CEN/TS 16800:2020
(Main)Guideline for the validation of physico-chemical analytical methods
Guideline for the validation of physico-chemical analytical methods
This document describes an approach for the validation of physico-chemical analytical methods for environmental solid matrices and water.
The guidance in this document addresses the initial description of the method and two different validation approaches, in increasing order of complexity. These are:
a) method development, if the method is developed by the laboratory, or conditions of adoption, if the method is a standardized protocol adopted by the laboratory;
b) validation at the level of single laboratories (within-laboratory validation);
c) method validation at the level of several laboratories (between-laboratory or inter-laboratory validation), with a focus on methods that are sufficiently mature and robust to be applied not only by a few expert laboratories but by laboratories operating at the routine level.
The concept is strictly hierarchical, i.e. a method shall fulfil all criteria of within-laboratory validation before it can enter the validation protocol of the between-laboratory.
This document is applicable to the validation of a broad range of quantitative physico-chemical test methods for the analysis of water (including drinking water, surface water, groundwater, waste water, marine water), and of solid environmental matrices, such as soil, sludge, liquid and solid waste, sediment and biota. It is intended for standardized protocols adopted by a laboratory, and either for test methods aiming at substances that have recently become of interest or for test methods applying recently developed technologies.
The minimal requirements that are indispensable for the characterization of the fitness for the intended purpose of an analytical method are: selectivity, precision, trueness, performances characteristics and measurement uncertainty. The aim of validation is to prove that these requirements are met.
In this document after the definitions (Clause 3) and description of the principles (Clause 4) a toolbox is given describing the relevant performance characteristics in the validation process.
Clause 7 and 8 focus on the within laboratory validation process (V1) and Clause 9 on the interlaboratory validation process (V2). Clause 7 and 8 describe largely the same processes, but differ in approach for establishing the LOQ.
Reporting of the results of the validation studies is addressed in Clause 10.
Anleitung zur Validierung physikalisch-chemischer Analysenverfahren
Lignes directrices pour la validation des méthodes d’analyse physico-chimiques
Le présent document décrit une approche de validation des méthodes d’analyse physico-chimiques destinées aux matrices solides environnementales et à l’eau.
Les recommandations du présent document concernent la description initiale de la méthode et deux approches de validation différentes, par ordre croissant de complexité. Ces approches sont les suivantes :
a) développement de méthodes, si la méthode est développée par le laboratoire, ou conditions d’adoption, si la méthode est un protocole normalisé adopté par le laboratoire ;
b) validation de la méthode au niveau de laboratoires individuels (validation intralaboratoire) ;
c) validation des méthodes au niveau de plusieurs laboratoires (validation interlaboratoires), en se concentrant sur les méthodes suffisamment abouties et robustes pour être appliquées par quelques laboratoires experts, mais aussi par des laboratoires de routine.
Le concept est strictement hiérarchisé, c’est-à-dire qu’une méthode doit remplir tous les critères de validation intralaboratoire avant de pouvoir passer au protocole de validation interlaboratoires.
Le présent document est applicable à la validation d’un large éventail de méthodes d’essai physico chimiques quantitatives destinées à l’analyse de l’eau (y compris l’eau potable, les eaux de surface, les eaux souterraines, les eaux usées et l’eau de mer), ainsi qu’à des matrices environnementales solides, telles que du sol, de la boue, des déchets liquides et solides, des sédiments et le biote. Il s’adresse à des protocoles normalisés adoptés par un laboratoire et soit à des méthodes d’essai visant des substances qui ont suscité un intérêt récent, soit à des méthodes d’essai qui appliquent des technologies récemment mises au point.
Les exigences minimales indispensables à la caractérisation de l’adéquation à l’objectif prévu d’une méthode d’analyse sont la sélectivité, la fidélité, la justesse, les caractéristiques de performance et l’incertitude de mesure. La validation a pour objectif de prouver que ces exigences sont satisfaites.
Après les définitions (Article 3) et la description des principes (Article 4), le présent document fournit une boîte à outils décrivant les caractéristiques de performance pertinentes dans le processus de validation.
Les Articles 7 et 8 se concentrent sur le processus de validation intralaboratoire (V1) et l’Article 9 sur le processus de validation interlaboratoires (V2). Les Articles 7 et 8 décrivent en grande partie les mêmes processus, mais se distinguent par l’approche permettant d’établir la LOQ.
La consignation des résultats des études de validation est abordée dans l’Article 10.
Smernica za validacijo fizikalno-kemijskih analiznih metod
General Information
Relations
Standards Content (Sample)
SLOVENSKI STANDARD
01-april-2021
Nadomešča:
SIST-TS CEN/TS 16800:2016
Smernica za validacijo fizikalno-kemijskih analiznih metod
Guideline for the validation of physico-chemical analytical methods
Anleitung zur Validierung physikalisch-chemischer Analysenverfahren
Lignes directrices pour la validation des méthodes d'analyse physico-chimiques
Ta slovenski standard je istoveten z: CEN/TS 16800:2020
ICS:
13.060.50 Preiskava vode na kemične Examination of water for
snovi chemical substances
13.080.10 Kemijske značilnosti tal Chemical characteristics of
soils
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.
CEN/TS 16800
TECHNICAL SPECIFICATION
SPÉCIFICATION TECHNIQUE
December 2020
TECHNISCHE SPEZIFIKATION
ICS 13.060.50 Supersedes CEN/TS 16800:2015
English Version
Guideline for the validation of physico-chemical analytical
methods
Lignes directrices pour la validation des méthodes Anleitung zur Validierung physikalisch-chemischer
d'analyse physico-chimiques Analysenverfahren
This Technical Specification (CEN/TS) was approved by CEN on 9 November 2020 for provisional application.
The period of validity of this CEN/TS is limited initially to three years. After two years the members of CEN will be requested to
submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard.
CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS
available promptly at national level in an appropriate form. It is permissible to keep conflicting national standards in force (in
parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached.
CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway,
Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and
United Kingdom.
EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG
CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels
© 2020 CEN All rights of exploitation in any form and by any means reserved Ref. No. CEN/TS 16800:2020 E
worldwide for CEN national Members.
Contents Page
European foreword . 4
Introduction . 5
1 Scope . 6
2 Normative references . 6
3 Terms and definitions . 7
4 Principle . 14
5 Characterization toolbox: performance characteristics . 16
5.1 Introduction . 16
5.2 Characteristics . 16
5.2.1 Selectivity . 16
5.2.2 Sensitivity . 17
5.2.3 Robustness. 17
5.2.4 Trueness . 17
5.2.5 Precision . 19
5.2.6 Limit values . 19
5.2.7 Calibration . 20
5.2.8 Application range . 20
5.2.9 Measurement uncertainty . 20
6 Method development . 21
7 Intra-laboratory validation (V1) – option 1, basic procedure . 23
7.1 General . 23
7.1.1 Validation 1 . 23
7.1.2 Adoption of a standardized method . 23
7.1.3 Extension of the application domain of an intra-laboratory validated method . 23
7.1.4 Complete in-house development . 23
7.2 Intra-laboratory performance characteristics . 24
7.2.1 General . 24
7.2.2 Trueness . 24
7.2.3 Precision . 24
7.2.4 LOD, LOQ . 25
7.2.5 Measurement uncertainty . 26
8 Intra-laboratory validation (V1) – option 2, including verification of the LOQ . 26
8.1 General . 26
8.2 LOQ-V . 26
9 Interlaboratory validation 2 (V2) . 27
9.1 General . 27
9.2 Procedure. 28
9.2.1 Participating laboratories. 28
9.2.2 Materials: selection, preparation and pre-testing of samples . 29
9.2.3 Replicates . 30
9.2.4 Characteristics of the inter-laboratory study . 30
9.2.5 Assigned values . 30
9.2.6 Statistical evaluation and calculation of the results . 31
10 Validation report . 32
10.1 General . 32
10.2 Module A: Test method definition, documentation and general requirements . 32
10.3 Module B: Applicability domain validation . 33
10.4 Module C: Intra-laboratory performance . 33
10.5 Inter-laboratory validation . 33
10.5.1 General . 33
10.5.2 Documentation, publication and standardization . 34
Annex A (normative) Intra-laboratory validation . 35
A.1 Module A: Test method definition, documentation and general requirements . 35
A.2 Module B: Application range and pre-validation . 38
Annex B (normative) Module C: Intra-laboratory performance . 40
Annex C (normative) Module D: Requirements on the study for inter-laboratory validation . 41
Annex D (informative) Structure and content of a validation study documentation (V2) . 44
Annex E (informative) Robustness testing by systematic variation of influencing factors . 49
E.1 Design of experiment [21], [22] . 49
E.2 Calculation. 50
Annex F (informative) Protocol for spiking of solid matrices . 51
Bibliography . 52
European foreword
This document (CEN/TS 16800:2020) has been prepared by Technical Committee CEN/TC 444
“Environmental characterization of solid matrices”, the secretariat of which is held by NEN.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CEN shall not be held responsible for identifying any or all such patent rights.
This document supersedes CEN/TS 16800:2015.
The main changes compared to the previous edition are listed below:
— the scope has been extended from water only to water and environmental solid matrices, thus the
document has been modified accordingly;
— a protocol for spiking of solid matrices has been added in an informative annex.
According to the CEN/CENELEC Internal Regulations, the national standards organisations of the
following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland,
Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of
North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United
Kingdom.
Introduction
Environmental monitoring of chemical substances is increasingly carried out within a European
framework, and there is concern about the comparability of data at the European level. Methods used for
the monitoring of substances with recent interest have often not been properly validated either in-house
(i.e. within a single laboratory) or at the international level.
These issues may be addressed by adopting a harmonized approach towards method development and
validation. The main objective of this document is to provide a common European approach to the
validation of chemical methods for the respective monitoring of chemical substances in a broad range of
matrices. Although the development of this approach was triggered by the needs for monitoring of
emerging pollutants, it is of general nature and can be applied to the measurement of the concentration
of a wide range of substances in a variety of matrices.
This guidance considers the different requireme
...
Questions, Comments and Discussion
Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.