Fibre optic sensors - Part 8-1: Pressure measurement – Pressure sensors based on fibre Bragg gratings

IEC 61757-8-1:2025 defines the terminology, structure, and measurement methods of optical pressure sensors for gases or liquids based on a diaphragm in combination with fibre Bragg gratings (FBGs) as the sensing element. This document also specifies the most important features and characteristics of these fibre optic pressure sensors and defines procedures for measuring these features and characteristics.

Capteurs fibroniques - Partie 8-1: Mesure de pression - Capteurs de pression basés sur des réseaux de Bragg à fibres

IEC 61757-8-1:2025 définit la terminologie, la structure et les méthodes de mesure des capteurs de pression optiques pour gaz ou liquides basés sur un diaphragme combiné avec des réseaux de Bragg à fibres (FBG) comme élément de détection. Le présent document spécifie également les caractéristiques et fonctionnalités les plus importantes de ces capteurs de pression fibroniques et définit les procédures de mesure de ces caractéristiques et fonctionnalités.

General Information

Status
Published
Publication Date
11-Dec-2025
Current Stage
PPUB - Publication issued
Start Date
12-Dec-2025
Completion Date
02-Jan-2026
Ref Project
Standard
IEC 61757-8-1:2025 - Fibre optic sensors - Part 8-1: Pressure measurement – Pressure sensors based on fibre Bragg gratings Released:12. 12. 2025 Isbn:9782832709009
English language
24 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 61757-8-1:2025 - Capteurs fibroniques - Partie 8-1: Mesure de pression - Capteurs de pression basés sur des réseaux de Bragg à fibres Released:12. 12. 2025 Isbn:9782832709009
French language
26 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
IEC 61757-8-1:2025 - Fibre optic sensors - Part 8-1: Pressure measurement – Pressure sensors based on fibre Bragg gratings Released:12. 12. 2025 Isbn:9782832709009
English and French language
50 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)


IEC 61757-8-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
Fibre optic sensors-
Part 8-1: Pressure measurement - Pressure sensors based on fibre Bragg
gratings
ICS 33.180.99  ISBN 978-2-8327-0900-9

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a
publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.

Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
CONTENTS
FOREWORD . 3
INTRODUCTION . 5
1 Scope . 6
2 Normative references . 6
3 Terms, definitions, symbols and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Symbols . 8
3.3 Abbreviated terms. 8
4 Structure and characteristics. 8
4.1 Fibre Bragg grating . 8
4.2 FBG pressure sensor configuration . 9
4.3 Reference wavelength . 11
4.4 Stability behaviour . 11
4.4.1 Drift and creep . 11
4.4.2 Hysteresis . 11
4.5 Indication of the measured values . 12
4.6 Zero-point related measurement . 12
4.7 Non-zero-point related measurement . 12
4.8 Production set . 12
4.9 FBG pressure sensor standard type . 12
4.10 FBG pressure sensor series. 12
5 Features and characteristics to be measured . 13
5.1 Sampling and statistical evaluation . 13
5.1.1 Sampling . 13
5.1.2 Reporting the measuring result . 13
5.1.3 Sample conditioning . 14
5.1.4 Ambient test conditions . 14
5.1.5 Required types of tests for individual characteristics . 14
5.2 Bragg wavelength λ . 14
Β
5.2.1 General. 14
5.2.2 Measurement procedure . 15
5.2.3 Evaluation . 15
5.2.4 Reporting . 15
5.3 FBG spectral width . 15
5.3.1 Measurement procedure . 15
5.3.2 Evaluation . 15
5.3.3 Reporting . 15
5.4 FBG reflectivity . 15
5.4.1 Measurement procedure . 15
5.4.2 Evaluation . 16
5.4.3 Reporting . 16
5.5 Pressure measurement . 16
5.5.1 General. 16
5.5.2 Test setup . 16
5.5.3 Measurement procedure . 18
5.5.4 Calibration and evaluation . 20
5.6 Pressure conversion factor . 20
5.7 Temperature and humidity ranges . 21
5.7.1 Storage and transportation, installation, and operation. . 21
5.7.2 Measurement procedure . 21
5.7.3 Evaluation . 22
5.7.4 Reporting . 22
5.8 Durability . 22
5.8.1 General. 22
5.8.2 Measurement procedure . 22
5.8.3 Reporting . 22
6 Features and characteristics to be reported . 22
6.1 Construction details . 22
6.2 Configuration of the FBG pressure sensor . 22
6.3 Temperature and humidity range . 22
6.4 Connecting requirement . 23
7 Recommendations for use of FBG measuring instruments. 23
Bibliography . 24

Figure 1 – Examples of sensor types for measuring pressure changes . 9
Figure 2 – Bragg wavelength changes caused by an increase in pressure . 10
Figure 3 – Schematic diagram of pressure sensor using two FBGs . 10
Figure 4 – Pressure measurement test setup scheme by a dead weight tester . 17
Figure 5 – Schematic diagram of a pressure measurement test setup . 18
Figure 6 – Example of temperature dependence of the Bragg wavelengths of two FBGs . 19
Figure 7 – Example of pressure dependence of the Bragg wavelengths of FBG1 and
FBG2 . 19

Table 1 – Required types of tests for individual characteristics . 14

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Fibre optic sensors -
Part 8-1: Pressure measurement -
Pressure sensors based on fibre Bragg gratings

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 61757-7-1 has been prepared by subcommittee 86C: Fibre optic systems, sensing and
active devices, of IEC technical committee 86: Fibre optics. It is an International Standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
86C/1970/CDV 86C/1993/RVC
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 61757 series, published under the general title Fibre optic sensors,
can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
INTRODUCTION
Generic specifications for fibre optic sensors are defined in IEC 61757.
The individual parts of the IEC 61757 series are numbered as IEC 61757-M-T, where M denotes
the measurand and T the technology. The IEC 61757-8-T series deals with pressure
measurements.
1 Scope
This part of IEC 61757 defines the terminology, structure, and measurement methods of optical
pressure sensors for gases or liquids based on a diaphragm in combination with fibre Bragg
gratings (FBGs) as the sensing element. This document also specifies the most important
features and characteristics of these fibre optic pressure sensors and defines procedures for
measuring these features and characteristics.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60068-2 (all parts), Environmental testing - Part 2: Tests
IEC 61300-2 (all parts), Fibre optic interconnecting devices and passive components - Basic
test and measurement procedures - Part 2: Tests
IEC 61754 (all parts), Fibre optic interconnecting devices and passive components - Fibre optic
connector interfaces
IEC 61757, Fibre optic sensors - Generic specification
IEC 61757-1-1:2020, Fibre optic sensors - Part 1-1: Strain measurement - Strain sensors based
on fibre Bragg gratings
IEC 62129-1, Calibration of wavelength/optical frequency measurement instruments - Part 1:
Optical spectrum analyzers
IEC 62129-2, Calibration of wavelength/optical frequency measurement instruments - Part 2:
Michelson interferometer single wavelength meters
ISO/IEC GUIDE 98-3, Uncertainty of measurement - Part 3: Guide to the expression of
uncertainty in measurement (GUM:1995)
3 Terms, definitions, symbols and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 61757, IEC 61757-1-1
and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
pressure
p
amount of force applied perpendicular to the surface of an object per unit area
Note 1 to entry: Pressure is calculated as
F
p=
A
where
F is the magnitude of the normal force, expressed in newtons (N);
A is the area of the contact surface, expressed in square metres (m ).
Note 2 to entry: This definition addresses measurement methods of optical pressure sensors for gases or liquids
based on fibre Bragg gratings in combination with a diaphragm. IEC 60050-113:2011, 113-03-65 provides a broader
definition of pressure.
3.1.2
FBG pressure sensor
fibre optic sensor using one or more fibre Bragg gratings as a sensing element for pressure
measurement of gases or liquids
3.1.3
pressure conversion factor
κ
p
ratio of the relative change in wavelength to a pressure change introduced to an FBG pressure
sensor
Note 1 to entry: The pressure conversion factor κ is expressed in m /N and calculated as
p
Δλλ
( )
κ =
p
Δp
where
∆λ/λ is the relative change in wavelength;
∆p is the pressure change.
Note 2 to entry: The pressure conversion factor κ is commonly used by manufacturers to characterize the pressure
p
response of their products.
Note 3 to entry: The conversion factor κ for an FBG pressure sensor assumes a linear relation between wavelength
p
change and pressure. Considering the whole measurement system (sensor, device, and cabling), it can be separately
defined for the various components of the measurement system. It is only valid for defined conditions. In the case of
a non-linear characteristic, the relation between wavelength change and pressure change is considered to be linear
within a defined permissible measurement error.
Note 4 to entry: The term pressure sensitivity, expressed for example in pm/kPa, is used by some manufacturers
to characterize the pressure response of their products.
3.1.4
temperature compensation constant
C
constant for correcting the influence of temperature changes when the pressure is obtained
from wavelength changes
Note 1 to entry: The temperature compensation constant is usually provided by the manufacturer.
Note 2 to entry: The term temperature sensitivity, expressed for example in pm/°C, is used by some manufacturers
to characterize the influence of temperature changes in their products.
3.2 Symbols
For the purposes of this document, the following symbols apply:
R reflectivity of the FBG
FBG
n effective refractive index of the FBG
eff
∆p pressure change
∆T temperature change
Λ FBG period
λ Bragg wavelength
B
λ reference wavelength
3.3 Abbreviated terms
FBG fibre Bragg grating
FWHM full width at half maximum
SNR signal-to-noise ratio
UV ultraviolet
4 Structure and characteristics
4.1 Fibre Bragg grating
Fibre Bragg gratings (FBGs) are phase diffraction gratings inscribed into optical waveguides.
They are frequently produced using ultraviolet (UV) light (e.g. from an excimer laser at 248 nm).
The fibre is exposed to an interference pattern of this UV radiation. UV photosensitive
processes then produce changes in the refractive index of the fibre core, which is susceptible
to this UV light. The interference pattern is imaged onto the fibre core to permanently change
the refractive index of the fibre core, so that the refractive index varies periodically along the
fibre. Incident and transported light is reflected by these periodic refractive index changes along
the fibre. At a certain wavelength, the reflected light is additively superimposed (through
constructive interference); this spectral part of the incident light is reflected back to the input
port of the fibre. In the transmitted light, this wavelength (denoted Bragg wavelength λ ) is
Β
attenuated accordingly, due to the reflectance in the FBG.
The value of the reflected Bragg wavelength λ is determined by the Bragg condition shown in
Β
Formula (1).
λ = 2n Λ
(1)
B eff
where
n is the effective refractive index of the FBG;
eff
Λ is the FBG period, expressed for example in nanometres (nm).
According to Formula (1), the Bragg wavelength depends on the effective refractive index and
the period of the FBG. The spectral width of the Bragg wavelength peak is determined by the
number of grating periods and the magnitude of the refractive index modulation (for more details
see IEC 61757-1-1:2020, 5.1).
4.2 FBG pressure sensor configuration
The FBG pressure sensor can be manufactured from various materials and in various forms
(using one or more FBGs as sensing elements). The FBG pressure sensor is typically used to
monitor the pressure of fluids, such as liquids or gases. Typical applications include water level
measurement in rivers, drainage status measurement for excavations, and water pressure
measurement within pressure pipes, banks and perforations.
The method used to convert a pressure change into a change of the Bragg wavelength of an
FBG depends on the manufacturer of the pressure sensor. There are a variety of methods, but
a comprehensive description of these methods is outside the scope of this document.
The principle of fibre optic pressure measurement is based on a base body that deforms under
pressure in a controlled manner. This body often has an intentionally weakened (thin) surface,
a diaphragm, as shown in Figure 1. The diaphragm should be strong and elastic enough to
withstand the external pressure. The amount of deformation of the diaphragm under pressure
is measured with an FBG (see FBG2 in Figure 1). If the diaphragm bulges under pressure, the
FBG will be strained or, if pre-strained, compressed accordingly. This change in strain in the
FBG then changes the Bragg wavelength reflected from this FBG, as shown schematically in
Figure 2. Therefore, the pressure can be determined by measuring the reflected Bragg
wavelength of the FBG.
a) Axial directional force applied to FBG b) Lateral force applied to FBG

Figure 1 – Examples of sensor types for measuring pressure changes
Figure 1 a) shows a structure in which the central part of the diaphragm moves to the left as
the external pressure increases on the right side of the diaphragm, so that the tensile strength
acting on FBG2 weakens and its grating period decreases. As a result, the wavelength reflected
from FBG2 decreases, according to Formula (1). In Figure 1 a), FBG2 is attached to the
diaphragm in a pre-stretched state, so it should be assembled with care. In Figure 1 b), on the
other hand, the grating period of FBG2 increases with increasing external pressure, so that the
wavelength reflected from FBG2 increases with external pressure. In this case, adhesion of
FBG2 to the diaphragm is important, because the diaphragm can repeatedly expand and
contract as the external pressure varies.
a) with axial directional force applied to FBG b) with lateral force applied to FBG

Figure 2 – Bragg wavelength changes caused by an increase in pressure
A broadband light source and an optical spectrometer can be used to measure the change in
the Bragg wavelength of an FBG. The light source and the spectrometer are typically connected
to the pressure sensing FBG via an optical circulator, as shown schematically in Figure 3.
In Figure 1 a) and Figure 1 b), an additional FBG (denoted FBG1) is inserted near the pressure
sensing FBG (denoted FBG2) to allow for compensation of the temperature dependence of
FBG2 (as described in 5.5.3). The additional FBG1 measures only temperature changes,
whereas FBG2 measures pressure and temperature changes. FBG1 and FBG2 can be
connected in series, as shown in the schematic diagrams of Figure 3, or alternatively in parallel.

a) with axial directional force applied to FBG

b) with lateral force applied to FBG

Figure 3 – Schematic diagram of pressure sensor using two FBGs
4.3 Reference wavelength
The Bragg wavelength measured with a given FBG can depend on the evaluation method and,
more importantly, on the specific installation of the FBG. In the context of this document, the
wavelength measured after installation of the FBG in the pressure sensor is denoted as the
reference wavelength λ .
The reference wavelength is not necessarily the same as the Bragg wavelength specified by
the manufacturer of the FBG. If the FBG is pre-strained, for example, there is a difference
between the reference wavelength and the manufacturer's Bragg wavelength. If the FBG is not
pre-strained, the difference between the reference wavelength and the manufacturer's Bragg
wavelength is usually very small, so that both wavelength values can be used interchangeably
without significant error.
If the reference wavelength is measured when the measurement cycle is started, this
wavelength measurement can be considered as the zero-point measurement value.
4.4 Stability behaviour
4.4.1 Drift and creep
Stability, in general, is the ability of a measurement system to maintain its metrological
characteristics and meet other specifications over the intended time of operation. In the context
of this document, stability describes the property of the applied FBG pressure sensor to
maintain its optical characteristics over the period of use, which is determined by the application,
or to show only small permissible deviations.
Variations in the measured value can occur:
– when the materials concerned are subject to long-term stress (creep);
– without loading stress applied (zero-point drift).
Creep and zero-point drift can result from slowly progressing chemical or physical degradation
of the materials used in the sensor (e.g. from ageing), or from changes of the initial
environmental conditions (e.g. either temperature or humidity, or both).
Creep is a quantity that depends on the materials used in the sensor, the set-up of the sensor,
and the type of operation. It can only be determined experimentally. Provided that the bonding
material prescribed by the manufacturer is used, the measurement errors resulting from creep
are usually insignificant relative to the measurement uncertainty of the pressure conversion
factor κ .
p
Drift is a slow change of the metrological characteristics of the measurement system. In many
FBG sensors, the measurement error resulting from
...


IEC 61757-8-1 ®
Edition 1.0 2025-12
NORME
INTERNATIONALE
Capteurs fibroniques -
Partie 8-1: Mesure de pression - Capteurs de pression basés sur des réseaux de
Bragg à fibres
ICS 33.180.99  ISBN 978-2-8327-0900-9

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org
Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
SOMMAIRE
AVANT-PROPOS . 3
INTRODUCTION . 5
1 Domaine d'application . 6
2 Références normatives . 6
3 Termes, définitions, symboles et abréviations . 6
3.1 Termes et définitions. 6
3.2 Symboles . 8
3.3 Abréviations . 8
4 Structure et caractéristiques . 8
4.1 Réseau de Bragg à fibres . 8
4.2 Configuration du capteur de pression FBG . 9
4.3 Longueur d'onde de référence. 11
4.4 Comportement de stabilité . 12
4.4.1 Dérive et fluage . 12
4.4.2 Hystérésis . 12
4.5 Indication des valeurs mesurées . 12
4.6 Mesure en référence au point zéro . 12
4.7 Mesure sans référence au point zéro . 13
4.8 Jeu de production . 13
4.9 Type normal de capteur de pression FBG . 13
4.10 Série de capteurs de pression FBG . 13
5 Caractéristiques à mesurer . 13
5.1 Échantillonnage et évaluation statistique . 13
5.1.1 Échantillonnage . 13
5.1.2 Compte rendu d'un résultat de mesure . 14
5.1.3 Conditionnement de l'échantillon . 14
5.1.4 Conditions ambiantes des essais . 15
5.1.5 Types d'essai exigés pour les caractéristiques individuelles . 15
5.2 Longueur d'onde de Bragg λ . 15
Β
5.2.1 Généralités . 15
5.2.2 Procédure de mesure . 15
5.2.3 Évaluation . 16
5.2.4 Rapport. 16
5.3 Largeur spectrale d'un FBG . 16
5.3.1 Procédure de mesure . 16
5.3.2 Évaluation . 16
5.3.3 Rapport. 16
5.4 Réflectivité du FBG . 16
5.4.1 Procédure de mesure . 16
5.4.2 Évaluation . 16
5.4.3 Rapport. 17
5.5 Mesure de la pression . 17
5.5.1 Généralités . 17
5.5.2 Montage d'essai . 17
5.5.3 Procédure de mesure . 19
5.5.4 Étalonnage et évaluation . 21
5.6 Facteur de conversion de pression . 22
5.7 Plages de températures et d'humidité . 22
5.7.1 Stockage et transport, installation et fonctionnement . 22
5.7.2 Procédure de mesure . 23
5.7.3 Évaluation . 23
5.7.4 Rapport. 23
5.8 Durabilité . 24
5.8.1 Généralités . 24
5.8.2 Procédure de mesure . 24
5.8.3 Rapport. 24
6 Caractéristiques à consigner . 24
6.1 Détails de construction . 24
6.2 Configuration du capteur de pression FBG . 24
6.3 Domaines de température et d'humidité . 24
6.4 Exigences de connexion . 24
7 Recommandations relatives à l'utilisation des appareils de mesure de FBG . 25
Bibliographie . 26

Figure 1 – Exemples de types de capteurs pour mesurer les variations de pression . 9
Figure 2 – Variations de longueur d'onde de Bragg dues à une augmentation de la
pression . 10
Figure 3 – Schéma du capteur de pression à l'aide de deux FBG . 11
Figure 4 – Schéma de montage d'essai de mesure de pression par un appareil d'essai
à contrepoids . 18
Figure 5 – Schéma d'un montage d'essai de mesure de pression . 19
Figure 6 – Exemple de dépendance à la température des longueurs d'onde de Bragg
de deux FBG . 20
Figure 7 – Exemple de dépendance à la pression des longueurs d'onde de Bragg de

FBG1 et FBG2 . 21

Tableau 1 – Types d'essais exigés pour les caractéristiques individuelles . 15

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
____________
Capteurs fibroniques -
Partie 8-1: Mesure de pression -
Capteurs de pression basés sur des réseaux de Bragg à fibres

AVANT-PROPOS
1) La Commission Électrotechnique Internationale (IEC) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de l'IEC). L'IEC a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. À cet effet, l'IEC - entre autres activités - publie des Normes internationales, des
Spécifications techniques, des Rapports techniques, des Spécifications accessibles au public (PAS) et des
Guides (ci-après dénommés "Publication(s) de l'IEC"). Leur élaboration est confiée à des comités d'études, aux
travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations
internationales, gouvernementales et non gouvernementales, en liaison avec l'IEC, participent également aux
travaux. L'IEC collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des
conditions fixées par accord entre les deux organisations.
2) Les décisions ou accords officiels de l'IEC concernant les questions techniques représentent, dans la mesure du
possible, un accord international sur les sujets étudiés, étant donné que les Comités nationaux de l'IEC intéressés
sont représentés dans chaque comité d'études.
3) Les Publications de l'IEC se présentent sous la forme de recommandations internationales et sont agréées
comme telles par les Comités nationaux de l'IEC. Tous les efforts raisonnables sont entrepris afin que l'IEC
s'assure de l'exactitude du contenu technique de ses publications; l'IEC ne peut pas être tenue responsable de
l'éventuelle mauvaise utilisation ou interprétation qui en est faite par un quelconque utilisateur final.
4) Dans le but d'encourager l'uniformité internationale, les Comités nationaux de l'IEC s'engagent, dans toute la
mesure possible, à appliquer de façon transparente les Publications de l'IEC dans leurs publications nationales
et régionales. Toutes divergences entre toutes Publications de l'IEC et toutes publications nationales ou
régionales correspondantes doivent être indiquées en termes clairs dans ces dernières.
5) L'IEC elle-même ne fournit aucune attestation de conformité. Des organismes de certification indépendants
fournissent des services d'évaluation de conformité et, dans certains secteurs, accèdent aux marques de
conformité de l'IEC. L'IEC n'est responsable d'aucun des services effectués par les organismes de certification
indépendants.
6) Tous les utilisateurs doivent s'assurer qu'ils sont en possession de la dernière édition de cette publication.
7) Aucune responsabilité ne doit être imputée à l'IEC, à ses administrateurs, employés, auxiliaires ou mandataires,
y compris ses experts particuliers et les membres de ses comités d'études et des Comités nationaux de l'IEC,
pour tout préjudice causé en cas de dommages corporels et matériels, ou de tout autre dommage de quelque
nature que ce soit, directe ou indirecte, ou pour supporter les coûts (y compris les frais de justice) et les dépenses
découlant de la publication ou de l'utilisation de cette Publication de l'IEC ou de toute autre Publication de l'IEC,
ou au crédit qui lui est accordé.
8) L'attention est attirée sur les références normatives citées dans cette publication. L'utilisation de publications
référencées est obligatoire pour une application correcte de la présente publication.
9) L'IEC attire l'attention sur le fait que la mise en application du présent document peut entraîner l'utilisation d'un
ou de plusieurs brevets. L'IEC ne prend pas position quant à la preuve, à la validité et à l'applicabilité de tout
droit de brevet revendiqué à cet égard. À la date de publication du présent document, l'IEC n'avait pas reçu
notification qu'un ou plusieurs brevets pouvaient être nécessaires à sa mise en application. Toutefois, il y a lieu
d'avertir les responsables de la mise en application du présent document que des informations plus récentes
sont susceptibles de figurer dans la base de données de brevets, disponible à l'adresse https://patents.iec.ch.
L'IEC ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de brevet.
L'IEC 61757-8-1 a été établie par le sous-comité 86C: Systèmes, dispositifs actifs et de
détection fibroniques, du comité d'études 86 de l'IEC: Fibronique. Il s'agit d'une Norme
internationale.
Le texte de cette Norme internationale est issu des documents suivants:
Projet Rapport de vote
86C/1970/CDV 86C/1993/RVC
Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à son approbation.
La langue employée pour l'élaboration de cette Norme internationale est l'anglais.
Ce document a été rédigé selon les Directives ISO/IEC, Partie 2, il a été développé selon les
Directives ISO/IEC, Partie 1 et les Directives ISO/IEC, Supplément IEC, disponibles sous
www.iec.ch/members_experts/refdocs. Les principaux types de documents développés par
l'IEC sont décrits plus en détail sous www.iec.ch/publications.
Une liste de toutes les parties de la série IEC 61757, publiée sous le titre général Capteurs
fibroniques, se trouve sur le site web de l'IEC.
Le comité a décidé que le contenu de ce document ne sera pas modifié avant la date de stabilité
indiquée sur le site web de l'IEC sous webstore.iec.ch dans les données relatives au document
recherché. À cette date, le document sera
– reconduit,
– supprimé,
– révisé.
INTRODUCTION
Les spécifications génériques applicables aux capteurs fibroniques sont définies dans
l'IEC 61757.
Les différentes parties de la série IEC 61757 sont numérotées IEC 61757-M-T, où M désigne
le mesurande et T la technologie. La série IEC 61757-8-T traite des mesures de pression.

1 Domaine d'application
La présente partie de l'IEC 61757 définit la terminologie, la structure et les méthodes de mesure
des capteurs de pression optiques pour gaz ou liquides basés sur un diaphragme combiné avec
des réseaux de Bragg à fibres (FBG) comme élément de détection. Le présent document
spécifie également les caractéristiques et fonctionnalités les plus importantes de ces capteurs
de pression fibroniques et définit les procédures de mesure de ces caractéristiques et
fonctionnalités.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu'ils constituent, pour tout ou partie
de leur contenu, des exigences du présent document. Pour les références datées, seule
l'édition citée s'applique. Pour les références non datées, la dernière édition du document de
référence s'applique (y compris les éventuels amendements).
IEC 60068-2 (toutes les parties), Essais d'environnement - Partie 2: Essais
IEC 61300-2 (toutes les parties), Dispositifs d'interconnexion et composants passifs
fibroniques - Procédures fondamentales d'essais et de mesures - Partie 2: Essais
IEC 61754 (toutes les parties), Dispositifs d'interconnexion et composants passifs fibroniques -
Interfaces de connecteurs fibroniques
IEC 61757, Capteurs fibroniques - Spécification générique
IEC 61757-1-1:2020, Capteurs fibroniques - Partie 1-1: Mesure de déformation - Capteurs de
déformation basés sur des réseaux de Bragg à fibres
IEC 62129-1, Étalonnage des appareils de mesure de longueur d'onde/appareil de mesure de
la fréquence optique - Partie 1: Analyseurs de spectre optique
IEC 62129-2, Étalonnage des appareils de mesure de longueur d'onde/appareil de mesure de
la fréquence optique - Partie 2: Appareils de mesure de longueur d'onde unique à interféromètre
de Michelson
Guide ISO/IEC 98-3, Incertitude de mesure - Partie 3: Guide pour l'expression de l'incertitude
de mesure (GUM:1995)
3 Termes, définitions, symboles et abréviations
3.1 Termes et définitions
Pour les besoins du présent document, les termes et définitions de l'IEC 61757 et de
l'IEC 61757-1-1, ainsi que les suivants, s'appliquent.
L'ISO et l'IEC tiennent à jour des bases de données terminologiques destinées à être utilisées
en normalisation, consultables aux adresses suivantes:
– IEC Electropedia: disponible à l'adresse https://www.electropedia.org/
– ISO Online browsing platform: disponible à l'adresse https://www.iso.org/obp
3.1.1
pression
p
quantité de force appliquée perpendiculairement à la surface d'un objet par unité de surface
Note 1 à l'article: La pression est calculée comme
F
p=
S

F est la grandeur de la force normale, exprimée en newtons (N);
S est la superficie de la surface de contact, exprimée en mètres carrés (m ).
Note 2 à l'article: Cette définition traite des méthodes de mesure des capteurs de pression optiques pour gaz ou
liquides basés sur des réseaux de Bragg à fibres combinés à un diaphragme. L'IEC 60050-113:2011, 113-03-65
donne une définition plus large de la pression.
3.1.2
capteur de pression FBG
capteur fibronique utilisant un ou plusieurs réseaux de Bragg à fibres comme élément de
détection pour le mesurage de la pression des gaz ou des liquides
3.1.3
facteur de conversion de pression
κ
p
rapport entre le changement relatif de longueur d'onde et une variation de pression introduite
dans un capteur de pression FBG
Note 1 à l'article: Le facteur de conversion de pression κ est exprimé en m /N et calculé comme
p
Δλλ
( )
κ =
p
Δp

∆λ/λ est le changement relatif de longueur d'onde;
∆p est la variation de pression.
Note 2 à l'article: Le facteur de conversion de pression, κ , est habituellement utilisé par les fabricants pour
p
caractériser la réponse de pression de leurs produits.
Note 3 à l'article: Le facteur de conversion κ pour un capteur de pression FBG suppose une relation linéaire entre
p
le changement de longueur d'onde et la pression. En considérant l'ensemble du système de mesure (capteur,
dispositif et câblage), ce facteur peut être défini séparément pour les différents composants du système de mesure.
Il est valide uniquement pour des conditions définies. Dans le cas d'une caractéristique non linéaire, la relation entre
le changement de longueur d'onde et la variation de pression est considérée comme linéaire dans les limites d'une
erreur de mesure admissible définie.
Note 4 à l'article: Le terme sensibilité à la pression, exprimé par exemple en pm/kPa, est utilisé par certains
fabricants pour caractériser la réponse à la pression de leurs produits.
3.1.4
constante de compensation en température
C
constante destinée à corriger l'influence des variations de température lorsque la pression est
obtenue à partir des variations de longueur d'onde
Note 1 à l'article: La constante de compensation en température est habituellement fournie par le fabricant.
Note 2 à l'article: Le terme sensibilité à la température, exprimé par exemple en pm/°C, est utilisé par certains
fabricants pour caractériser l'influence des changements de température dans leurs produits.
3.2 Symboles
Pour les besoins du présent document, les symboles suivants s'appliquent:
R réflectivité du FBG
FBG
n indice effectif de réfraction du FBG
eff
∆p variation de pression
∆T variation de température
Λ période du FBG
λ longueur d'onde de Bragg
B
λ longueur d'onde de référence
3.3 Abréviations
FBG Fibre Bragg Grating (réseau de Bragg à fibres)
FWHM Full-Width at Half-Maximum (largeur à mi-hauteur)
SNR Signal-to-Noise Ratio (rapport signal/bruit)
UV ultraviolet
4 Structure et caractéristiques
4.1 Réseau de Bragg à fibres
Les réseaux de Bragg à fibres (FBG) sont des réseaux de diffraction de phase inscrits dans
des guides d'ondes optiques. Ils sont fréquemment produits en utilisant un rayonnement
lumineux ultraviolet (par exemple issu d'un laser excimère à 248 nm). La fibre est exposée à
un diagramme d'interférence de ce rayonnement ultraviolet (UV). Des traitements
photosensibles aux UV produisent alors des variations de l'indice de réfraction du cœur de la
fibre qui est sensible aux UV. Le diagramme d'interférence est imagé sur le cœur de la fibre
afin de modifier de façon permanente l'indice de réfraction du cœur de la fibre, de sorte que
l'indice de réfraction varie périodiquement le long de la fibre. La lumière incidente et transportée
est réfléchie par ces variations périodiques d'indice de réfraction le long de la fibre. À une
certaine longueur d'onde, la lumière réfléchie est superposée de manière additionnelle (par
interférence constructive); cette partie spectrale de la lumière incidente est réfléchie vers le
port d'entrée de la fibre. Dans le rayonnement lumineux transmis, cette longueur d'onde
(appelée longueur d'onde de Bragg λ ) est atténuée en conséquence, en raison de la
Β
réflectance dans le FBG.
La valeur de la longueur d'onde de Bragg réfléchie λ est déterminée par la condition de Bragg
Β
indiquée dans la Formule (1).
λ = 2n Λ
(1)
B eff

n est l'indice effectif de réfraction du FBG;
eff
Λ est la période FBG, exprimée par exemple en nanomètres (nm).
Selon la Formule (1), la longueur d'onde de Bragg dépend de l'indice de réfraction effective et
de la période du FBG. La largeur spectrale de la valeur de crête de la longueur d'onde de Bragg
est déterminée par le nombre de périodes du réseau et par l'amplitude de la modulation de
l'indice de réfraction (pour plus de détails, voir l'IEC 61757-1-1:2020, 5.1).
4.2 Configuration du capteur de pression FBG
Le capteur de pression FBG peut être fabriqué à partir de divers matériaux et sous différentes
formes (en utilisant un ou plusieurs FBG comme éléments de détection). Le capteur de pression
FBG est généralement utilisé pour surveiller la pression de fluides, tels que des liquides ou des
gaz. Les applications types comprennent le mesurage du niveau d'eau dans les rivières, le
mesurage de l'état du drainage pour les excavations et le mesurage de la pression de l'eau
dans les conduites de pression, les berges et les perforations.
La méthode utilisée pour convertir une variation de pression en une variation de la longueur
d'onde de Bragg d'un FBG dépend du fabricant du capteur de pression. Il existe différentes
méthodes, mais une description complète de ces méthodes ne relève pas du domaine
d'application du présent document.
Le principe du mesurage de la pression fibronique est fondé sur un corps de base qui se
déforme sous pression de manière contrôlée. Ce corps présente souvent une surface (mince)
volontairement affaiblie, le diaphragme, comme représenté à la Figure 1. Il convient que le
diaphragme soit suffisamment solide et élastique pour résister à la pression externe. Le degré
de déformation du diaphragme sous pression est mesuré avec un FBG (voir le FBG2 à la
Figure 1). Si le diaphragme se gonfle sous pression, le FBG est contraint ou, s'il est précontraint,
comprimé en conséquence. Ce changement de déformation dans le FBG modifie alors la
longueur d'onde de Bragg réfléchie par ce FBG, comme représenté schématiquement à la
Figure 2. Par conséquent, la pression peut être déterminée en mesurant la longueur d'onde de
Bragg réfléchie du FBG.
a) Force directionnelle axiale appliquée au FBG b) Force latérale appliquée au FBG

Figure 1 – Exemples de types de capteurs pour mesurer les variations de pression

La Figure 1 a) représente une structure dans laquelle la partie centrale du diaphragme se
déplace vers la gauche à mesure que la pression externe augmente du côté droit du diaphragme,
de sorte que la résistance à la traction agissant sur le FBG2 s'affaiblit et que sa période de
réseau diminue. En conséquence, la longueur d'onde réfléchie par FBG2 diminue,
conformément à la Formule (1). À la Figure 1 a), le FBG2 est fixé au diaphragme dans un état
préétiré, il convient donc de l'assembler avec précaution. À la Figure 1 b), par contre, la période
du réseau du FBG2 augmente avec l'augmentation de la pression externe, de sorte que la
longueur d'onde réfléchie par le FBG2 augmente avec la pression externe. Dans ce cas,
l'adhérence du FBG2 au diaphragme est importante, car le diaphragme peut se dilater et se
contracter à plusieurs reprises à mesure que la pression externe varie.

a) avec une force directionnelle axiale appliquée
au FBG b) avec une force latérale appliquée au FBG

Figure 2 – Variations de longueur d'onde de Bragg dues
à une augmentation de la pression
Une source lumineuse à large bande et un spectromètre optique peuvent être utilisés pour
mesurer le changement de longueur d'onde de Bragg d'un FBG. La source lumineuse et le
spectromètre sont normalement connectés au capteur de pression FBG par l'intermédiaire d'un
circulateur optique, comme représenté schématiquement à la Figure 3.
Dans la Figure 1 a) et dans la Figure 1b), un FBG supplémentaire (appelé FBG1) est inséré
près du FBG de détection de pression (appelé FBG2) pour permettre la compensation de la
dépendance à la température du FBG2 (comme décrit en 5.5.3). Le FBG1 supplémentaire
mesure uniquement les variations de température, tandis que le FBG2 mesure les variations
de pression et de température. Le FBG1 et le FBG2 peuvent être connectés en série, comme
indiqué sur les schémas de la Figure 3, ou en variante, ils peuvent être connectés en parallèle.
a) avec une force directionnelle axiale appliquée au FBG

b) avec une force latérale appliquée au FBG

Figure 3 – Schéma du capteur de pression à l'aide de deux FBG
4.3 Longueur d'onde de référence
La longueur d'onde de Bragg mesurée avec un FBG donné peut dépendre de la méthode
d'évaluation et, plus important encore, de l'installation spécifique du FBG. Dans le contexte du
présent document, la longueur d'onde mesurée après l'installation du FBG dans le capteur de
pression est appelée "longueur d'onde de référence", λ .
La longueur d'onde de référence n'a pas nécessairement la même valeur que la longueur d'onde
de Bragg spécifiée par le fabricant du FBG. Si le FBG est, par exemple, préalablement déformé,
il existe une différence entre la longueur d'onde de référence et la longueur d'onde de Bragg
du fabricant. Si le FBG n'est pas prédéformé, la différence entre la longueur d'onde de référence
et la longueur d'onde de Bragg du fabricant est généralement très faible, de sorte que les deux
valeurs de longueur d'onde peuvent être utilisées de manière interchangeable sans introduire
d'erreur significative.
Si la longueur d'onde de référence est mesurée au lancement du cycle de mesure, cette mesure
de longueur d'onde peut être considérée comme la valeur de mesure au point zéro.
4.4 Comportement de stabilité
4.4.1 Dérive et fluage
En général, la stabilité est l'aptitude d'un système de mesure à conserver ses caractéristiques
métrologiques et à satisfaire aux autres spécifications sur la durée de fonctionnement prévue.
Dans le contexte du présent document, la stabilité décrit la propriété du capteur de pression
FBG appliqué à maintenir ses caractéristiques optiques pendant la période d'utilisation, qui est
déterminée par l'application, ou à ne montrer que de petits écarts admissibles.
Des variations de la valeur mesurée peuvent apparaître:
– lorsque les matériaux concernés sont soumis à des contraintes à long terme (fluage);
– sans contrainte de charge appliquée (dérive du point zéro).
Le fluage et la dérive du point zéro peuvent résulter d'une dégradation chimique ou physique
progressive des matériaux utilisés dans le capteur (par exemple du vieillissement), ou de
changements des conditions environnementales initiales (par exemple, la température ou
l'humidité, ou les deux).
Le fluage est une grandeur qui dépend des matériaux utilisés dans le capteur, de la
configuration du capteur et du type de fonctionnement. Elle ne peut être déterminée
qu'expérimentalement. Sous réserve d'utiliser le matériau de liaison spécifié par le fabricant,
les erreurs de mesure résultant du fluage sont généralement négligeables par rapport à
l'incertitude de mesure du facteur de conversion de pression κ .
p
La dérive est une variation lente des caractéristiques métrologiques du système de mesure.
Dans de nombreux capteurs FBG, l'erreur de mesure résultant de la dérive est négligeable.
Dans ce cas, aucune spécification supplémentaire de la dérive n'est exigée. Cependant, des
dérives importantes peuvent se produire lorsqu'un processus de production modifié est utilisé
ou lorsque des matériaux de recouvrement inadéquats sont appliqués. Dans ce cas, il convient
de mesurer et de documenter la dérive.
4.4.2 Hystérésis
L'hystérésis décrit un comportement particulier des matériaux dans lequel un matériau ne
r
...


IEC 61757-8-1 ®
Edition 1.0 2025-12
INTERNATIONAL
STANDARD
NORME
INTERNATIONALE
Fibre optic sensors -
Part 8-1: Pressure measurement - Pressure sensors based on fibre Bragg
gratings
Capteurs fibroniques -
Partie 8-1: Mesure de pression - Capteurs de pression basés sur des réseaux de
Bragg à fibres
ICS 33.180.99  ISBN 978-2-8327-0900-9

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or
by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either
IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright
or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local
IEC member National Committee for further information.

Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et
les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez des
questions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisez
les coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.

IEC Secretariat Tel.: +41 22 919 02 11
3, rue de Varembé info@iec.ch
CH-1211 Geneva 20 www.iec.ch
Switzerland
About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigendum or an amendment might have been published.

IEC publications search - IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Discover our powerful search engine and read freely all the
The advanced search enables to find IEC publications by a publications previews, graphical symbols and the glossary.
variety of criteria (reference number, text, technical With a subscription you will always have access to up to date
committee, …). It also gives information on projects, content tailored to your needs.
replaced and withdrawn publications.
Electropedia - www.electropedia.org
IEC Just Published - webstore.iec.ch/justpublished The world's leading online dictionary on electrotechnology,
Stay up to date on all new IEC publications. Just Published containing more than 22 500 terminological entries in English
details all new publications released. Available online and and French, with equivalent terms in 25 additional languages.
once a month by email. Also known as the International Electrotechnical Vocabulary
(IEV) online.
IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer
Service Centre: sales@iec.ch.
A propos de l'IEC
La Commission Electrotechnique Internationale (IEC) est la première organisation mondiale qui élabore et publie des
Normes internationales pour tout ce qui a trait à l'électricité, à l'électronique et aux technologies apparentées.

A propos des publications IEC
Le contenu technique des publications IEC est constamment revu. Veuillez vous assurer que vous possédez l’édition la
plus récente, un corrigendum ou amendement peut avoir été publié.

Recherche de publications IEC -  IEC Products & Services Portal - products.iec.ch
webstore.iec.ch/advsearchform Découvrez notre puissant moteur de recherche et consultez
La recherche avancée permet de trouver des publications gratuitement tous les aperçus des publications, symboles
IEC en utilisant différents critères (numéro de référence, graphiques et le glossaire. Avec un abonnement, vous aurez
texte, comité d’études, …). Elle donne aussi des toujours accès à un contenu à jour adapté à vos besoins.
informations sur les projets et les publications remplacées
ou retirées. Electropedia - www.electropedia.org

Le premier dictionnaire d'électrotechnologie en ligne au
IEC Just Published - webstore.iec.ch/justpublished monde, avec plus de 22 500 articles terminologiques en
Restez informé sur les nouvelles publications IEC. Just anglais et en français, ainsi que les termes équivalents
Published détaille les nouvelles publications parues. dans 25 langues additionnelles. Egalement appelé
Disponible en ligne et une fois par mois par email. Vocabulaire Electrotechnique International (IEV) en ligne.

Service Clients - webstore.iec.ch/csc
Si vous désirez nous donner des commentaires sur cette
publication ou si vous avez des questions contactez-
nous: sales@iec.ch.
CONTENTS
FOREWORD . 3
INTRODUCTION . 5
1 Scope . 6
2 Normative references . 6
3 Terms, definitions, symbols and abbreviated terms . 6
3.1 Terms and definitions . 6
3.2 Symbols . 8
3.3 Abbreviated terms. 8
4 Structure and characteristics. 8
4.1 Fibre Bragg grating . 8
4.2 FBG pressure sensor configuration . 9
4.3 Reference wavelength . 11
4.4 Stability behaviour . 11
4.4.1 Drift and creep . 11
4.4.2 Hysteresis . 11
4.5 Indication of the measured values . 12
4.6 Zero-point related measurement . 12
4.7 Non-zero-point related measurement . 12
4.8 Production set . 12
4.9 FBG pressure sensor standard type . 12
4.10 FBG pressure sensor series. 12
5 Features and characteristics to be measured . 13
5.1 Sampling and statistical evaluation . 13
5.1.1 Sampling . 13
5.1.2 Reporting the measuring result . 13
5.1.3 Sample conditioning . 14
5.1.4 Ambient test conditions . 14
5.1.5 Required types of tests for individual characteristics . 14
5.2 Bragg wavelength λ . 14
Β
5.2.1 General. 14
5.2.2 Measurement procedure . 15
5.2.3 Evaluation . 15
5.2.4 Reporting . 15
5.3 FBG spectral width . 15
5.3.1 Measurement procedure . 15
5.3.2 Evaluation . 15
5.3.3 Reporting . 15
5.4 FBG reflectivity . 15
5.4.1 Measurement procedure . 15
5.4.2 Evaluation . 16
5.4.3 Reporting . 16
5.5 Pressure measurement . 16
5.5.1 General. 16
5.5.2 Test setup . 16
5.5.3 Measurement procedure . 18
5.5.4 Calibration and evaluation . 20
5.6 Pressure conversion factor . 20
5.7 Temperature and humidity ranges . 21
5.7.1 Storage and transportation, installation, and operation. . 21
5.7.2 Measurement procedure . 21
5.7.3 Evaluation . 22
5.7.4 Reporting . 22
5.8 Durability . 22
5.8.1 General. 22
5.8.2 Measurement procedure . 22
5.8.3 Reporting . 22
6 Features and characteristics to be reported . 22
6.1 Construction details . 22
6.2 Configuration of the FBG pressure sensor . 22
6.3 Temperature and humidity range . 22
6.4 Connecting requirement . 23
7 Recommendations for use of FBG measuring instruments. 23
Bibliography . 24

Figure 1 – Examples of sensor types for measuring pressure changes . 9
Figure 2 – Bragg wavelength changes caused by an increase in pressure . 10
Figure 3 – Schematic diagram of pressure sensor using two FBGs . 10
Figure 4 – Pressure measurement test setup scheme by a dead weight tester . 17
Figure 5 – Schematic diagram of a pressure measurement test setup . 18
Figure 6 – Example of temperature dependence of the Bragg wavelengths of two FBGs . 19
Figure 7 – Example of pressure dependence of the Bragg wavelengths of FBG1 and
FBG2 . 19

Table 1 – Required types of tests for individual characteristics . 14

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________
Fibre optic sensors -
Part 8-1: Pressure measurement -
Pressure sensors based on fibre Bragg gratings

FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international
co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and
in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports,
Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their
preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with
may participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for
Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence between
any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a)
patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in
respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which
may be required to implement this document. However, implementers are cautioned that this may not represent
the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC
shall not be held responsible for identifying any or all such patent rights.
IEC 61757-7-1 has been prepared by subcommittee 86C: Fibre optic systems, sensing and
active devices, of IEC technical committee 86: Fibre optics. It is an International Standard.
The text of this International Standard is based on the following documents:
Draft Report on voting
86C/1970/CDV 86C/1993/RVC
Full information on the voting for its approval can be found in the report on voting indicated in
the above table.
The language used for the development of this International Standard is English.
This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in
accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available
at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are
described in greater detail at www.iec.ch/publications.
A list of all parts in the IEC 61757 series, published under the general title Fibre optic sensors,
can be found on the IEC website.
The committee has decided that the contents of this document will remain unchanged until the
stability date indicated on the IEC website under webstore.iec.ch in the data related to the
specific document. At this date, the document will be
– reconfirmed,
– withdrawn, or
– revised.
INTRODUCTION
Generic specifications for fibre optic sensors are defined in IEC 61757.
The individual parts of the IEC 61757 series are numbered as IEC 61757-M-T, where M denotes
the measurand and T the technology. The IEC 61757-8-T series deals with pressure
measurements.
1 Scope
This part of IEC 61757 defines the terminology, structure, and measurement methods of optical
pressure sensors for gases or liquids based on a diaphragm in combination with fibre Bragg
gratings (FBGs) as the sensing element. This document also specifies the most important
features and characteristics of these fibre optic pressure sensors and defines procedures for
measuring these features and characteristics.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any
amendments) applies.
IEC 60068-2 (all parts), Environmental testing - Part 2: Tests
IEC 61300-2 (all parts), Fibre optic interconnecting devices and passive components - Basic
test and measurement procedures - Part 2: Tests
IEC 61754 (all parts), Fibre optic interconnecting devices and passive components - Fibre optic
connector interfaces
IEC 61757, Fibre optic sensors - Generic specification
IEC 61757-1-1:2020, Fibre optic sensors - Part 1-1: Strain measurement - Strain sensors based
on fibre Bragg gratings
IEC 62129-1, Calibration of wavelength/optical frequency measurement instruments - Part 1:
Optical spectrum analyzers
IEC 62129-2, Calibration of wavelength/optical frequency measurement instruments - Part 2:
Michelson interferometer single wavelength meters
ISO/IEC GUIDE 98-3, Uncertainty of measurement - Part 3: Guide to the expression of
uncertainty in measurement (GUM:1995)
3 Terms, definitions, symbols and abbreviated terms
3.1 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 61757, IEC 61757-1-1
and the following apply.
ISO and IEC maintain terminology databases for use in standardization at the following
addresses:
– IEC Electropedia: available at https://www.electropedia.org/
– ISO Online browsing platform: available at https://www.iso.org/obp
3.1.1
pressure
p
amount of force applied perpendicular to the surface of an object per unit area
Note 1 to entry: Pressure is calculated as
F
p=
A
where
F is the magnitude of the normal force, expressed in newtons (N);
A is the area of the contact surface, expressed in square metres (m ).
Note 2 to entry: This definition addresses measurement methods of optical pressure sensors for gases or liquids
based on fibre Bragg gratings in combination with a diaphragm. IEC 60050-113:2011, 113-03-65 provides a broader
definition of pressure.
3.1.2
FBG pressure sensor
fibre optic sensor using one or more fibre Bragg gratings as a sensing element for pressure
measurement of gases or liquids
3.1.3
pressure conversion factor
κ
p
ratio of the relative change in wavelength to a pressure change introduced to an FBG pressure
sensor
Note 1 to entry: The pressure conversion factor κ is expressed in m /N and calculated as
p
Δλλ
( )
κ =
p
Δp
where
∆λ/λ is the relative change in wavelength;
∆p is the pressure change.
Note 2 to entry: The pressure conversion factor κ is commonly used by manufacturers to characterize the pressure
p
response of their products.
Note 3 to entry: The conversion factor κ for an FBG pressure sensor assumes a linear relation between wavelength
p
change and pressure. Considering the whole measurement system (sensor, device, and cabling), it can be separately
defined for the various components of the measurement system. It is only valid for defined conditions. In the case of
a non-linear characteristic, the relation between wavelength change and pressure change is considered to be linear
within a defined permissible measurement error.
Note 4 to entry: The term pressure sensitivity, expressed for example in pm/kPa, is used by some manufacturers
to characterize the pressure response of their products.
3.1.4
temperature compensation constant
C
constant for correcting the influence of temperature changes when the pressure is obtained
from wavelength changes
Note 1 to entry: The temperature compensation constant is usually provided by the manufacturer.
Note 2 to entry: The term temperature sensitivity, expressed for example in pm/°C, is used by some manufacturers
to characterize the influence of temperature changes in their products.
3.2 Symbols
For the purposes of this document, the following symbols apply:
R reflectivity of the FBG
FBG
n effective refractive index of the FBG
eff
∆p pressure change
∆T temperature change
Λ FBG period
λ Bragg wavelength
B
λ reference wavelength
3.3 Abbreviated terms
FBG fibre Bragg grating
FWHM full width at half maximum
SNR signal-to-noise ratio
UV ultraviolet
4 Structure and characteristics
4.1 Fibre Bragg grating
Fibre Bragg gratings (FBGs) are phase diffraction gratings inscribed into optical waveguides.
They are frequently produced using ultraviolet (UV) light (e.g. from an excimer laser at 248 nm).
The fibre is exposed to an interference pattern of this UV radiation. UV photosensitive
processes then produce changes in the refractive index of the fibre core, which is susceptible
to this UV light. The interference pattern is imaged onto the fibre core to permanently change
the refractive index of the fibre core, so that the refractive index varies periodically along the
fibre. Incident and transported light is reflected by these periodic refractive index changes along
the fibre. At a certain wavelength, the reflected light is additively superimposed (through
constructive interference); this spectral part of the incident light is reflected back to the input
port of the fibre. In the transmitted light, this wavelength (denoted Bragg wavelength λ ) is
Β
attenuated accordingly, due to the reflectance in the FBG.
The value of the reflected Bragg wavelength λ is determined by the Bragg condition shown in
Β
Formula (1).
λ = 2n Λ
(1)
B eff
where
n is the effective refractive index of the FBG;
eff
Λ is the FBG period, expressed for example in nanometres (nm).
According to Formula (1), the Bragg wavelength depends on the effective refractive index and
the period of the FBG. The spectral width of the Bragg wavelength peak is determined by the
number of grating periods and the magnitude of the refractive index modulation (for more details
see IEC 61757-1-1:2020, 5.1).
4.2 FBG pressure sensor configuration
The FBG pressure sensor can be manufactured from various materials and in various forms
(using one or more FBGs as sensing elements). The FBG pressure sensor is typically used to
monitor the pressure of fluids, such as liquids or gases. Typical applications include water level
measurement in rivers, drainage status measurement for excavations, and water pressure
measurement within pressure pipes, banks and perforations.
The method used to convert a pressure change into a change of the Bragg wavelength of an
FBG depends on the manufacturer of the pressure sensor. There are a variety of methods, but
a comprehensive description of these methods is outside the scope of this document.
The principle of fibre optic pressure measurement is based on a base body that deforms under
pressure in a controlled manner. This body often has an intentionally weakened (thin) surface,
a diaphragm, as shown in Figure 1. The diaphragm should be strong and elastic enough to
withstand the external pressure. The amount of deformation of the diaphragm under pressure
is measured with an FBG (see FBG2 in Figure 1). If the diaphragm bulges under pressure, the
FBG will be strained or, if pre-strained, compressed accordingly. This change in strain in the
FBG then changes the Bragg wavelength reflected from this FBG, as shown schematically in
Figure 2. Therefore, the pressure can be determined by measuring the reflected Bragg
wavelength of the FBG.
a) Axial directional force applied to FBG b) Lateral force applied to FBG

Figure 1 – Examples of sensor types for measuring pressure changes
Figure 1 a) shows a structure in which the central part of the diaphragm moves to the left as
the external pressure increases on the right side of the diaphragm, so that the tensile strength
acting on FBG2 weakens and its grating period decreases. As a result, the wavelength reflected
from FBG2 decreases, according to Formula (1). In Figure 1 a), FBG2 is attached to the
diaphragm in a pre-stretched state, so it should be assembled with care. In Figure 1 b), on the
other hand, the grating period of FBG2 increases with increasing external pressure, so that the
wavelength reflected from FBG2 increases with external pressure. In this case, adhesion of
FBG2 to the diaphragm is important, because the diaphragm can repeatedly expand and
contract as the external pressure varies.
a) with axial directional force applied to FBG b) with lateral force applied to FBG

Figure 2 – Bragg wavelength changes caused by an increase in pressure
A broadband light source and an optical spectrometer can be used to measure the change in
the Bragg wavelength of an FBG. The light source and the spectrometer are typically connected
to the pressure sensing FBG via an optical circulator, as shown schematically in Figure 3.
In Figure 1 a) and Figure 1 b), an additional FBG (denoted FBG1) is inserted near the pressure
sensing FBG (denoted FBG2) to allow for compensation of the temperature dependence of
FBG2 (as described in 5.5.3). The additional FBG1 measures only temperature changes,
whereas FBG2 measures pressure and temperature changes. FBG1 and FBG2 can be
connected in series, as shown in the schematic diagrams of Figure 3, or alternatively in parallel.

a) with axial directional force applied to FBG

b) with lateral force applied to FBG

Figure 3 – Schematic diagram of pressure sensor using two FBGs
4.3 Reference wavelength
The Bragg wavelength measured with a given FBG can depend on the evaluation method and,
more importantly, on the specific installation of the FBG. In the context of this document, the
wavelength measured after installation of the FBG in the pressure sensor is denoted as the
reference wavelength λ .
The reference wavelength is not necessarily the same as the Bragg wavelength specified by
the manufacturer of the FBG. If the FBG is pre-strained, for example, there is a difference
between the reference wavelength and the manufacturer's Bragg wavelength. If the FBG is not
pre-strained, the difference between the reference wavelength and the manufacturer's Bragg
wavelength is usually very small, so that both wavelength values can be used interchangeably
without significant error.
If the reference wavelength is measured when the measurement cycle is started, this
wavelength measurement can be considered as the zero-point measurement value.
4.4 Stability behaviour
4.4.1 Drift and creep
Stability, in general, is the ability of a measurement system to maintain its metrological
characteristics and meet other specifications over the intended time of operation. In the context
of this document, stability describes the property of the applied FBG pressure sensor to
maintain its optical characteristics over the period of use, which is determined by the application,
or to show only small permissible deviations.
Variations in the measured value can occur:
– when the materials concerned are subject to long-term stress (creep);
– without loading stress applied (zero-point drift).
Creep and zero-point drift can result from slowly progressing chemical or physical degradation
of the materials used in the sensor (e.g. from ageing), or from changes of the initial
environmental conditions (e.g. either temperature or humidity, or both).
Creep is a quantity that depends on the materials used in the sensor, the set-up of the sensor,
and the type of operation. It can only be determined experimentally. Provided that the bonding
material prescribed by the manufacturer is used, the measurement errors resulting from creep
are usually insignificant relative to the measurement uncertainty of the pressure conversion
factor κ .
p
Drift is a slow change of the metrological characteristics of the measurement system. In many
FBG sensors, the measurement error resulting from drift is negligibly small. In this case, no
further specification of drift is required. However, significant drift can occur when a modified
production process is used or when inadequate recoating materials are applied. In this case,
the drift should be measured and documented.
4.4.2 Hysteresis
Hysteresis describes a particular material behaviour, whereby the material does not return to
its original state after the stress or force to the FBG has been removed, or does so with a
significant time delay. This means that the output value of a sensor with elasto-plastic
deformation behaviour does not only depend on the input value but also on rate-dependent
processes.
When the pressure (or temperature) of a silica-based FBG changes, the Bragg wavelength
commonly shifts without showing a hysteresis effect. If hysteresis occurs for repeated or cyclic
pressure variations within the specified operation range of the sensor, the amount of hysteresis
should be described.
4.5 Indication of the measured values
The variations in Bragg wavelength induced in the FBG are measured by a connected
measuring device (yielding the measured values) and processed for metrological use (yielding
the result of the measurement). Customarily, the measuring device supplies the optical input
signal for the sensor and records the sensor response signal.
4.6 Zero-point related measurement
The concepts of "zero-point measurement" and "static or quasi-static measurement",
respectively, are used to denote all measurements where the measured value refers to an initial
value (the zero point).
The following influencing factors shall also be considered:
– drift in the measuring instrument;
– method of evaluation:
different evaluation methods (using different measuring devices), which can result in
different offset quantities with respect to the zero point. In case of replacement of the
measuring device, the zero-point offset between the old and the new instrument should be
determined;
– creep of the applied sensor.
The scanning procedure for FBG pressure sensors shall take place in a route-neutral manner,
so that the characteristics of the connecting leads and of the optical connectors or splices do
not affect the zero point. Nevertheless, the zero-point should be checked intermittently.
4.7 Non-zero-point related measurement
For non-zero-point related or periodic dynamic measurements, the measured values are not
referred to a fixed initial value. This applies, for example, to amplitude measurements of
periodic oscillations.
4.8 Production set
An FBG set is a batch of FBG produced in the same manufacturing process.
4.9 FBG pressure sensor standard type
An FBG pressure sensor standard type is a batch of FBG pressure sensors with identical
physical properties (geometrical dimensions, manufacturing process, materials used, post-
processing, and Bragg wavelength).
4.10 FBG pressure sensor series
A series is a batch of FBG pressure sensors for which the materials used, and the manufacturing
processes are identical, but which can show differences in their Bragg wavelength or
dimensions.
5 Features and characteristics to be measured
5.1 Sampling and statistical evaluation
5.1.1 Sampling
5.1.1.1 General
The following sampling methods shall be used according to the intended scope of testing:
– random sampling;
– type testing;
– series testing;
– individual sample testing.
Many of the FBG pressure sensor properties can only be determined on an installed sensor. In
such a case, a statistical evaluation shall be performed and the number of sample sensors and
the date of evaluation shall be recorded.
5.1.1.2 Random sampling test
The requirement for performing a random sampling test is based on the assumption that the
variations of the characteristic parameter follow a Gaussian distribution. All sensors chosen for
characteristic testing shall belong to the same production set. At least five samples shall be
selected. The result of a random sampling test is valid for one production set.
5.1.1.3 Type testing
The type test is a random sampling test as described in 5.1.1.2, whereby the result of testing
of at least five specimens of this type is declared valid for all production sets.
5.1.1.4 Series testing
The series test is a random sampling test as described in 5.1.1.2, whereby the result is
determined for a single specimen out of a sensor series and declared valid for the whole series.
5.1.1.5 Individual sample testing
Each specimen of a sensor series or just a prototype of a unique FBG pressure sensor shall be
tested.
5.1.2 Reporting the measuring result
The results of the series tests, type tests and random sampling tests are expressed as the
arithmetic mean value and the corresponding standard deviation. The form of the statement of
the standard deviation shall be specified. Estimation of measurement uncertainty shall be
carried out in accordance with ISO/IEC GUIDE 98-3.
If n sensors are tested, i.e. sensors X to X , then the characteristic is quoted as the mean value
1 n
x of the n values x to x measured with the sensors, as shown in Formula (2).
1 n
n
xx=
(2)
∑ i
n
i=1
The corresponding standard deviation s of the n measured values is given by Formula (3).
n
(3)
s ( x− x)
∑ i
n−1
i=1
5.1.3 Sample conditioning
The sensors selected for testing shall be allowed to reach equilibrium with the environment in
which the test shall be performed; the exposure time to such an environment should be at least
two hours.
5.1.4 Ambient test conditions
All tests shall be performed at specified temperature and relative humidity conditions; the values
of the parameters and their tolerance shall be reported. In general, the ambient temperature
should be between 18 °C and 28 °C, the humidity should be between 25 %RH and 75 %RH,
and the ambient atmospheric pressure should be between 86 kPa and 106 kPa.
5.1.5 Required types of tests for individual characteristics
The types of tests for individual characteristics shall be those specified in Table 1.
Table 1 – Required types of tests for individual characteristics
Design-specific features and characteristics Type of test
Bragg wavelength Individual sample test
FBG spectral width Series test
Reflectivity Type test
Pressure conversion factor Series test
Temperature compensation constant Series test
Operating temperature and humidity ranges Series test
Durability Series test
5.2 Bragg wavelength λ
Β
5.2.1 General
The following characteristics of an FBG spectrum shall be measured as required by this
document or upon customer request:
– peak of Bragg wavelength in nm;
– FBG spectral width in nm;
– FBG reflectivity in %;
– relative side-lobe level (also called side-lobe suppression ratio) in dB;
– FBG signal-to-noise ratio (SNR) in dB;
– first poles (minima) adjacent the peak of the reflected Bragg wavelength (denoted Λ and
+0
Λ ,).
−0
=
5.2.2 Measurement procedure
For FBGs with relatively low reflectivity (R < 50 %), the Bragg wavelength shall be measured
FBG
in reflection. For FBGs with higher reflectivity (R > 90 %), on the other hand, the Bragg
FBG
wavelength shall be measured in transmission, because it becomes progressively more difficult
to accurately determine the maximum of the reflected Bragg wavelength. Therefore, the
transmission minimum shall be used for measuring the Bragg wavelength. For intermediate
values of reflectivity (R between 50 % and 90 %), either configuration may be used.
FBG
The Bragg wavelength of the FBG should be measured and reported with sufficient spectral
resolution. The spectral resolution shall be less than one-tenth of the measurement uncertainty
of the wavelength to be measured. The measurement method used, and the corresponding
uncertainty (spectral resolution) should be reported. In case of polarization effects, special
measurements should be carried out.
5.2.3 Evaluation
An evaluation is not required for the Bragg wavelength measurement.
5.2.4 Reporting
The measured or calculated Bragg wavelength and the measurement procedure shall be
reported. On customer request, the typical FBG spectrum shall also be reported.
5.3 FBG spectral width
5.3.1 Measurement procedure
The FBG spectrum of the FBG pressure sensor shall be measured with a spectral resolution
that is less than one-tenth of the measurement uncertainty of the wavelength to be measured.
The constancy of the spectral width impacts the measurement uncertainty when using
mathematical evaluation principles for determining the Bragg wavelength. The spectral width
can be affected by different influencing quantities, for example by temperature, maximum
possible pressure, and continuous oscillation behaviour.
5.3.2 Evaluation
The measured FBG spectrum shall be evaluated according to the definition. The spectral width
shall be determined from a reflection spectrum, whereby the difference of the two wavelength
values at the 3 dB drop-off points is taken from both sides of the reflection maximum.
Alternatively, the transmission spectrum shall be used to determine the Bragg wavelength using
an appropriate spectrum evaluation technique.
5.3.3 Reporting
The typical spectral width shall be reported. On customer request, the FBG spectrum shall also
be reported.
5.4 FBG reflectivity
5.4.1 Measurement procedure
The FBG spectrum of the FBG pressure sensor shall be measured with sufficient spectral
resolution.
5.4.2 Evaluation
The measured FBG spectrum shall be evaluated according to the definition given in
IEC 61757-1-1:2020, 3.5, and the measurement procedure described in IEC 61757-1-1:2020,
7.4. The FBG reflectivity shall be calculated from Formula (4) when the Bragg wavelength is
measured in reflection, and from Formula (5) when the Bragg wavelength is measured in
transmission.
P
FBG
R ×100 % (4)
FBG
P
PP−
0 λ
Β
R ×100 % (5)
FBG
P
where
R is the reflectivity of the FBG;
FBG
P is the optical power reflected by the FBG at the Bragg wavelength λ ;
FBG B
P is the incident optical power;
P is the transmitted optical power of the FBG at the Bragg wavelength λ .
λ B
Β
5.4.3 Reporting
The typical reflectivity shall be reported. On customer request, the FBG spectrum shall also be
reported.
5.5 Pressure measurement
5.5.1 General
Different setups can be used according to the construction and working principle of the pressure
sensor. In all cases, the fibre optic sensor output or an optical fibre is used to connect FBG1
and FBG2 of the pressure sensor to the broadband light source and spectrum analyser (also
known as interrogator) for temperature measurement and pressure measurement.
A pressure sensor with diaphragm is a common construction and is used as an example in 5.5.2,
5.5.3 and 5.5.4.
5.5.2 Test setup
5.5.2.1 Dead weight tester
A dead weight tester is a commercially available instrument for calibrating a pressure gauge or
other pressure transducer such as an FBG pressure sensor. It consists of a pump piston with a
screw, which presses the piston into a reservoir containing a fluid such as oil, a primary piston
that carries the dead weight, and the pressure gauge or transducer to be calibrated, as shown
schematically in Figure 4. The dead weight tester works by loading the primary piston of cross-
sectional area A with the amount of weight W that corresponds to the desired calibration
pressure p, where p = W/A. The pump piston is then used to pressurise the entire system by
forcing more fluid into the reservoir cylinder. As the screw is turned, the increase in fluid
pressure is applied to both the gauge and the weight. When the weight begins to lift, the gauge
pressure should be equal to the pressure indicated by the weights.
=
=
Pressure gauges and transducers can be calibrated very accurately if the weight is accurately
calibrated and there is minimal friction between the weight piston and the cylinder. The
operating fluid can be oil, water, or air, depending on the manufacturer.

Figure 4 – Pressure measurement test setup scheme by a dead weight tester
Conduct the test by performing the following steps.
a) Connect t
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.