EN IEC 61970-457:2021
(Main)Energy Management system application program interface (EMS-API) – Part 457: Dynamics profile
Energy Management system application program interface (EMS-API) – Part 457: Dynamics profile
IEC 61970-457:2021 specifies a standard interface for exchanging dynamic model information needed to support the analysis of the steady state stability (small-signal stability) and/or transient stability of a power system or parts of it. The schema(s) for expressing the dynamic model information are derived directly from the CIM, more specifically from IEC 61970-302. The scope of this document includes only the dynamic model information that needs to be exchanged as part of a dynamic study, namely the type, description and parameters of each control equipment associated with a piece of power system equipment included in the steady state solution of a complete power system network model. Therefore, this profile is dependent upon other standard profiles for the equipment as specified in IEC 61970-452, CIM static transmission network model profiles, the topology, the steady state hypothesis and the steady-state solution (as specified in IEC 61970-456, Solved power system state profiles) of the power system, which bounds the scope of the exchange. The profile information described by this document needs to be exchanged in conjunction with IEC 61970-452 and IEC 61970-456 profiles’ information to support the data requirements of transient analysis tools. IEC 61970 456 provides a detailed description of how different profile standards can be combined to form various types of power system network model exchanges. This document supports the exchange of the following types of dynamic models: • standard models: a simplified approach to exchange, where models are contained in predefined libraries of classes interconnected in a standard manner that represent dynamic behaviour of elements of the power system. The exchange only indicates the name of the model along with the attributes needed to describe its behaviour. • proprietary user-defined models: an exchange that would provide users the ability to exchange the parameters of a model representing a vendor or user proprietary device where an explicit description of the model is not described in this document. The connections between the proprietary models and standard models are the same as described for the standard models exchange. Recipient of the data exchange will need to contact the sender for the behavioural details of the model. This document builds on IEC 61970-302, CIM for dynamics which defines the descriptions of the standard dynamic models, their function block diagrams, and how they are interconnected and associated with the static network model. This type of model information is assumed to be pre-stored by all software applications hence it is not necessary to be exchanged in real-time or as part of a dynamics model exchange.
Schnittstelle für Anwendungsprogramme für Netzführungssysteme - Teil 457: Profile zu Dynamiken
Interface de programmation d'application pour système de gestion d'énergie (EMS-API) - Partie 457: Profil de régime dynamique
IEC 61970-457:2021 spécifie une interface normalisée pour l’échange des informations de modèles de régimes dynamiques, nécessaires pour soutenir l’analyse de la stabilité en régime établi (stabilité en petits signaux) et/ou la stabilité transitoire d’un système électrique ou des parties de celui-ci. Le ou les schémas d’expression des informations de modèles de régimes dynamiques sont déduits directement du CIM, plus spécifiquement de l’IEC 61970-302. Le domaine d’application du présent document inclut uniquement les informations des modèles de régimes dynamiques qu’il est nécessaire d’échanger comme partie intégrante d’une étude des régimes dynamiques, à savoir le type, la description et les paramètres de chaque équipement de commande associé à un équipement de système électrique inclus dans la solution permanente d’un modèle complet de réseau électrique. Par conséquent, ce profil dépend des autres profils normalisés pour les équipements comme cela est spécifié dans l’IEC 61970-452: Profils du modèle de réseau de transport statique CIM, la topologie, l’hypothèse en régime établi et la solution en régime établi (comme cela est spécifié dans l'IEC 61970-456: Profils d'état de réseaux électriques résolus) du système électrique, ce qui limite la portée de l’échange. Il est nécessaire d’échanger les informations de profils décrites par le présent document conjointement avec les informations de profils spécifiées dans l’IEC 61970-452 et l’IEC 61970-456 afin de venir à l’appui des exigences relatives aux données des outils d’analyse transitoire. L’IEC 61970-456 donne une description détaillée du mode selon lequel les différentes normes de profils peuvent être combinées afin de former différents types d’échanges de modèles de réseaux électriques. Le présent document soutient l’échange des types suivants de modèles de régimes dynamiques: • modèles normalisés: une approche simplifiée d’échange, avec laquelle les modèles sont contenus dans des bibliothèques prédéfinies de classes interconnectées de manière normalisée, qui représentent le comportement dynamique des éléments du système électrique. L’échange indique uniquement le nom du modèle, ainsi que les attributs nécessaires pour décrire son comportement; • modèles définis par l'utilisateur propriétaires: échange qui donne la possibilité aux utilisateurs d’échanger les paramètres d’un modèle qui représente le dispositif propriétaire d’un fournisseur ou d’un utilisateur, lorsque le présent document ne donne pas de description explicite du modèle. Les connexions entre les modèles propriétaires et les modèles normalisés sont les mêmes que celles décrites pour l’échange de modèles normalisés. Il est nécessaire que le destinataire de l’échange de données contacte l’émetteur afin d’obtenir les informations détaillées du comportement du modèle. La structure du présent document suit le CIM pour régimes dynamiques de l’IEC 61970-302, qui définit les descriptions des modèles de régimes dynamiques normalisés et de leurs diagrammes de blocs fonctionnels, ainsi que leur mode d'interconnexion et d’association avec le modèle de réseau statique. Par hypothèse, ce type d’information de modèle est considéré comme prémémorisé par toutes les applications logicielles et il n’est ainsi pas nécessaire de l'échanger en temps réel ou comme partie intégrante d’un échange de modèles de régimes dynamiques.
Aplikacijski programski vmesnik za sistem upravljanja z energijo (EMS-API) - 457. del: Dinamični profil
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-julij-2021
Aplikacijski programski vmesnik za sistem upravljanja z energijo (EMS-API) - 457.
del: Dinamični profil
Energy Management System Application Program Interface (EMS-API) – Part 457:
Dynamics profile
Ta slovenski standard je istoveten z: EN IEC 61970-457:2021
ICS:
29.240.30 Krmilna oprema za Control equipment for electric
elektroenergetske sisteme power systems
35.200 Vmesniška in povezovalna Interface and interconnection
oprema equipment
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
EUROPEAN STANDARD EN IEC 61970-457
NORME EUROPÉENNE
EUROPÄISCHE NORM
April 2021
ICS 33.200
English Version
Energy Management system application program interface
(EMS-API) - Part 457: Dynamics profile
(IEC 61970-457:2021)
Interface de programmation d'application pour système de Schnittstelle für Anwendungsprogramme für
gestion d'énergie (EMS-API) - Partie 457: Profil de régime Netzführungssysteme - Teil 457: Profile zu Dynamiken
dynamique (IEC 61970-457:2021)
(IEC 61970-457:2021)
This European Standard was approved by CENELEC on 2021-04-20. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.
CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.
European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2021 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN IEC 61970-457:2021 E
European foreword
The text of document 57/2331/FDIS, future edition 1 of IEC 61970-457, prepared by IEC/TC 57
"Power systems management and associated information exchange" was submitted to the IEC-
CENELEC parallel vote and approved by CENELEC as EN IEC 61970-457:2021.
The following dates are fixed:
• latest date by which the document has to be implemented at national (dop) 2022-01-20
level by publication of an identical national standard or by endorsement
• latest date by which the national standards conflicting with the (dow) 2024-04-20
document have to be withdrawn
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC shall not be held responsible for identifying any or all such patent rights.
Endorsement notice
The text of the International Standard IEC 61970-457:2021 was approved by CENELEC as a
European Standard without any modification.
In the official version, for Bibliography, the following notes have to be added for the standards
indicated:
IEC 61400-27-1:2020 NOTE Harmonized as EN IEC 61400-27-1:2020 (not modified)
IEC 61970-552:2016 NOTE Harmonized as EN 61970-552:2016 (not modified)
IEC 61970-501:2006 NOTE Harmonized as EN 61970-501:2006 (not modified)
Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments)
applies.
NOTE 1 Where an International Publication has been modified by common modifications, indicated by (mod),
the relevant EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available
here: www.cenelec.eu.
Publication Year Title EN/HD Year
IEC 61970-301 2020 Energy management system application EN IEC 61970-301 2020
program interface (EMS-API) - Part 301:
Common information model (CIM) base
IEC 61970-302 2018 Energy management system application EN IEC 61970-302 2018
program interface (EMS-API) - Part 302:
Common information model (CIM)
dynamics
IEC 61970-452 2017 Energy management system application EN 61970-452 2017
program interface (EMS-API) - Part 452:
CIM static transmission network model
profiles
IEC 61970-456 2018 Energy management system application EN IEC 61970-456 2018
program interface (EMS-API) - Part 456:
Solved power system state profiles
IEC 61970-457 ®
Edition 1.0 2021-03
INTERNATIONAL
STANDARD
colour
inside
Energy management system application program interface (EMS-API) –
Part 457: Dynamics profile
INTERNATIONAL
ELECTROTECHNICAL
COMMISSION
ICS 33.200 ISBN 978-2-8322-9421-5
– 2 – IEC 61970-457:2021 © IEC 2021
CONTENTS
FOREWORD . 22
INTRODUCTION . 24
1 Scope . 25
2 Normative references . 25
3 Terms and definitions . 26
4 Profile specification . 26
4.1 General . 26
4.2 Requirements and constraints . 26
5 Overview . 29
6 Use cases . 30
6.1 General . 30
6.2 Dynamic assessment studies . 30
7 Architecture . 31
7.1 General . 31
7.2 Profile architecture . 32
8 Detailed profile specification . 34
8.1 General . 34
8.2 Package DynamicsProfile . 35
8.2.1 General . 35
8.2.2 (abstract) DynamicsProfileVersion root class . 35
8.2.3 Package Base . 35
8.2.4 Package Dynamics . 64
Annex A (normative) Implementation clarifications related to the models inherited from
RotatingMachineDynamics class . 444
Annex B (informative) Examples using IEC 61970-552 serialisation . 446
B.1 Overview. 446
B.2 Standard models . 446
B.3 User-defined models . 450
Bibliography . 457
Figure 1 – SynchronousMachineDynamics association . 32
Figure 2 – Interconnection diagram for a synchronous machine . 32
Figure 3 – Standard connections for a synchronous machine . 33
Figure 4 – Profile relationships . 34
Figure 5 – Class diagram Domain::Primitives . 36
Figure 6 – Class diagram Domain::DataTypes . 36
Figure 7 – Class diagram Domain::Enumerations . 37
Figure 8 – Class diagram Core::Core . 55
Figure 9 – Class diagram Wires::Wires . 59
Figure 10 – StandardInterconnectionSynchronousMachine . 65
Figure 11 – StandardInterconnectionSynchronousGeneratorCrossCompound . 66
Figure 12 – StandardInterconnectionAsynchronousMachine . 67
Figure 13 – StandardInterconnectionWindTurbineType1Aand1B . 68
Figure 14 – StandardInterconnectionWindTurbineType2 . 69
IEC 61970-457:2021 © IEC 2021 – 3 –
Figure 15 – StandardInterconnectionWindTurbineType3 . 70
Figure 16 – StandardInterconnectionWindTurbineType4Aand4B . 71
Figure 17 – StandardInterconnectionSingleLoad . 72
Figure 18 – Class diagram StandardInterconnections::
StandardSynchronousMachineInterconnection . 73
Figure 19 – Class diagram StandardInterconnections::
StandardAsynchronousMachineInterconnection . 74
Figure 20 – Class diagram StandardInterconnections::
StandardWindType1and2Interconnection . 75
Figure 21 – Class diagram StandardInterconnections::
StandardWindType3and4Interconnection . 76
Figure 22 – Class diagram StandardInterconnections::StandardLoadInterconnection . 77
Figure 23 – Class diagram StandardInterconnections::StandardHVDCInterconnection . 78
Figure 24 – Class diagram StandardInterconnections::
StandardStaticVarCompensatorInterconnection . 78
Figure 25 – SynchronousGeneratorInterconnectionAndVariables . 81
Figure 26 – SynchronousMotorInterconnectionAndVariables . 82
Figure 27 – Class diagram SynchronousMachineDynamics::
SynchronousMachineDynamics . 83
Figure 28 – SynchronousMachineSaturationParameters . 84
Figure 29 – SynchronousGeneratorMechanicalEquation . 85
Figure 30 – SynchronousMotorMechanicalEquation . 86
Figure 31 – SynchronousGeneratorPhasor . 87
Figure 32 – SynchronousMotorPhasor . 88
Figure 33 – Simplified . 89
Figure 34 – SubtransientRoundRotor . 93
Figure 35 – SubtransientSalientPole . 94
Figure 36 – SubtransientTypeF . 95
Figure 37 – SubtransientTypeJ . 96
Figure 38 – SubtransientRoundRotorSimplified . 97
Figure 39 – SubtransientSalientPoleSimplified . 99
Figure 40 – SubtransientRoundRotorSimplifiedDirectAxis . 101
Figure 41 – SubtransientSalientPoleSimplifiedDirectAxis . 103
Figure 42 – SynchronousEquivalentCircuit . 107
Figure 43 – AsynchronousGeneratorInterconnectionAndVariables . 109
Figure 44 – AsynchronousMotorInterconnectionAndVariables . 110
Figure 45 – Class diagram AsynchronousMachineDynamics::
AsynchronousMachineDynamics . 111
Figure 46 – AsynchronousGeneratorMechanicalEquation . 112
Figure 47 – AsynchronousMotorMechanicalEquation . 112
Figure 48 – AsynchronousEquivalentCircuit . 116
Figure 49 – TurbineGovernorInterconnectionAndVariables . 118
Figure 50 – Class diagram TurbineGovernorDynamics::TurbineGovernorDynamics . 119
Figure 51 – GovHydroIEEE0 . 121
Figure 52 – GovHydroIEEE2 . 123
– 4 – IEC 61970-457:2021 © IEC 2021
Figure 53 – GovSteamIEEE1 . 125
Figure 54 – GovCT1 . 128
Figure 55 – GovCT2 . 132
Figure 56 – GovGAST . 136
Figure 57 – GovGAST1 . 137
Figure 58 – GovGAST2 . 140
Figure 59 – GovGAST3 . 142
Figure 60 – GovGAST3ExhaustTemperature . 143
Figure 61 – GovGAST4 . 145
Figure 62 – GovGASTWD . 147
Figure 63 – GovHydro1 . 149
Figure 64 – GovHydro2 . 151
Figure 65 – GovHydro3 . 154
Figure 66 – GovHydro4 . 157
Figure 67 – GovHydro4SimpleHydroTurbine . 158
Figure 68 – GovHydro4FrancisPeltonTurbine . 159
Figure 69 – GovHydro4KaplanTurbine . 160
Figure 70 – GovHydroDD . 163
Figure 71 – GovHydroFrancis . 166
Figure 72 – GovHydroFrancisNonLinearGainAndEfficiency . 167
Figure 73 – DetailedHydroModelHydraulicSystem . 168
Figure 74 – GovHydroPelton . 170
Figure 75 – GovHydroPeltonNonLinearGainAndEfficiency . 171
Figure 76 – GovHydroPID . 174
Figure 77 – GovHydroPID2 . 177
Figure 78 – GovHydroR . 179
Figure 79 – GovHydroWEH . 183
Figure 80 – GovHydroWPID . 187
Figure 81 – GovSteam0 . 189
Figure 82 – GovSteam1 . 191
Figure 83 – GovSteam1BacklashHysteresis . 192
Figure 84 – GovSteam1InputSpeedDeadband . 193
Figure 85 – GovSteam2 . 196
Figure 86 – GovSteamBB . 197
Figure 87 – GovSteamCC . 199
Figure 88 – GovSteamEU . 201
Figure 89 – GovSteamFV2 . 204
Figure 90 – GovSteamFV3 . 205
Figure 91 – GovSteamFV4 . 208
Figure 92 – GovSteamSGO. 211
Figure 93 – Class diagram
TurbineLoadControllerDynamics::TurbineLoadControllerDynamics . 213
Figure 94 – TurbLCFB1 . 214
IEC 61970-457:2021 © IEC 2021 – 5 –
Figure 95 – MechanicalLoadInterconnectionAndVariables . 216
Figure 96 – MechanicalLoadEquations . 217
Figure 97 – Class diagram MechanicalLoadDynamics::MechanicalLoadDynamics . 218
Figure 98 – ExcitationSystemInterconnectionAndVariables . 220
Figure 99 – Class diagram ExcitationSystemDynamics::ExcitationSystemDynamics . 221
Figure 100 – ExcAC1A . 247
Figure 101 – ExcAC2A . 249
Figure 102 – ExcAC3A . 252
Figure 103 – ExcAC4A . 254
Figure 104 – ExcAC5A . 255
Figure 105 – ExcAC6A . 257
Figure 106 – ExcAC8B . 259
Figure 107 – ExcANS . 262
Figure 108 – ExcAVR1 . 263
Figure 109 – ExcAVR2 . 265
Figure 110 – ExcAVR3 . 266
Figure 111 – ExcAVR4 . 267
Figure 112 – ExcAVR5 . 269
Figure 113 – ExcAVR7 . 270
Figure 114 – ExcBBC . 272
Figure 115 – ExcCZ . 274
Figure 116 – ExcDC1A . 275
Figure 117 – ExcDC2A . 277
Figure 118 – ExcDC3A . 279
Figure 119 – ExcDC3A1 . 281
Figure 120 – ExcELIN1 . 283
Figure 121 – ExcELIN2 . 285
Figure 122 – ExcHU . 287
Figure 123 – ExcNI . 288
Figure 124 – ExcOEX3T . 290
Figure 125 – ExcPIC . 292
Figure 126 – ExcREXS . 294
Figure 127 – ExcRQB . 297
Figure 128 – ExcSCRX . 299
Figure 129 – ExcSEXS . 300
Figure 130 – ExcSK . 302
Figure 131 – ExcST1A . 304
Figure 132 – ExcST2A . 306
Figure 133 – ExcST3A . 308
Figure 134 – ExcST4B . 310
Figure 135 – ExcST6B . 312
Figure 136 – ExcST7B . 314
– 6 – IEC 61970-457:2021 © IEC 2021
Figure 137 – Class diagram OverexcitationLimiterDynamics::
OverexcitationLimiterDynamics . 316
Figure 138 – OverexcLim2 . 318
Figure 139 – OverexcLimX1 . 319
Figure 140 – OverexcLimX1TimeCharacteristic . 320
Figure 141 – OverexcLimX2 . 321
Figure 142 – OverexcLimX2TimeCharacteristic . 322
Figure 143 – Class diagram
UnderexcitationLimiterDynamics::UnderexcitationLimiterDynamics . 324
Figure 144 – UnderexcLim2Simplified . 328
Figure 145 – UnderexcLimX1 . 330
Figure 146 – UnderexcLimX2 . 331
Figure 147 – PowerSystemStabilizerInterconnectionAndVariables . 332
Figure 148 – Class diagram PowerSystemStabilizerDynamics::
PowerSystemStabilizerDynamics . 333
Figure 149 – Pss1 . 341
Figure 150 – Pss1A . 343
Figure 151 – Pss2B . 344
Figure 152 – Pss2ST . 346
Figure 153 – Pss5 . 348
Figure 154 – PssELIN2 . 350
Figure 155 – PssPTIST1 . 351
Figure 156 – PssPTIST3 . 352
Figure 157 – PssRQB . 355
Figure 158 – PssSB4 . 356
Figure 159 – PssSH . 357
Figure 160 – PssSK . 359
Figure 161 – PssSTAB2A . 360
Figure 162 – PssWECC . 361
Figure 163 – DiscontinuousExcitationControlInterconnectionAndVariables . 363
Figure 164 – Class diagram DiscontinuousExcitationControlDynamics::
DiscontinuousExcitationControlDynamics . 364
Figure 165 – Class diagram PFVArControllerType1Dynamics::
PFVArControllerType1Dynamics . 368
Figure 166 – Class diagram VoltageAdjusterDynamics::VoltageAdjusterDynamics . 371
Figure 167 – Class diagram PFVArControllerType2Dynamics::
PFVArControllerType2Dyanmics . 373
Figure 168 – PFVArType2Common1 . 376
Figure 169 – VoltageCompensatorInterconnectionAndVariables . 377
Figure 170 – Class diagram VoltageCompensatorDynamics::
VoltageCompensatorDynamics . 378
Figure 171 – Class diagram WindDynamics::WindDynamicsType1or2 . 382
Figure 172 – Class diagram WindDynamics::WindDynamicsType3 . 383
Figure 173 – Class diagram WindDynamics::WindDynamicsType4 . 384
Figure 174 – Class diagram WindDynamics::WindDynamicsPlant . 385
IEC 61970-457:2021 © IEC 2021 – 7 –
Figure 175 – LoadInterconnectionAndVariables . 411
Figure 176 – Class diagram LoadDynamics::LoadDynamics . 412
Figure 177 – LoadCompositeEquations . 413
Figure 178 – LoadGenericNonLinearTypeEquations. 414
Figure 179 – LoadStaticTypeEquations . 417
Figure 180 – LoadMotor . 420
Figure 181 – Class diagram HVDCDynamics::HVDCDynamics . 422
Figure 182 – Class diagram StaticVarCompensatorDynamics::
StaticVarCompensatorDynamics . 425
Figure 183 – Class diagram UserDefinedModels::ProprietaryUserDefinedModels . 427
Figure B.1 – Dynamics model header . 446
Figure B.2 – SynchronousMachineDynamics model . 447
Figure B.3 –TurbineGovernorDynamics model . 448
Figure B.4 – ExcitationSystemDynamics model . 448
Figure B.5 – PowerSystemStabilizerDynamics model . 449
Figure B.6 – Link between the dynamics model and static model . 451
Figure B.7 – User-defined model class for excitation systems . 451
Figure B.8 – User-defined model for turbine governor . 452
Figure B.9 – Block diagram of the ExcSEXS model . 453
Figure B.10 – Example of a simplified excitation model instance described using the
ExcSEXS class . 453
Figure B.11 – Example of a simplified excitation model instance expressed using
proprietary user-defined classes . 456
Table 1 – Attributes of DynamicsProfile::DynamicsProfileVersion . 35
Table 2 – Attributes of Domain::ActivePower . 37
Table 3 – Attributes of Domain::AngleDegrees . 38
Table 4 – Attributes of Domain::ApparentPower . 38
Table 5 – Attributes of Domain::Area . 38
Table 6 – Attributes of Domain::Frequency . 39
Table 7 – Attributes of Domain::Length . 39
Table 8 – Attributes of Domain::PU . 39
Table 9 – Attributes of Domain::Seconds . 39
Table 10 – Attributes of Domain::Temperature . 40
Table 11 – Attributes of Domain::VolumeFlowRate. 40
Table 12 – Literals of Domain::DroopSignalFeedbackKind . 41
Table 13 – Literals of Domain::ExcIEEEST1AUELselectorKind . 41
Table 14 – Literals of Domain::ExcREXSFeedbackSignalKind. 41
Table 15 – Literals of Domain::ExcST6BOELselectorKind . 42
Table 16 – Literals of Domain::ExcST7BOELselectorKind . 42
Table 17 – Literals of Domain::ExcST7BUELselectorKind . 42
Table 18 – Literals of Domain::FrancisGovernorControlKind . 43
Table 19 – Literals of Domain::GenericNonLinearLoadModelKind . 43
Table 20 – Literals of Domain::GovHydro4ModelKind . 43
– 8 – IEC 61970-457:2021 © IEC 2021
Table 21 – Literals of Domain::IfdBaseKind. 44
Table 22 – Literals of Domain::InputSignalKind . 44
Table 23 – Literals of Domain::RemoteSignalKind . 45
Table 24 – Literals of Domain::RotorKind . 45
Table 25 – Literals of Domain::StaticLoadModelKind . 45
Table 26 – Literals of Domain::SynchronousMachineModelKind . 46
Table 27 – Literals of Domain::UnitMultiplier . 47
Table 28 – Literals of Domain::UnitSymbol . 48
Table 29 – Literals of Domain::WindLookupTableFunctionKind . 53
Table 30 – Literals of Domain::WindPlantQcontrolModeKind . 54
Table 31 – Literals of Domain::WindQcontrolModeKind . 54
Table 32 – Literals of Domain::WindUVRTQcontrolModeKind . 54
Table 33 – Attributes of Core::ACDCTerminal . 56
Table 34 – Attributes of Core::ConductingEquipment . 56
Table 35 – Attributes of Core::Equipment . 56
Table 36 – Attributes of Core::IdentifiedObject . 57
Table 37 – Attributes of Core::PowerSystemResource . 57
Table 38 – Attributes of Core::Terminal . 57
Table 39 – Association ends of Core::Terminal with other classes . 58
Table 40 – Attributes of Wires::AsynchronousMachine . 60
Table 41 – Attributes of Wires::EnergyConnection . 60
Table 42 – Attributes of Wires::EnergyConsumer . 60
Table 43 – Association ends of Wires::EnergyConsumer with other classes . 60
Table 44 – Attributes of Wires::PowerElectronicsConnection . 61
Table 45 – Attributes of Wires::RegulatingCondEq . 61
Table 46 – Attributes of Wires::RotatingMachine . 61
Table 47 – Attributes of Wires::StaticVarCompensator . 62
Table 48 – Attributes of Wires::SynchronousMachine . 62
Table 49 – Attributes of DC::ACDCConverter . 62
Table 50 – Attributes of DC::CsConverter . 63
Table 51 – Attributes of DC::VsConverter . 63
Table 52 – Attributes of StandardInterconnections::RemoteInputSignal. 79
Table 53 – Association ends of StandardInterconnections:: RemoteInputSignal with
other classes . 79
Table 54 – Attributes of StandardModels::DynamicsFunctionBlock. 80
Table 55 – Attributes of StandardModels::RotatingMachineDynamics . 80
Table 56 – Attributes of SynchronousMachineDynamics::
SynchronousMachineSimplified. 89
Table 57 – Association ends of SynchronousMachineDynamics::
SynchronousMachineSimplified with other classes . 90
Table 58 – Attributes of SynchronousMachineDynamics::
SynchronousMachineDynamics . 90
Table 59 – Association ends of SynchronousMachineDynamics::
SynchronousMachineDynamics with other classes . 91
Table 60 – Attributes of SynchronousMachineDynamics::SynchronousMachineDetailed . 91
IEC 61970-457:2021 © IEC 2021 – 9 –
Table 61 – Association ends of SynchronousMachineDynamics::
SynchronousMachineDetailed with other classes . 92
Table 62 – Attributes of SynchronousMachineDynamics::
SynchronousMachineTimeConstantReactance . 104
Table 63 – Association ends of SynchronousMachineDynamics::
SynchronousMachineTimeConstantReactance with other classes . 105
Table 64 – Attributes of SynchronousMachineDynamics::
SynchronousMachineEquivalentCircuit . 107
Table 65 – Association ends of SynchronousMachineDynamics::
SynchronousMachineEquivalentCircuit with other classes . 108
Table 66 – Attributes of AsynchronousMachineDynamics::
AsynchronousMachineDynamics . 113
Table 67 – Association ends of AsynchronousMachineDynamics::
AsynchronousMachineDynamics with other classes . 113
Table 68 – Attributes of AsynchronousMachineDynamics::
AsynchronousMachineTimeConstantReactance . 114
Table 69 – Association ends of AsynchronousMachineDynamics::
AsynchronousMachineTimeConstantReactance with other classes . 115
Table 70 – Attributes of AsynchronousMachineDynamics::
AsynchronousMachineEquivalentCircuit . 116
Table 71 – Association ends of AsynchronousMachineDynamics::
AsynchronousMachineEquivalentCircuit with other classes . 117
Table 72
...








Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.
Loading comments...