,
as described in 4.2.1, while successively increasing the test pressure up to the steam trap's maximum
operating pressure.
The steam trap shall open and close correctly throughout the test.
4.2.11 Determination of maximum operating back pressure
Operational checks, as described in 4.2.1, shall be carried out with the outlet from the steam trap
connected to a vessel in which the pressure can be raised, independent of the test pressure upstream
of the steam trap. While maintaining a reference pressure at the steam trap's inlet, the pressure at its
outlet is to be raised successively until the steam trap fails to open and close correctly.
The maximum operating back pressure is the highest pressure applied to the steam trap's outlet at
which correct operation is still observed.
4.2.12 Determination of air venting capability
Air shall be introduced at a specified temperature into the steam trap or upstream piping. The air
venting capability shall be checked by an air flow measurement carried out at minimum and maximum
operating pressures, the temperature inside the steam trap being recorded.
4.2.13 Determination of operating temperature
Steam shall be fed into the steam trap to effect closure. Condensate, at saturated steam temperature,
shall then be introduced and, unless the steam trap opens immediately, shall be allowed to cool slowly
at the steam trap's inlet.
The temperature of the condensate, measured at the steam trap's inlet, at which the device opens, is the
operating temperature.
The operating temperatures are the temperatures of the condensate, measured at the inlet to the steam
trap, at which the steam trap passes its specified capacities.
4.2.14 Determination of condensate capacity
The capacity of the steam trap shall be determined by measuring the amount of condensate that is
discharged from the device under specified conditions of pressure differential and condensate
temperature.
The test shall be carried out with condensate at different temperatures and at different pressures
within the steam trap's operating range to be specified, according to the test requirements detailed in
Annex A.
4.2.15 Determination of live steam loss
To determine the amount of live steam lost, if any, by the steam trap, use one of the test methods in
Annex B.
5 Inspection
Samples of the finished steam traps shall be visually examined and dimensionally checked to ensure
that the steam traps correspond to the stated specification and shall be marked in accordance with
ISO 6553.
4
  © ISO 2023 – All rights reserved

---------------------- Page: 9 ----------------------
ISO/FDIS 5117:2023(E)
Annex A
(normative)

Test methods for the determination of discharge capacity
A.1 General
This annex specifies two test methods to determine the discharge capacity of automatic steam traps.
A.2 Test arrangements
The test arrangements for condensate capacity determination are shown in Figures A.1 and A.2.
To reduce thermal losses to a minimum, all piping and equipment shall be insulated to a value R, in
2 −1
m ⋅°C⋅h⋅J , according to Formula (A.1).
−3
R≥×07, 510 (A.1)
The instruments used for the measurements shall comply with International Standards, for example,
ISO 4185, the ISO 5167 (series) and ISO 5168 for flow measurements.
The condensate removal device shall not be modified in any way from its commercial form.
5
© ISO 2023 – All rights reserved

---------------------- Page: 10 ----------------------
ISO/FDIS 5117:2023(E)
Key
A water supply L test device
B flow meter q M water­cooled condenser
m1
C steam water mixer N scale
D flow meter q V1 valve 1
m2
E calorimeter V2 valve 2
F steam supply V3 valve 3
G steam vent V4 valve 4
H flash tank accumulator V5 valve 5
I temperature difference indicator Δθ AA arrangement A
J gate or full bore valve V4 BB arrangement B
K drain
NOTE 1 The diameter of the pipework from the accumulator to the condensate removal device is the same as,
or greater than, the diameter of the pipework to the inlet connection on the device.
NOTE 2 The distance L does not exceed 10 internal pipe diameters.
1
NOTE 3 The distance L is not less than 10 and not more than 20 internal pipe diameters.
2
NOTE 4 The distance L is measured vertically from the water level to the centre of the inlet connection of the
3
test device.
Figure A.1 — Test arrangement for test method A
6
  © ISO 2023 – All rights reserved

---------------------- Page: 11 ----------------------
ISO/FDIS 5117:2023(E)
Key
A vent N test device
B safety valve O slope
C pressure reducing valve P vacuum breaker
D steam supply L distance between sensors and test device
1
E circulator R open pit
F calibrated scale V1 valve 1
G temperature controller (optional) V2 valve 2
H scale V3 valve 3 – temperature control
I injector line V4 valve 4
K accumulator V5 valve 5 – gate or full bore ball valve
L gauge glass V6 valve 6 – gate or full bore ball valve
M cold water V7 valve 7
NOTE 1 The piping from the accumulator to the test device is of the same diameter as the inlet connection on
the test device. This inlet to the piping from the accumulator is well rounded.
NOTE 2 The distance L between the sensors and the test device does not exceed 20 internal pipe diameters.
1
NOTE 3 The distance L is measured vertically from the centre of the inlet pipe connection of the test device
2
and does not exceed 450 mm.
NOTE 4 In Figure A.2, a steam injector is used for heating the water in the accumulator. It is also possible to
use a steam circulating coil inside the accumulator or any other means.
Figure A.2 — Test arrangement for test method B – Continuous and intermittent flow
7
© ISO 2023 – All rights reserved

---------------------- Page: 12 ----------------------
ISO/FDIS 5117:2023(E)
A.3 Test method A
A.3.1 Procedure
The method A is applicable only to continuous discharge measurement.
It is emphasized that Figure A.1 shows two alternative test arrangements for condensate measurement
and that the choice is left to the test laboratory.
Start with all valves closed.
a) Warm up the system by gradually opening valves V1, V2, V3, V4 and V5.
b) Adjust valves V1, V2 and V3 with valve V4 wide open and valve V5 closed to bring the system
into equilibrium. Equilibrium is defined as a steady water level in the accumulator with the vent
valve V3 partially open and a difference of 3 °C or less showing on the temperature differential
indicator.
c) Observe and record the following data as appropriate depending on the method of condensate
determination:
p = steam supply pressure, in bar(g) or MPa(g);
1
p = accumulator steam pressure, in bar(g) or MPa(g);
2
p = steam trap inlet pressure, in bar(g) or MPa(g);
3
p = steam trap outlet pressure, in bar(g) or MPa(g);
4
θ = steam supply temperature, in °C;
1
θ = water supply temperature, in °C;
2
Δθ = temperature differential (subcooling) between steam in the accumulator and fluid entering
the steam trap, in °C;
X = steam supply quality, in %;
L = accumulator water level, in m;
3
Δt = time interval, in h, min or s;
q = water supply flow rate, in kg/h;
m1
q = steam supply flow rate, in kg/h;
m2
m = mass of condensate and tank at the start, in kg;
c1
m = mass of condensate and tank at the end, in kg.
c2
d) Record the data specified in A.3.1 c) at 5 min intervals for a minimum total of five sets of
observations.
e) During the test period observations as appropriate shall not exceed the following limits:
— the difference between the maximum and minimum tank level shall not exceed 50 mm;
— the maximum value of the tank level shall not exceed 450 mm at any time during the test;
— the maximum temperature differential (Δθ) shall not exceed 3 °C during the test;
— no individual steam trap inlet pressure (p ) observation shall vary by more than 1 % of the
3
average of all observations;
8
  © ISO 2023 – All rights reserved

---------------------- Page: 13 ----------------------
ISO/FDIS 5117:2023(E)
— the calculated vent steam flow rate (q ) shall not exceed a maximum value equal to an exit
m6
velocity of 0,31 m/s in the tank.
f) Repeat the operations specified in A.3.1 a) to e), as necessary to produce three sets of observations
which result in three calculated capacity ratings, none of which varies from the average by more
than 10 %.
A.3.2 Flow calculations
Flow shall be calculated according to Formulae (A.2) to (A.7).
q = (q + q ­ q ) ± q (A.2)
mf m1 m3 m4 m8
or
mm−
()
cc21
q = ×3600 (A.3)
mf
Δt
where
q is the discharge flow rate, in kg/h;
mf
q is the water flow rate, in kg/h;
m1
q is the steam flow rate to heat water supply (q ), in kg/h.
m3 m1
q is the flash steam flow rate in the accumulator, in kg/h;
m4
m mass of condensate and tank at the start, in kg;
c1
m mass of condensate and tank at the end, in kg;
c2
Δt is the time interval, in s.
()hh−
31
qq=× (A.4)
m3 m1
hh−
()
23
hh−
()
35
qq=+q × (A.5)
()
mm41 m3
()hh−
45
2
π D
q =× ××03, 13 600 (A.6)
m4,max
4 V
1
LL−
π () 3600
2 31 32
qD=× × × (A.7)
m8
4 ΔtV
2
where
q is the accumulator storage rate, in kg/h;
m8
h is the specific enthalpy of the supply water, in kJ/kg;
1
h is the specific enthalpy of the supply steam, in kJ/kg;
2
h is the specific enthalpy of saturated water at the supply pressure, in kJ/kg;
3
h is the specific enthalpy of saturated steam in the accumulator, in kJ/kg;
4
9
© ISO 2023 – All rights reserved

---------------------- Page: 14 ----------------------
ISO/FDIS 5117:2023(E)
h is the specific enthalpy of saturated water in the accumulator, in kJ/kg;
5
3
V is the specific volume of saturated steam in the accumulator, in m /kg;
1
3
V is the specific volume of saturated water in the accumulator, in m /kg;
2
D is the inside diameter of the accumulator, in m;
L is the initial accumulator tank level, in m;
31
L is the final accumulator tank level, in m.
32
A.3.3 Datasheet
Table A.1 provides an example of a datasheet for method A.
10
  © ISO 2023 – All rights reserved

---------------------- Page: 15 ----------------------
ISO/FDIS 5117:2023(E)
11
© ISO 2023 – All rights reserved

Table A.1 — Example of a datasheet — Test method A
Steam trap discharge capacity - Test method A
Test n°: Date of test: Calculation by: Manufacturer name:
Serial n°: Size: Description and type of device: Inside diameter of accumulator, D:
Data Data Calculation
Run numbers
average
Item Unit Item Unit
Steam supply pressure, p bar or MPa    Reference used for steam/water data
1
Accumulator steam pressur
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.